CN115812009A - 机器人样本处理系统 - Google Patents

机器人样本处理系统 Download PDF

Info

Publication number
CN115812009A
CN115812009A CN202080102890.0A CN202080102890A CN115812009A CN 115812009 A CN115812009 A CN 115812009A CN 202080102890 A CN202080102890 A CN 202080102890A CN 115812009 A CN115812009 A CN 115812009A
Authority
CN
China
Prior art keywords
sample
robotic
push
processing system
robotic arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080102890.0A
Other languages
English (en)
Inventor
P·金尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tecan Trading Co ltd
Original Assignee
Tecan Trading Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tecan Trading Co ltd filed Critical Tecan Trading Co ltd
Publication of CN115812009A publication Critical patent/CN115812009A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0099Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor comprising robots or similar manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0019End effectors other than grippers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0096Programme-controlled manipulators co-operating with a working support, e.g. work-table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/023Cartesian coordinate type
    • B25J9/026Gantry-type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/06Test-tube stands; Test-tube holders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00039Transport arrangements specific to flat sample substrates, e.g. pusher blade
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00514Stationary mixing elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0418Plate elements with several rows of samples
    • G01N2035/0425Stacks, magazines or elevators for plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/046General conveyor features
    • G01N2035/0465Loading or unloading the conveyor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45092Analysing or chemical synthesis robot, moving samples from station to station

Abstract

可提供一种用于在实验室环境中执行样本处理任务的机器人样本处理系统(100)。系统可包括:至少一个机器人臂(140)、(142),能被控制,以在平行于工作区的平面内且沿着垂直于工作区的Z轴定位;控制器(180),被配置为控制机器人臂,以定位和操作机器人臂作为样本处理任务的一部分。工作区可包括与一个或多个样本一起使用的组件(204),其中该组件包括由向下的力能致动的机构,其中控制器被配置为控制机器人臂,以通过在Z方向上向下推动来致动该机构。例如,该组件可以是用于样本容器的支架(204),该支架包括可由机器人臂操作的推‑推机构,以将样本容器中的样本带到效应器(诸如,磁铁或热源)的近处以内。

Description

机器人样本处理系统
技术领域
本发明涉及一种用于在实验室环境中执行样本处理任务的机器人样本处理系统,且涉及一种用于控制机器人样本处理系统的机器人臂的计算机实施的方法。本发明进一步涉及一种计算机可读介质,该计算机可读介质包括表示用于执行该计算机实施的方法的计算机程序的数据,且涉及一种组件(module),该组件包括由机器人样本处理系统能致动的机构。
背景技术
机器人样本处理系统在实验室自动化领域中是众所周知的。这样的机器人样本处理系统可用于自动样本处理任务,该自动样本处理任务可能包括诸如(例如,通过在工作台上拾取或放置样本容器)处理样本容器,以及(例如,通过将液体分配到样本容器中或通过移液动作)与容器中所包含的样本相互作用等动作。多种其他类型的样本处理任务和动作也是已知的,这些任务和动作可以由这样的机器人系统至少部分地自动化。
机器人样本处理系统的一个实施例是自动移液系统,例如在US20150251315中所描述的。这样的自动移液系统(还可以简单地称为“移液机器人”)可包括至少一个用于抽吸和分配液体样本的移液管。机器人臂可在控制器的控制下被定位至给定位置,且可被控制为在给定位置处执行特定动作。例如,这可使得移液管能够降低到容器中,以抽吸其中的液体或分配液体。
机器人样本处理系统的另一实施例是机器人显微镜载玻片处理器,它可以包括拾取和放置机器人臂,该拾取和放置机器人臂用于拾取显微镜载玻片且将显微镜载玻片放置在处理台上,例如以对安装在显微镜载玻片上的福尔马林固定的石蜡包埋(FFPE)组织切片进行成像和/或处理。这种处理例如可以包括对组织切片染色,对FFPE组织切片脱蜡,从组织切片中提取生物分子,执行荧光原位杂交(FISH),等等。
存在这种机器人样本处理系统的多种其他实施例,一般而言,它可包括用于保持样本的工作区(例如,以工作台的形式)以及至少一个机器人臂,该机器人臂可以可控制地定位在工作区上方的平面内(例如,在XY方向上),且可通过沿垂直于工作区的Z轴可定位地朝向工作区移动和远离工作区。机器人臂可以由控制器控制,由此机器人臂可以是“计算机控制的”。例如,机器人臂可由PC或微处理器控制,该微处理器可集成到机器人臂中或连接至机器人臂。这样,机器人臂可被控制为执行一系列动作,以便能够执行多种样本处理任务。
已知的机器人样本处理系统的一个缺点是,它们会受到它们在样本处理任务中自动完成某些类型的动作的能力的限制。
发明内容
本发明的一个目的是提供一种机器人样本处理系统,以及一种用于控制机器人样本处理系统的机器人臂的计算机实施的方法,从而在实验室环境中执行样本处理任务时能够执行一个或多个附加类型的动作。
本发明的第一方面提供了一种用于在实验室环境中执行样本处理任务的机器人样本处理系统,包括:
-用于保持样本的工作区;
-至少一个机器人臂,所述至少一个机器人臂能被控制,以在平行于所述工作区的平面内且沿着垂直于所述工作区的Z轴定位;
-控制器,所述控制器被配置为控制所述机器人臂,以定位和操作机器人臂作为样本处理任务的一部分;
其中所述工作区包括用于与一个或多个样本一起使用的组件,其中所述组件包括由向下的力能致动的机构,且其中所述控制器被配置为控制机器人臂,以通过在Z方向上向下推动来致动所述机构。
本发明的另一方面提供了一种计算机实施的方法,所述方法用于控制机器人样本处理系统的机器人臂,所述方法包括通过所述机器人样本处理系统的控制器:
-接收位置数据,所述位置数据指示组件在所述机器人样本处理系统的工作区上的位置,其中所述组件被布置为与由所述机器人样本处理系统所处理的一个或多个样本一起使用,其中所述组件包括由向下的力能致动的机构;
-控制所述机器人臂,以将所述机器人臂定位在所述组件的上方,且在Z方向上向下推动,以便致动所述组件的机构。
本发明的另一方面提供了一种计算机可读介质,所述计算机可读介质包括表示计算机程序的暂时性数据或非暂时性数据,所述计算机程序包括用于使处理器系统执行所述计算机实施的方法的指令。
本发明的上述方面可涉及机器人样本处理系统,所述机器人样本处理系统可包括用于保持样本的工作区。例如,所述工作区可以是工作台,在一些实施方案中,所述工作台可以是机器人样本处理系统的一部分,且可将样本容器单独地和/或以架、板或任何其他收集形式放置在所述工作台上。例如,样本容器可以是液体容器(诸如,管或井),或显微镜载玻片等。
机器人样本处理系统可进一步包括具有至少2个自由度(DoF)的至少一个机器人臂,即机器人臂可定位在平行于工作区的平面内,从而在此平面内具有至少一个DoF,以及可定位在垂直于工作区的平面内,从而具有一个另外的DoF。
为了便于参考,当考虑到工作台上方的物理空间中的点被限定在XYZ坐标系中且该坐标系的Z轴与重力方向对准时,所述平面还可被称为XY平面。例如,所述机器人臂可同时定位在XY平面内的X方向上和Y方向上(从而关于XY平面具有2个DoFs),而且还沿着仅一个方向可定位(从而关于XY平面具有1个DoF),例如,在X方向上或在Y方向上或沿着关于任一轴的倾斜方向。应理解,尽管该平面在别处被称为XY平面,但是机器人臂的实际控制和移动可在不同的坐标系(诸如,柱面坐标系)中发生。
机器人臂垂直于工作区的控制和移动还可称为沿着Z轴的控制和移动。因此,机器人臂可随其端部执行器(end-effector)朝向工作台和远离工作台而移动。例如,这可允许具有夹持器(gripper)作为端部执行器的机器人臂在工作区上拾取样本,例如,通过降低夹持器、夹持样本容器、然后再次提升夹持器。应理解,典型地,机器人臂沿着其移动的Z轴可以对应于重力方向。
一般而言,沿着Z轴的这种移动可允许机器人臂处理样本容器,且与这些容器中的样本相互作用,以及在放置于工作区的表面上的任何物体上方的XY平面内移动。
出人意料地,本发明人已经设计出可以使用机器人臂来操作工作区上的组件,特别是操作由在Z轴方向上所施加的向下的力能致动的组件。也就是说,本发明人已经认识到,在多种样本处理任务中,操作待与样本一起使用的组件是非常期望的,但是如果所述操作需要机器人臂在非竖直方向上(例如,水平地)在组件上施加力(例如,以推动按钮、推动或拉动杆等等),则这种操作对机器人臂而言会是困难的。也就是说,为了便于重新定位,组件典型地可不被附着至工作区。因此,施加在这种组件上的任何水平力可使组件滑动,或在一些情况下甚至在工作区上翻倒。为了防止这种情况,可能需要双手操作,即另一机器人臂可能需要在组件上施加反作用力,以便将组件保持在适当的位置。这样的第二机器人臂可能并不总是可用的。此外,组件的这种水平致动可能需要包括规划和避免碰撞的复杂控制机制,因为它可能需要将机器人臂降低至工作区的表面,在工作区的表面上机器人臂可能与工作区上的物体碰撞。
然而,本发明人已经认识到,在向下的Z方向上能致动的组件的致动不受这种缺点的影响,因为被放置在工作区的表面上的组件固有地存在反作用力。因此,可能不需要双手操作来另外提供这种反作用力。此外,在许多情况下,给定的组件可以从上方很好地接近,这可以降低控制机器人臂的复杂性,因为机器人臂不太可能撞到另一物体。此外,机器人臂可以自然地能够在Z方向上,特别是在向下的方向上施加更大的力。也就是说,机器人臂可以被设计为使得能够沿着Z方向施加足够大的力,以允许机器人臂执行任务,诸如,用力拾取一次性尖端以及用所安装的固定尖端刺穿小瓶的橡胶塞。另外,机械臂的端部执行器可具有细长的形状,所述细长的形状能够沿着它的纵向轴线而非垂直于它的纵向轴线承受更大的载荷,因为后者可能导致大的力矩,该力矩可能另外使端部执行器弯曲。本发明人进一步认识到,组件可被设计为使得通过在向下方向上的致动所接收的能量可以内部地(即,在组件内)重新定向在任何其他方向上。因此,对模块在Z方向上能致动的需求可以不需要严格限制可致动的机构的类型。
上述措施提供了控制器,所述控制器被配置为例如通过软件来控制机器人臂,以通过在Z方向上向下推动来致动待在样品处理任务中所使用的组件的机构。这可例如包括控制器,该控制器被配置为在控制机器人臂在Z方向上向下推动以致动所述组件的机构之前,识别和跟踪组件在工作区上的位置、识别组件的类型以及将机器人臂适当地定位在组件的上方。这种控制可例如包括控制机器人臂在预定时间内施加预定量的力,以例如通过设置一个或多个电动马达的消耗限制来可靠地致动所述机构。这种控制可例如涉及为机器人臂限定“推动”型移动动作,该“推动”型移动动作可以作为机器人臂待执行的一系列动作的一部分被调用。
有利地,上述措施可允许样本处理任务中附加类型的动作自动化,这些动作先前可能需要人工干预或先前在样本处理任务中必须完全避免。这在需要使用机器人样本处理系统处理许多样本的高吞吐量应用中可能是非常有利的。这种应用的多种实施例将在本说明书的其他地方进行阐明。此外,通过机器人臂来致动所述组件,所述组件本身可能不需要具有用于致动的能动(active)部分,诸如内置的电动致动器,这可降低组件的复杂性和成本。实际上,所述组件是被动组件而非能动的、自我致动的组件会是足够的。
在一个实施方案中,所述机构是推-推机构(push-push mechanism),被布置为通过重复的推动而交替地占据锁定(latched)位置和未锁(unlatched)位置,且控制器被配置为控制机器人臂,以操作推-推机构。推-推机构本身是已知的,且广泛用在许多领域中,如在厨房柜中,它们可被用于使门在重复的推动的情况下被打开和关闭,或者在可伸缩的笔中,可伸缩的笔可包括推-推机构以能够在重复的推动的情况下交替地延伸或收缩圆珠笔。所述组件可以包括推-推机构,所述推-推机构被布置为通过重复的推动而交替地占据锁定位置和未锁位置。特别是,机器人臂通过推动该机构而提供的能量可以部分地被存储在该机构中(例如,通过诸如弹簧的弹性元件),且可通过重复的推动而再次被释放。然后,这种能量的释放可允许机构在与推动的方向相反的方向上(例如,向上)释放。一般而言,推-推机构可允许该机构在同一方向的重复的推动动作的情况下交替地占据两种状态。换句话说,可以不需要机器人臂改变致动的类型(例如,从推动到拉动或从一个方向到另一方向)而使该机构交替地占据这两种状态。这可使推-推机构非常适于与机器人臂一起使用,所述机器人臂被配置为通过在Z方向上向下推动来致动所述机构。构思了多种组件,这些组件可以有利地使用推-推机构。一般而言,这种组件可包括可用于样本处理任务中的任何实体,这些组件包括机械结构(诸如,支架)、机械装置(诸如,带有可打开盖的容器)、以及电子或机电装置(诸如,离心机、摇动组件、加热组件等)等。
例如,在一个实施方案中,该组件是支架,其中该支架包括:
-接收部分,用于接收且能移除地保持样本容器;
-效应器(effector),用于作用于样本,所述样本被放置在所述效应器的预定近处(vicinity)内;以及
-推-推机构,被布置为用于:
-在所述锁定位置中,将所述样本容器定位在所述效应器的预定近处以内;以及
-在所述未锁位置中,将所述样本容器定位在所述效应器的预定近处以外。
已知在实验室环境中,将样本定位于效应器的近处,术语“效应器”指当样本被带入该效应器的近处时,可作用于样本上的物体或装置。例如,这种作用可以涉及例如通过辐射、对流或传导的热传递,或多种(其他)形式的辐射(诸如,电磁辐射或声辐射)。这种效应器的非限制性实施例是磁铁,当样本被带入磁铁的磁场中时,它可以通过吸引样本中的顺磁性颗粒来作用于样本,这可用于所谓的磁珠分离(MBS)过程中。效应器的另一实施例是热源,该热源可以通过加热样本来作用于样本。效应器的又一实施例是振动器,诸如超声波换能器,它可以通过使样本受到振动来作用于样本。推-推机构可以这样的方式集成到组件中:在锁定位置中,接收部分和效应器相互定位,使样本被带入效应器的近处中,效应器可作用于样本;而在未锁位置中,样本可以从效应器的近处移除,使效应器不能够或者仅以可忽略的强度作用于样本。在此,术语“近处”可被认为是效应器可作用于样本的任何特定距离,一般而言,可涉及i)样本容器中所包含的且由接收部分所保持的样本,以及ii)效应器,被带到比在未锁位置处更接近彼此的位置。
虽然使用机器人臂将样本容器带到这种效应器的近处中本身是已知的,但具体使用包括可竖直致动的推-推机构的支架意味着机器人臂可以很容易地操作该机构,例如,在没有复杂的移动或避免与工作区上的其他物体发生碰撞的需要。特别是,样本处理任务可能经常涉及使用上述效应器;通过提供上述支架且配置机器人臂来操作支架的推-推机构,这种样本处理任务在某些情况下可以进一步完全自动化。在这方面,应注意,所述组件可以被称为支架,因为它能够立在工作区的表面上,从而有效地使支架中所保持的样本容器能够“立”在工作区的表面上。应理解,组件(还)可以通过其效应器的功能来称呼,例如,当组件/支架包含冷源作为效应器时,可以称为“冷却器”。
在一个实施方案中,控制器被配置为控制机器人臂,以通过以下中的至少一个来致动所述推-推机构:
-在支架的一部分上推动;以及
-在样本容器的一部分上推动。
推-推机构可以是支架的整体部分。
因此,推-推机构可以通过在支架的一部分上推动来致动。例如,如果该支架包括用于接收样本容器或一组样本容器的开口或凹口,则推-推机构可被集成到支架中环绕开口或凹口的外围部分,且机器人臂可被配置为通过在外围部分上施加向下的力来致动推-推机构。在其他实施方案中,接收部分可以被联接至推-推机构,后者通过机器人臂在样本容器上向下推动且由此在接收部分上向下推动能致动。也就是说,如果样本容器被接收部分牢固保持,则施加在样本容器上的力可以由此被传递至接收部分。例如,这可使移液机器人通过用固定尖端或一次性尖端在样本容器的底部上向下按压来操作推-推机构。
在一个实施方案中,效应器包括以下中的至少一个:
-磁铁,用于使样本受到磁场的影响;
-热源,用于加热样本;
-冷源,用于冷却样本;
-振动器,用于使样本受到振动;
-水浴,用于接收样本容器;以及
-辐射源,用于辐射样本。
以上是可能的效应器类型的非限制性实施例,这些效应器可在锁定位置中作用于样本。应理解,支架可以包括多个效应器,例如,能够作用于多个样本容器。在一些实施方案中,支架可以包括相同类型的多个效应器,诸如磁铁阵列,以作用于样本容器阵列的样本,而在其他实施方案中,支架可包括不同类型的效应器,例如,能够同时用不同的效应器作用于样本,例如,同时使样本受到热源和磁场的影响。
在一个实施方案中,样本容器是以下中的一个:
-液体容器;
-玻璃载玻片或塑料载玻片。
液体容器的实施例包括但不限于管、槽和微孔板的井,例如根据ANSI(美国国家标准协会)/SLAS微孔板标准1至4-2004。例如,支架可被布置为接收单独管或架或管阵列。管的非限制性实施例是Eppendorf
Figure BDA0004044337340000081
在另一实施方案中,支架可以被布置为接收含有井阵列或井带的微孔板。这些井可以有任何合适的形状,如V形或U形。在又一实施方案中,支架可被布置为接收一个或多个玻璃载玻片或塑料载玻片,如显微镜载玻片。例如,支架在被放置在适配器框架中时可被布置为接收多个这种载玻片。适配器框架可以但不需要具有与标准化的微孔板相同或相似的覆盖区(footprint),从而使适配器框架能够适合这种微孔板的开口或凹口。
在一个实施方案中,
-样本容器是液体容器;
-效应器包括磁铁,用于使液体容器中的液体样本受到磁场的影响;以及
-控制器被配置为控制机器人臂,从而通过操作推-推机构将液体样本带入和带出磁场,执行自动磁珠分离过程的至少一部分。
这种磁珠分离(MBS)过程本身是已知的,且经常用于样本处理任务中,例如用于核酸(NA)纯化。通过提供上述包括推-推机构的支架且配置机器人臂以操作推-推机构,这种磁珠分离过程在某些情况下可以进一步完全自动化。
在一个实施方案中,机器人臂包括带有至少一个夹持器的机器人头(robotichead),其中控制器被配置为控制机器人臂,以用至少一个夹持器致动所述机构。例如,夹持器可以是水平延伸的臂,其中机器人头包括一对夹持器,以夹持诸如样本容器的物体,例如,用于拾取和放置操作。机器人臂可被配置为通过用夹持器在组件的一部分上向下推动、或通过用多个夹持器在组件的不同部分上同时向下推动来致动所述机构。这可允许机器人臂操作所述组件的机构,而不需要从机器人头临时拆卸或以其他方式移除夹持器,从而节省时间且降低过程的复杂性。
在一个实施方案中,机器人臂包括液体处理头,其中控制器被配置为控制机器人臂,以用液体处理头来致动所述机构。带有液体处理头的机器人臂经常被用于液体处理过程中。通过用这样的液体处理头来致动所述机构,可不需要为机构的操作提供不同的机器人头,这可节省时间且降低过程的复杂性。
在一个实施方案中,液体处理头被布置为安装一次性尖端,其中控制器被配置为控制机器人臂,从而在具有或不具有所安装的一次性尖端的情况下用液体处理头来致动所述机构。
在一个实施方案中,机器人样本处理系统是以下中的一个:
-机器人液体处理系统;
-自动移液系统;
-自动机器人夹持系统;以及
-显微镜载玻片处理器。
本领域技术人员可以理解,本发明的两个或多个上述实施方案、实施方式和/或方面可以以任何被认为有用的方式组合。
机器人样本处理系统、组件、计算机实施(CI)的方法和/或计算机程序中的任何一个的修改和变化(对应于所描述的这些系统、组件、CI-方法和/或计算机程序中的另一个的修改和变化,反之亦然)可以由本领域技术人员基于本说明书进行。
附图说明
本发明的这些方面和其他方面从下文描述的实施方案中显而易见,且将参考这些实施方案加以阐明。在附图中,
图1A至图1F示出了一种用于能移除地保持样本容器的支架,其中该支架包括推-推组件,该推-推组件通过在Z方向上的重复的推动而能致动,以交替地将样本容器带入和带出作用于样本容器中的样本的效应器(诸如,磁铁)的近处;
图2A至图2F示出了支架的一个实施方案,其中效应器而非样本容器通过推-推机构的致动来移动;
图3示出了支架的另一实施方案,其中效应器而非样本容器通过推-推机构的致动来移动;
图4A至图4C示出了用于能移除地保持包括多个井的微孔板的支架的一个实施方案,其中通过在支架的一部分上重复向下的推动来将所述井共同带入和带出效应器的近处;
图5示出了机器人样本处理系统的示意性概览,该系统被配置为操作由向下的力能致动的组件;
图6A示出了液体处理头,该液体处理头可以被机器人液体处理系统用于操作由向下的力能致动的组件;
图6B示出了包括一对夹持器的机器人头,每个夹持器都被用于操作由向下的力能致动的组件;
图7A至图7B示出了包括盖的冷却器组件,该盖由向下的力能致动,以便交替地打开和关闭盖;
图8A至图8C示出了水平夹持器组件,该水平夹持器组件由向下的力能致动,以用水平延伸的夹持器夹持和释放物体。
应注意,在不同图中具有相同附图标记的项具有相同的结构特征和相同的功能或相同的信号。如果已经解释了这样的项的功能和/或结构,则没有必要在具体实施方式中重复解释它。
附图标记表
以下附图标记表是为了便于附图的解释而提供的,不应解释为对权利要求的限制。
100 机器人样本处理系统
110 机器人样本处理仪器
120 工作台
140、142 机器人臂
150 液体处理头
152 移液管
154 连接件
156 一次性尖端
160 机器人头
162 夹持器
180 控制器
200至206 支架
220、226 接收部分(开口)
250至256 推-推机构
260至264 向下施加的力,推动动作
280 向下移动(推动)至锁定位置中
282 由偏压元件引起的向上移动(回弹)
284 下载移动(推动)至未锁
286 向上移动(释放)至未锁位置中
300、302 效应器
310 效应器的近处
400 样本容器
410 微孔板
412 井
420 液体样本
430 管架
500 冷却器
510 盖
520 销
530 滑块
540 平台
550 弹簧
600 水平夹持器组件
610 夹持器
620 接收孔
625 支撑件
630 推-推机构
635 弹簧
640 连杆
642 竖直运动
644 未锁位置(夹持)
646 锁定位置(释放)
650 滑块
652 水平运动
660 物体
670 物体保持器
具体实施方式
以下实施方案涉及一种用于在实验室环境中执行样本处理任务的机器人样本处理系统。该机器人样本处理系统一般可以包括机器人臂,该机器人臂可以被配置以致动组件,该组件包括由向下的力能致动的机构。具体地,机器人臂可以(例如,由机器人样本处理系统的控制器)被控制,以通过在Z方向上向下推动来致动所述组件的机构。该组件在一些实施方案中可以包括推-推机构,该推-推机构可以由机器人臂操作,其中该组件在一些实施方案中是支架,该支架允许将含有样本的样本容器带到效应器(诸如,磁铁、热源、冷源、振动器、辐射源等)的近处,以便使效应器作用于样本。
图1A至图4C示出了这种支架的各种实施方案,这些实施方案可以在诸如样本容器和效应器相对于彼此可移动的方式的方面不同,而图5示出了机器人样本处理系统的一个实施方案,以及图6A和图6B分别示出了可用于致动该机构的机器人臂的对应端部执行器(也被称为“头”)。最后,图7A和随后的附图示出了可由机器人臂通过在Z方向上向下推动来致动的替代的组件和机构。
图1A至图1F示出了用于能移除地保持样本容器的支架200的至少一部分的横截面视图,不同的附图例示了支架200的致动。支架200可以被布置为立在表面(诸如,机器人样本处理系统的工作区(例如,工作台)的表面)上。为此,支架200可以进一步包括脚(在图1A-1F中未示出),或者可以以任何其他方式布置以便稳定地立在表面上。支架200被示出为包括开口220形式的接收部分,该接收部分可允许将含有样本420的样本容器400放置在开口220中。因此,支架200可以接收且能移除地保持样本容器400。在这方面,应注意,代替开口220,支架也可以包括凹口,所述凹口可被成形为接收且能移除地保持样本容器。如示出支架的等距视图的图3还示出的,开口220可以例如是圆形的开口,该开口可以是锥形的,或以任何其他方式布置,以稳定但可移动的方式保持管状的样本容器。因此,如图1B中还示出的,样本容器400可被放置在支架200中,例如通过机器人臂拾取样本容器400且将它放置在支架200中,或通过另一系统、装置、设备或机器或手动地。
支架200可以进一步包括由向下的力能致动的内部机构250(未明确示出)。特别是,该机构可以是推-推机构,该推-推机构可以被布置为通过重复的推动交替地占据锁定位置和未锁位置。这种推-推机构本身是已知的,还可以被称为推-锁定或推-释放(或打开)机构,指的是这种机构提供锁定(或关闭)位置和释放(或打开)位置。例如,这种机构在柜中是已知的,它们可能被用来通过重复的推动使柜门打开和关闭,而且在可伸缩的笔和其他各种领域中也是已知的。
图1A至图1B示出了机构250处于未锁位置,这使得样本容器400被保持在上方,从而远离效应器300的近处。效应器300一般可被配置为作用于放置在效应器的预定近处以内的样本。正如其他地方所阐明的,效应器可以采取各种形式,包括但不限于用于使样本受到磁场影响的磁铁、用于加热样本的热源、用于冷却样本的冷源、用于使样本受到振动的振动器、用于接收样本容器的水浴以及用于辐射样本的辐射源。
下面假设效应器300是磁铁,例如环形磁铁(还参见示出了环形磁铁的等距视图的图3),可以理解,还可使用任何其他类型的效应器。
在图1A至图1B中可以看到,在未锁位置中,由支架的接收部分220所保持的样本容器400被很好地保持在磁铁300的上方,这可导致样本420充分地在由磁铁所生成的磁场的外部。换句话说,在未锁位置中,样本420可不受到由磁铁300所生成的磁场的影响,或者仅受到无关紧要的程度的影响。图1C例示了通过在支架的上部(例如,在设置有开口220的可移动平台上)施加向下的力260来致动推-推机构250。该向下的力260可以由机器人臂施加,例如,通过机器人臂将其机器人头推动到设置有开口220的平台上。这种致动可以是机器人臂的可选择的动作,因为控制器可以允许选择这种动作,例如,作为限定样本处理任务的动作序列的一部分。
推-推机构250可与设置有开口220的可移动平台连接。因此,向下的力260可使推-推机构250移动至其锁定位置中,且使保持样本容器400的可移动平台共同向下移动,如箭头280所例示的。推-推机构250可以是弹簧加载的,或者可以包括任何其他类型的弹性元件,这可使推-推机构在停止施加向下的力260之后部分地回弹282至锁定位置中。如图1D所示,在锁定位置中,带有样本420的样本容器400现在可以在磁铁300的近处310。
应理解,图1D中的近处310可以示出为明确限定的邻近,仅用于例示目的,因为对于某些类型的效应器,效应器可作用于样本的强度可能取决于与样本的距离,例如,强度与距离的平方成反比关系。对于这种类型的效应器,近处可被限定为任何邻近,或强度仍然被认为足以满足特定的应用(例如,高于阈值)的位置。例如,在磁场的情况下,近处可被限定为磁场内的任何位置,其中所述磁场被认为是足够强的。应注意,对于一些其他类型的效应器,可能存在明确限定的邻近,或效应器可以作用于样本的位置。例如,在加热或冷却的情况下,近处可被限定为样本容器与效应器物理接触(例如,以允许通过传导进行热交换)的任何位置。另一实施例是水浴,其中近处可被限定为样本容器至少部分地浸入水浴的任何位置。又一实施例是辐射源,其中近处可被限定为辐射束内的任何位置。
如将在其他地方阐明的,通过将样本容器400特别是样本420带到磁铁300的近处310,磁铁300可以作用于样本。例如,在本身已知的磁珠分离(MBS)过程中(其中珠粒已被添加到样本420中),这可能导致珠粒和任何附着的细胞、生物分子如蛋白质或核酸或任何其他颗粒被拉到样本容器400的壁上,之后机器人臂可以执行移液操作。
如图1E至图1F中所例示的,然后可将样本带出磁铁300的磁场,即通过机器人臂再次在支架上施加向下的力262,这可使推-推机构250经由小的向下运动284变成未锁的,然后经由推-推机构250的弹簧加载而使样本容器400向上移动286,从而远离磁铁300的近处。然后,在这些步骤之后可以是后续的处理步骤。在另一实施例中,样本420可以被来回带入磁场,以收集或分散珠粒。
图2A至图2F示出了支架202的一个实施方案,其中效应器(而非样本容器)通过推-推机构252的致动而移动。此实施方案表示了图1A至图1F的支架的替代方案,在支架202中,推-推机构252可以连接至包括磁铁300的可移动平台,在可移动平台上的重复的推动使得磁铁300朝向和远离样本容器400定位,而非相反的另一方式。图2A至图2F的实施例可以以其他方式与图1A至图1F所示的支架200在功能上等同或至少相似。
图3示出了支架204的另一实施方案,其中效应器(即,磁铁300)(而非样本容器400)通过推-推机构的致动而移动。这里,支架204的可致动部分经由接收部分的平台中的开口可触及。图3的支架204可以以其他方式与图2A至图2F所示的支架202在功能上等同或至少相似。
应理解,可以设想支架的多种其他实施方案,例如包括不同(类型)的效应器、不同的致动机构等。特别是,技术人员将认识到,对于使用具有锁定位置和未锁位置的推-推机构来使样本容器和效应器朝向和远离彼此定位,存在多种替代方案。
例如,在一些实施方案中,多个样本容器可以共同移入和移出效应器的近处,例如,通过将保持样本容器的架、板、条或框架共同移入和移出效应器的近处。
图4A至图4C示出了用于能移除地保持包括多个井的微孔板的支架206的一个实施方案的横截面视图。支架206被示出为包括用于接收微孔板的开口226。例如,微孔板可以符合ANSI/SLAS微孔板标准1至4-2004;因此,开口226可以具有适当的尺寸以接收这种微孔板410。例如,开口226的尺寸可用于接收127.76mm×85.48mm的微孔板。
图4B示意性地示出了在支架206的开口226中接收微孔板的情况,其中带有多个井412的微孔板410被示出为放置在开口中,例如,通过开口接收微孔板的主体以及倚靠在开口226的边缘上的微孔板的突起部。应理解,微孔板的可视化仅仅用于例示目的,例如,示出仅仅是示例性数目的井,且示出每个井具有仅仅是示例性的形状。如图4C所示,支架206可以通过由机器人臂在支架206的至少一侧上所施加的向下的力260来致动,使微孔板在多个效应器302的近处移动280。多个效应器302例如可以被布置为阵列,以便每个井可以在至少一个效应器的近处。尽管在图4A至图4C中未示出,但是微孔板410可以随后通过由机器人臂在支架206上的重复的推动而从多个效应器302的近处释放。
在一些实施例中,效应器的数目可与样本容器的数目相同或相似。例如,对于24(4×6)微孔板,可以存在24个效应器。例如,微孔板的每个井都可存在环形磁铁。在其他实施例中,效应器的数目可少于样本容器的数目。例如,对于96井微孔板,可存在被布置为等距阵列的4×6个磁铁。这仍然可确保每个井处有足够的磁场强度。在另一实施例中,如果效应器是板状的热源,单个热源可能足以用于同时加热所有样本。又一实施例是水浴,其中可以存在一个水浴来共同接收所有的样本容器。还可设想存在比样本容器更多的效应器。
继续参考图4A至图4C,类似于图4A至图4C的实施例的支架可用于石蜡组织切片(例如,甲醛固定的石蜡包埋组织,FFPE)的脱蜡。在此实施例中,代替包括磁铁302,支架可以包括热源,且可被配置为接收(例如,在具有与微孔板相同覆盖区的适配器中)一组石蜡组织切片,该组石蜡组织切片被带到与热源接触,以便熔化石蜡。机器人臂可通过操作推-推机构来控制熔化过程,以将切片暂时带到与热源接触。在熔化之后,带有熔化石蜡的切片可以用有机溶剂处理,例如,由机器人臂经由液体处理头(例如,移液管)分配有机溶剂,以便将石蜡从切片上去除,以对切片进行进一步的下游处理。
图5示出了机器人样本处理系统100的示意性概览,该机器人样本处理系统100可包括机器人样本处理仪器110和控制器180,且可被配置为操作由向下的力能致动的组件。该组件例如可以是图3的支架204。图5示出了机器人样本处理仪器110(由此示出了机器人样本处理系统100)包括用于保持组件且一般用于保持样本的工作区120。工作区的一个实施例是工作台。在图5的实施例中,机器人样本处理仪器110(由此机器人样本处理系统100)进一步被示出为包括两个机器人臂140、142,但还可具有一个机器人臂或两个以上的机器人臂。在图5的实施例中,每个机器人臂140、142可被控制为在平行于工作区的XY平面内且沿着垂直于工作区的Z轴定位。为此目的,机器人样本处理系统100可包括控制器180,该控制器180可被配置为控制机器人臂140、142,以定位和操作对应的机器人臂作为样本处理任务的一部分。如将在本说明书的其他地方阐明的那样,控制器180可以物理地集成到机器人样本处理仪器110中,但还可以是外部控制器(如图5中所示),诸如PC。
图5进一步示出了机器人样本处理仪器110的机器人臂140、142包括不同的头,其中第一机器人臂包括两个液体处理头,这两个液体处理头都具有移液管,每个移液管具有用于所附接的尖端的连接件154,其中图5示出了这种一次性尖端156被安装至两个移液管中的一个。图6A更详细地示出了这种液体处理头。第二机器人臂142被示出为包括机器人头,一对夹持器162被安装至该机器人头。图6B更详细地示出了这种机器人头。
图6A示出了液体处理头150,该液体处理头150包括移液管152和连接件154,尖端(未示出)可被连接且由此被安装至该连接件154。机器人样本处理系统可在具有所安装的尖端或不具有所安装的尖端的情况下通过在Z方向上向下推动来致动由向下的力能致动的组件。在后一种情况下,该组件可由机器人臂用连接件154或移液管152向下推动来致动。
图6B示出了包括一对夹持器162的机器人头160。机器人样本处理系统可通过用夹持器162中的一个或两个在Z方向上向下推动来致动由向下的力能致动的组件,例如,通过同时推动组件的不同部分,例如在组件包括多个例如图8中所示出的推-推机构的情况下。
继续参考图5至图6B,一般而言,控制器180可被配置为控制对应的机器人臂140、142以致动组件,该组件包括由向下的力能致动的机构。例如,对应的机器人臂可以被控制为通过用对应的机器人臂140、142的端部执行器在Z方向上向下推动来致动支架254的推-推机构。在一个具体的实施例中,机器人臂140可以被控制为用其液体处理头中的一个(例如,在具有或不具有所安装的尖端156的情况下)来致动支架154。在一些实施例中,控制器180可被配置为控制机器人臂140,以拾取且安装一次性尖端156,然后使用一次性尖端156来致动推-推机构,之后继续使用一次性尖端156来抽吸样本/试剂。在其他实施例中,控制器180可以被配置为控制机器人臂140,以用所安装的尖端156(诸如,一次性尖端或固定尖端)来致动推-推机构。固定尖端的一个非限制性实施例是钢制插管。在另一实施例中,控制器180可以被配置为控制机器人臂142,以用夹持器162中的至少一个来致动组件的机构,例如,通过用夹持器在组件上向下推动。一般而言,控制器180可被配置为控制对应的机器人臂140、142,以通过在样本容器的一部分上推动(例如,通过在样本容器的底部或边缘上向下推动)(而非在支架154的一部分上推动)来致动支架154的推-推机构。例如,机器人臂140可被控制为用对应的液体处理头(例如,用连接件154或尖端156)在样本容器的底部或边缘或任何其他表面上推动,由此致动支架154的推-推机构。一般而言,多个机器人头可用于在例如组件的不同部分或不同的样本容器上同时推动。附加地或替代地,多个机器人臂可用于在组件的不同部分或不同的样本容器上同时推动。
一般而言,机器人样本处理系统100可用于处理液体样本,因此还可称为机器人液体处理系统。特别是,如在图5的实施例中,如果机器人液体处理系统被布置为用于自动移液任务,则机器人液体处理系统还可被称为自动移液系统。一般而言,机器人样本处理系统还可采取多种其他形式,诸如自动机器人夹持系统(例如,包括机器人臂142),或作为显微镜载玻片处理器,等等。
应理解,可控制机器人臂来致动除了推-推机构以外的多种机构。一般而言,这种机构可将机器人臂的线性向下运动所生成的能量转换成另一类型的运动,例如,转换成另一方向的线性运动和/或旋转运动等。该机构还可例如通过压缩弹簧或其他弹性元件暂时存储由线性向下移动所生成的能量。
图7A至图7B示出了冷却器组件500,该冷却器组件500被示出为能够接收管架430且可包括珀尔帖(Peltier)元件或热交换线圈作为效应器(未单独示出)。该冷却器组件500可包括盖510,该盖510围绕轴线可枢转,且可通过机器人臂在可移动平台540上向下推动264来致动,该可移动平台540经由销520而被联接至盖510中的滑块530,由此可移动平台的线性向下运动被转换为枢转运动,使盖510打开。为了使盖在机器人臂致动之后能够关闭,可以提供弹簧550,该弹簧550可以被向下运动压缩且可在致动之后再次展开,使盖510关闭。因此,冷却器组件500可以具有“常闭”类型的盖510,该盖510可由机器人臂仅用推动打开。
图8A至图8C示出了水平夹持器组件600,该水平夹持器组件包括一对水平延伸的夹持器610,其中夹持器610由机器人臂在水平夹持器组件600上施加向下的力能致动。特别是,图8A示出了在不具有外壳的情况下的水平夹持器组件600的横截面视图,而图8B示出了在具有外壳的情况下的水平夹持器组件600的透视图,而图8C更详细地示出了水平夹持器组件600的连杆-滑块组件。在这方面,应注意,在图8A中,为易于例示,水平夹持器组件600的内部的竖直尺寸已经相对于水平尺寸扩大。
如从图8A和图8B中可以看到,水平夹持器组件600可包括接收孔620,用于接收液体处理头152的远端部分,或者一般而言,用于接收机器人臂的端部执行器的远端部分。接收孔620的形状和尺寸可使得当液体处理头152被插入到接收孔620中时,可以与液体处理头152建立摩擦配合。
水平夹持器组件600可以进一步包括推-推机构630,该推-推机构630可包括弹簧635且可被连接至接收孔620的细长支撑件625。因此,推-推机构630可通过液体处理头152在细长支撑件625上重复地向下推动而被致动,这可使推-推机构630交替地占据锁定位置646和未锁位置644(在图8A中由支撑件625的对应位置644、646示意性示出)。
如在图8A和图8C中可以看到,接收孔620的支撑件可被连接至对应连杆640,连杆640转而可被连接至对应滑块650,滑块650转而可被连接至对应夹持器610。此连杆-滑块组件可使支撑件的竖直移动642转换为对应滑块650的水平移动652,从而转换为对应夹持器610的水平移动。特别是,此机构可使推-推机构630在未锁位置644中将夹持器610定位在彼此近处,以便能够例如从物体保持器670夹持物体660,而在锁定位置646中,夹持器610可被定位在彼此的远端,以释放物体660。通过由弹簧635所施加的弹簧力,当推-推机构630处于未锁位置644中时,夹持器610可被推向彼此,以便能够对物体660施加足够的夹持。
相应地,机器人臂可以用液体处理头152拾取水平夹持器组件600,且鉴于摩擦配合,可以围绕工作台120运送组件600。夹持的致动可以通过向下推动组件600对抗来自组件600下方的阻力(例如,工作台120)来发生。
应理解,代替连杆-滑块组件,水平夹持器组件600可包括任何合适的机构,该机构用于将推-推机构在锁定位置和未锁位置之间的竖直移动机械地转换为一对夹持器在释放位置和夹持位置之间的水平移动,在释放位置中,夹持器彼此远离以释放物体,在夹持位置中,夹持器彼此靠近以夹持物体。在未锁位置中,弹簧力可以将夹持器推向彼此。
一般而言,控制器可例如通过硬件设计或软件等被配置为执行本说明书中所描述的与机器人臂控制有关的操作。控制器可由外部计算机(例如,PC或膝上型计算机或工作站)实现,该外部计算机可经由通信接口(诸如,USB接口或任何其他串行或并行接口或本地网络接口或个人网络接口)被连接至机器人样本处理仪器,机器人臂被附接至该机器人样本处理仪器。这里,形容词“外部”可以指该控制器不是机器人样本处理仪器的一部分。在一些其他实施方案中,控制器可由嵌入式计算机实现,该嵌入式计算机可以是机器人样本处理仪器的一部分。
一般而言,控制器可包括一个或多个执行适当的软件的(微)处理器,诸如一个或多个基于x86或ARM的处理器(CPU),但也可以包括这种处理器和/或其他类型的处理单元的组合或系统。实施控制器功能的软件可能已经存储在相应的存储器中(例如,在易失性存储器诸如RAM中),或存储在非易失性存储器诸如Flash中。替代地,控制器的功能可以可编程逻辑的形式实施,例如以现场可编程门阵列(FPGA)的形式。一般而言,控制器可被实施为一个电路或多个电路的组合。一般而言,控制器可以以分布式方式实施,例如,在不同的服务器上分布或根据客户端-服务器模式分布。控制器还可以远程实施,例如,由在一个或多个基于云的服务器上运行的控制软件。
注意,本说明书中所描述的任何计算机实施的方法(例如,在任何权利要求中)可作为软件、专用硬件或两者的组合来实施。计算机的指令(例如,可执行代码)可被存储在计算机可读介质上,例如以一系列的机器可读物理标记的形式和/或以一系列具有不同电学(例如,磁)或光学特性或值的元素的形式。可执行代码可以暂时性或非暂时性的方式存储。计算机可读介质的实施例包括存储器设备、光学存储设备、集成电路等。
应注意,上面所提及的实施方案例示而非限制本发明,本领域技术人员能够设计许多替代的实施方案。
在权利要求中,置于括号内的任何附图标记都不应被解释为对权利要求的限制。动词“包括(comprise)”及其变体的使用并不排除除了权利要求中所陈述的元素或步骤之外的元素或步骤的存在。元素前面的冠词“一(a)”或“一个(an)”并不排除存在多个这样的元素。当诸如“至少一个”这样的表达置于元素列表或元素组之前时,表示从列表或组中选择所有元素或其任何子集。例如,“A、B和C中的至少一个”的表达应理解为只包括A、只包括B、只包括C、包括A和B、包括A和C、包括B和C,或者A、B和C的全部。本发明可借助于包括若干不同元素的硬件,以及借助于适当编程的计算机来实现。在列举若干装置的设备权利要求中,这些装置中的若干个可以由同一硬件项实现。在相互不同的从属权利要求中记载了某些措施这一纯粹事实并不指示这些措施的组合不能被用来发挥优势。

Claims (15)

1.一种用于在实验室环境中执行样本处理任务的机器人样本处理系统(100),包括:
-用于保持样本的工作区(120);
-至少一个机器人臂(140、142),所述至少一个机器人臂(140、142)能被控制,以在平行于所述工作区的平面内且沿着垂直于所述工作区的Z轴定位;
-控制器(180),所述控制器(180)被配置为控制所述机器人臂,以定位和操作所述机器人臂作为样本处理任务的一部分;
其中所述工作区包括用于与一个或多个样本一起使用的组件(200至206、500、600),其中所述组件包括由向下的力能致动的机构(250至256、630),且其中所述控制器被配置为控制所述机器人臂,以通过在Z方向上向下推动来致动所述机构。
2.根据权利要求1所述的机器人样本处理系统(100),其中:
-所述机构是推-推机构(250至256、630),所述推-推机构被布置为通过重复的推动而交替地占据锁定位置和未锁位置;
-所述控制器(180)被配置为控制所述机器人臂(140、142),以操作所述推-推机构。
3.根据权利要求2所述的机器人样本处理系统(100),其中所述组件是支架(200至206),其中所述支架包括:
-接收部分(220至226),用于接收且能移除地保持样本容器(400、410);
-效应器(300),用于作用于样本,所述样本被放置在所述效应器的预定近处内;以及
-所述推-推机构(250至256),被布置为用于:
-在锁定位置中,将所述样本容器定位(280)在所述效应器(300)的预定近处(310)以内;以及
-在未锁位置中,将所述样本容器定位(286)在所述效应器(300)的预定近处(310)以外。
4.根据权利要求3所述的机器人样本处理系统(100),其中所述控制器(180)被配置为控制所述机器人臂(140、142),以通过以下中的至少一个来致动所述推-推(250至256)机构:
-在所述支架的一部分上推动;以及
-在所述样本容器(400)的一部分上推动。
5.根据权利要求3或4所述的机器人样本处理系统(100),其中所述效应器(300)包括以下中的至少一个:
-磁铁,用于使所述样本(420)受到磁场的影响;
-热源,用于加热所述样本;
-冷源,用于冷却所述样本;
-振动器,用于使所述样本受到振动;
-水浴,用于接收所述样本容器;以及
-辐射源,用于辐射所述样本。
6.根据权利要求3至5中的任一项所述的机器人样本处理系统(100),其中所述样本容器是以下中的一个:
-液体容器(400);
-玻璃载玻片或塑料载玻片。
7.根据权利要求3至6中的任一项所述的机器人样本处理系统(100),其中:
-所述样本容器是液体容器(400);
-所述效应器(300)包括磁铁,用于使所述液体容器中的液体样本受到磁场的影响;以及
-所述控制器被配置为控制所述机器人臂(140、142),以通过操作所述推-推机构(250至256)将所述液体样本带入和带出磁场,执行自动磁珠分离过程的至少一部分。
8.根据权利要求1至7中的任一项所述的机器人样本处理系统(100),其中所述机器人臂(142)包括带有至少一个夹持器(162)的机器人头(160),其中所述控制器(180)被配置为控制所述机器人臂,以用至少一个夹持器来致动所述机构(250至256、630)。
9.根据权利要求1至8中的任一项所述的机器人样本处理系统(100),其中所述机器人臂(140)包括液体处理头(150),其中所述控制器(180)被配置为控制所述机器人臂(140),以用所述液体处理头来致动所述机构(250至256、630)。
10.根据权利要求9所述的机器人样本处理系统(100),其中所述液体处理头(150)被布置为安装一次性尖端(156),其中所述控制器(180)被配置为控制所述机器人臂(140),以在具有或不具有所安装的一次性尖端的情况下,用所述液体处理头来致动所述机构(250至256、630)。
11.根据权利要求9或10所述的机器人样本处理系统(100),其中所述液体处理头(150)被布置为安装固定的尖端,其中所述控制器(180)被配置为控制所述机器人臂(140),以用带有所安装的固定的尖端的液体处理头来致动所述机构(250至256、630)。
12.根据权利要求1至11中的任一项所述的机器人样本处理系统(100),其中所述机器人样本处理系统是以下中的一个:
-机器人液体处理系统;
-自动移液系统;
-自动机器人夹持系统;以及
-显微镜载玻片处理器。
13.一种计算机实施的方法,所述方法用于控制根据权利要求1至12中的任一项所述的机器人样本处理系统的机器人臂,所述方法包括通过所述机器人样本处理系统的控制器:
-接收位置数据,所述位置数据指示组件在所述机器人样本处理系统的工作区上的位置,其中所述组件被布置为与由所述机器人样本处理系统所处理的一个或多个样本一起使用,其中所述组件包括由向下的力能致动的机构;
-控制所述机器人臂,以将所述机器人臂定位在所述组件的上方,且在Z方向上向下推动,以便致动所述组件的所述机构。
14.一种计算机可读介质,所述计算机可读介质包括表示计算机程序的暂时性数据或非暂时性数据,所述计算机程序包括用于使处理器系统执行根据权利要求13所述的方法的指令。
15.一种支架(200至206),包括:
-接收部分(220至226),用于接收且能移除地保持样本容器(400、410),所述样本容器包含样本;
-效应器(300),用于作用于样本,所述样本被放置在所述效应器的预定近处内;以及
-推-推机构(250至256),被布置为通过重复的推动而交替地占据锁定位置和未锁位置,且:
-在所述锁定位置中,将所述样本容器定位(280)在所述效应器(300)的预定近处(310)以内;以及
-在所述未锁位置中,将所述样本容器定位(286)在所述效应器(300)的预定近处(310)以外。
CN202080102890.0A 2020-07-10 2020-07-10 机器人样本处理系统 Pending CN115812009A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2020/041601 WO2022010489A1 (en) 2020-07-10 2020-07-10 Robotic sample handling system

Publications (1)

Publication Number Publication Date
CN115812009A true CN115812009A (zh) 2023-03-17

Family

ID=71944344

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080102890.0A Pending CN115812009A (zh) 2020-07-10 2020-07-10 机器人样本处理系统

Country Status (4)

Country Link
US (1) US20230256619A1 (zh)
EP (1) EP4179337A1 (zh)
CN (1) CN115812009A (zh)
WO (1) WO2022010489A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220034919A1 (en) * 2020-07-31 2022-02-03 Alfredo R. Zarate System and Method of Automatically Preparing and Analyzing Urine Samples for Identifying Cancer Cells

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI120818B (fi) * 2008-05-28 2010-03-31 Thermo Fisher Scientific Oy Reaktioastia ja menetelmä sen käsittelemiseksi
EP2883667B1 (en) * 2013-12-10 2020-01-15 F.Hoffmann-La Roche Ag Device and method for gripping vessels
CH709347A2 (de) 2014-03-10 2015-09-15 Tecan Trading Ag Verfahren zur Wegfindung in einem automatisierten Handhabungssystem sowie Handhabungssystem mit entsprechendem Kontrollmodul zur Wegfindung.
US20190331560A1 (en) * 2018-04-05 2019-10-31 Instapath, Inc. Disposable Biopsy Staining Kit and Related Methods and Systems

Also Published As

Publication number Publication date
WO2022010489A1 (en) 2022-01-13
US20230256619A1 (en) 2023-08-17
EP4179337A1 (en) 2023-05-17

Similar Documents

Publication Publication Date Title
JP6030666B2 (ja) 磁気的ツールデバイスによりサンプル受容区画を取り扱う研究室用装置、磁気的ツールデバイス、磁気的ツールデバイスと共に使用されるサンプル受容デバイス、及び、磁界を用いて少なくとも1つの流体サンプルに対して作業段階を実施する方法
EP2831596B1 (en) Lab members and liquid handling systems and methods including same
JP4792192B2 (ja) 液体サンプル内の磁気応答性粒子を操作し、サンプルからdna又はrnaを収集するシステム及び方法
CN109073664B (zh) 自动诊断分析仪及其操作方法
EP0479448A2 (en) Magnetic separation device
WO2018049926A1 (zh) 自动液体处理系统
CA2866356C (en) Medical analysis method
JPWO2007132526A1 (ja) シャトル型搬送装置、マイクロプレート供給回収装置、マイクロプレート用ピックアップ装置、マイクロプレート用カセット、及びマイクロプレート用収納棚
EP4159315A2 (en) System and apparatus for automated sample extracting of biological specimens
CN106574935B (zh) 试剂承载单元、用于操作试剂承载单元的适配器以及方法
CN109313206B (zh) 用于进行液体处理的对消耗品的操作
JP6777767B2 (ja) 試薬容器を自動的に移送及び開封する方法及び装置
US20170269109A1 (en) Method and apparatus for automated sample manipulation
US20230258677A1 (en) Modules For Transferring Magnetic Beads, Automated System Comprising The Same And Method For Nucleic Acid Extraction Using The Same
CN115812009A (zh) 机器人样本处理系统
JP4225649B2 (ja) 自動分析器システム内で構成要素を移動させる装置
CN216144817U (zh) 全自动样品移液系统
CN219972291U (zh) 样本前处理系统
EP3032265B1 (en) Device for storing of fluid containers
EP3350602B1 (en) An apparatus and a method for transferring material
JP5939714B2 (ja) ワークチャック装置
JP2023523240A (ja) 低減された汚染リスクを伴うグリッパ装置
US20220126297A1 (en) Robotic liquid handling system
US20190241858A1 (en) An Apparatus and A Method for Transferring Material
CN117085758A (zh) 用于夹持样品容器的夹持装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination