CN115803845A - 处理基板的方法和装置 - Google Patents

处理基板的方法和装置 Download PDF

Info

Publication number
CN115803845A
CN115803845A CN202180043471.9A CN202180043471A CN115803845A CN 115803845 A CN115803845 A CN 115803845A CN 202180043471 A CN202180043471 A CN 202180043471A CN 115803845 A CN115803845 A CN 115803845A
Authority
CN
China
Prior art keywords
processing
voltage
electrode
power source
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180043471.9A
Other languages
English (en)
Inventor
J·金
T·S·周
D·卢博米尔斯基
T·特兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN115803845A publication Critical patent/CN115803845A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/3255Material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

本文提供了用于处理基板的方法和装置。例如,一种用于处理基板的处理腔室,包括腔室主体,腔室主体限定处理体积;射频(RF)功率源,射频(RF)功率源被配置成将RF能量传输至用于处理基板的处理空间;基板支撑件,所述基板支撑件包含电极;AC电源,AC电源被配置成将功率供应至处理腔室;RF滤波器电路,RF滤波器电路连接在电极与AC电源之间;以及控制器,控制器被配置成在RF滤波器电路处监测在操作期间由RF功率源间接感应至电极中的RF电压,且被配置成基于所监测的RF电压确定在处理体积中的处理状态。

Description

处理基板的方法和装置
技术领域
本公开的实施例大致涉及用于处理基板的方法和装置,并且更具体而言,涉及被配置成监测在基板处理期间使用的等离子体的状态的方法和装置。
相关技术说明
已知用于处理基板的等离子体处理腔室,但利用等离子体处理基板变得越来越具挑战性,例如当基板关键特征为小于30nm时。因此,例如,在基板处理期间在等离子体处理腔室内靠近静电吸盘(ESC)/基座区域监测和/或诊断等离子体的状态为关键需求。常规方法和装置使用通过在等离子体处理腔室的阻抗匹配网络的输出处的相对应电压和电流传感器提供的电压或电流量测来监测等离子体。尽管此方案可易于实施,但由于RF波传播通过将阻抗匹配电路连接至ESC/基座中的RF电极的传输线路,存在信息的潜在损失。
发明内容
本文提供了用于处理基板的方法和装置。在一些实施例中,一种用于处理基板的装置,包括腔室主体,腔室主体限定处理体积;射频(RF)功率源,射频(RF)功率源被配置成将RF能量传输至用于处理基板的处理体积;基板支撑件,基板支撑件包含电极;AC电源,AC电源被配置成将功率AC电源至处理腔室;RF滤波器电路,RF滤波器电路连接在电极与AC电源供应器之间;以及控制器,控制器被配置成在RF绿滤波器电路处监测在操作期间由RF功率源间接感应至电极中的RF电压,且被配置成基于所监测的RF电压确定在处理体积中的处理状态。
根据至少一些实施例,一种在处理腔室的处理体积中监测处理条件的方法,包括将射频(RF)功率从RF功率源供应至用于处理基板的处理体积;在RF滤波器电路处监测由RF功率源间接感应至电极中的RF电压;以及基于RF电压确定在处理体积中的处理状态。
根据至少一些实施例,一种非瞬态计算机可读存储介质,具有存储于其上的指令,当由处理器执行时,实行在处理腔室的处理体积中监测处理条件的方法。方法包括将射频(RF)功率从RF功率源供应至用于处理基板的处理体积;在RF滤波器电路处监测由RF功率源间接感应至电极中的RF电压;以及基于RF电压确定在处理体积中的处理状态。
以下说明本公开的其他及进一步实施例。
附图说明
以上简要概述且以下将详细讨论的本公开的实施例可通过在附图中描绘的本公开的说明性实施例而理解。然而,附图仅图示了本公开的典型实施例,因此并非考虑为对范围的限制,因为本公开可认可其他等效的实施例。
图1是根据本公开的至少一些实施例的处理腔室的横截面示意图。
图2是根据本公开的至少一些实施例图1的处理腔室的基板支撑件的横截面示意图。
图3是根据本公开的至少一些实施例的在图2的RF电极与基板支撑件的嵌入的电阻加热器之间RF耦合的等效集总电路模型的图。
图4是根据本公开的至少一些实施例的在处理腔室的处理体积中监测处理条件的方法。
为了促进理解,已尽可能地使用相同的附图标记代表附图中相同的元件。附图并非按照比例绘制,且可为了清楚而简化。一个实施例的元件及特征可有益地并入其他实施例中而无须进一步说明。
具体实施方式
本文提供用于处理基板的方法和装置的实施例。例如,本文所述的方法和装置使用包括RF电容耦合端口对的低通RF滤波器,被配置成接收从耦合至基板支撑件的RF电极感应并且用以加热基板的RF电压。在至少一些实施例中,从RF电极感应的RF电压的量、与从RF电极感应的RF电压相关联的RF波形、或关于所感应的RF电压的其他信息用以监测在处理体积之中等离子体的状态。不像使用电压和/或电流传感器而可能是昂贵且难以安装的常规方法和装置,本文所述的方法和装置使用感应至RF电容耦合端口对中的RF电压,这不昂贵且易于安装。此外,由于RF电容耦合端口对定位为与RF电极相邻、与阻抗匹配网络的输出相对,因此,由于通过将阻抗匹配网络连接至RF电极的传输线路的RF波的传播的信息的潜在损失若未被消除则将被降低。如此,当与常规方法和装置作比较时,本文所述的方法和装置在操作期间提供等离子体的状态的更精确理解。
图1可以是根据本公开的一个示例的处理腔室100的示意性截面图。处理腔室100包括腔室主体101和设置于其上的盖102,以一起限定内部体积。腔室主体101通常耦合至电气接地103。
处理腔室100可以是电感耦合等离子体(ICP)腔室和/或电容耦合等离子体(CCP)腔室中的一者。例如,在至少一些实施例中,处理腔室100是在顶部包括CCP装置107的腔室。在至少一些实施例中,处理腔室100的顶部可接地。CCP装置107在处理腔室100之中产生反应物种的等离子体,并且控制器108(例如,系统控制器)适以控制处理腔室100的系统及子系统,如以下将更详细说明。
CCP装置107设置在盖102上方,且被配置成将RF功率电容耦合至处理腔室100中,以在处理腔室100之中产生等离子体116。CCP装置107可如期望的调整以控制所形成的等离子体116的分布或密度。CCP装置107通过匹配网络122经由RF馈送结构124耦合至RF电源121。RF电源121能够在从50kHz至150MHz的范围中的可调节频率下产生高达约60,000W(但非限于约60,000W),而其他频率和功率可利用作为用于所期望的特定应用。
在某些示例中,功率分配器(未示出)(诸如分配电容器)可设置在RF馈送结构124与RF电源121之间,以控制提供的RF功率的相对量。例如,在当处理腔室100包括ICP装置时的实施例中,可使用功率分配器。在此类实施例中,功率分配器可并入匹配网络122中。
加热器元件128可设置在盖102上,以促进加热处理腔室100的内部。加热器元件128可设置在盖102与等离子体装置(诸如CCP装置107)之间。在一些示例中,加热器元件128可包括电阻加热元件,且可耦合至被配置成提供足够的能量以将加热器元件128的温度控制在所期望的范围之中的电源130(诸如AC电源供应器),如以下更详细说明的。
基板支撑组件104设置在内部体积中,以在处理(使用)期间在其上支撑基板105。边缘环106围绕基板支撑组件104上的基板105的外周定位。边缘环106设置在ESC的基板支撑表面上且环绕ESC的基板支撑表面。
基板支撑组件104包括一个或多个电极,例如第一电极109和第二电极(诸如环绕第一电极109的环电极111)。第一电极109耦合至吸附功率源114,以在处理期间促进将基板105吸附至上部表面160。
AC电源113被配置成供应功率至处理腔室100以将与其相关联的一个或多个部件能量化。不像以高许多的频率(例如,13.56MHz)操作且需要用于阻抗匹配的匹配电路的RF功率源,AC电源113以低得多的频率操作,且不需要此类匹配电路。例如,AC电源113可被配置成例如以一个或多个合适的频率供应110v或220v。例如,在至少一些实施例中,AC电源113可被配置成以50Hz或60Hz供应高达220v且约40安培至处理腔室100。
在至少一些实施例中,DC功率源131可连接至基板支撑组件104(例如,至环电极111)且被配置成提供夹持力以将边缘环106夹持至基板支撑件(例如,如以下所述夹持至设置在基板支撑件上的陶瓷环250),以例如,在操作期间强化边缘环106的热控制。
第一电极109和环电极111各自耦合至RF功率源110,从而通过匹配网络112(类似于匹配网络122)和包括可变电容器及电感器的边缘调节电路155(例如,此后简化称为边缘调节电路155)提供一个或多个频率。匹配网络112确保RF功率源110的输出有效耦合至等离子体,以将耦合至等离子体的能量最大化。匹配网络112通常匹配50欧姆至等离子体的复杂阻抗。为了促进在处理期间随等离子体特性改变的动态匹配,匹配网络112可按需调整以确保整个处理维持匹配。匹配网络122相对于由RF功率源121提供的RF能量类似地配置和操作。
边缘调节电路155是接近共振操作的RF电路,其能够调整比源电压更高和/或更低的电压。利用RF功率源110使设置在基板支撑组件104的上部表面160上的基板105偏压。RF功率源110可说明性地为RF能量高达约10,000W的源(但非限于约10,000W),其可以一个或多个频率提供,例如400kHz、2MHz、13.56MHz、27MHz、40MHz或60MHz。RF功率源110可包括被配置成以两个或更多个相对应频率提供RF能量的两个或更多个独立RF功率源。例如,在至少一些实施例中,RF功率源110可包括分别被配置成以相对应频率(例如400kHz和2MHz)提供RF能量的第一RF功率源和第二RF功率源,且可选的第三RF功率源可被提供且可被配置成以400kHz、2MHz和/或40MHz的频率提供RF能量。RF功率源110能够产生连续或脉冲功率的任一者或两者。
在操作期间,基板105(诸如半导体晶片或适合用于等离子体处理的其他基板)放置在基板支撑组件104上。基板升降杆146可移动地设置在基板支撑组件104中,以帮助将基板105传送至基板支撑组件104上。在基板105的定位之后,处理气体从气体面板132通过入口端口134供应至腔室主体101的内部体积中。通过将功率从RF电源121施加至CCP装置107,处理气体在处理腔室100中点燃成等离子体116。在一些示例中,来自RF功率源110的功率还可通过匹配网络112提供至基板支撑组件104中的第一电极109和/或边缘环106。替代地或附加地,来自RF功率源110的功率还可通过匹配网络112提供至基板支撑组件104中的底板和/或其他电极。
在处理腔室100的内部中的压力可使用阀门136和真空泵138来控制。腔室主体101的温度可使用穿过腔室主体101的含有流体的导管(未示出)来控制。
处理腔室100包括控制器108,以在处理期间控制处理腔室100的操作。控制器108包含中央处理单元(CPU)140、存储器142(例如,非瞬态计算机可读存储介质)和用于CPU140的支持电路144,并且促进处理腔室100的部件的控制。控制器108可以是可在工业设定中使用以控制各种腔室和子处理器的通用计算机处理器的任何形式中的一种。存储器142存储可执行或调用以按照本文所述的方式控制处理腔室100的操作的软件(源或目标码)。例如,在操作期间,存储器142的软件包含用于操纵本文所提供的各种RF电路以监测在RF滤波电路的输出处由RF功率源110间接感应的RF电压,并基于RF电压确定在处理体积中的处理状态的软件(源或目标码),如下文更详细说明的。
RF滤波器电路115(例如,低通滤波器)连接在电极(例如,加热器)与AC电源113之间。RF滤波器电路115包括一个或多个电子元件,包括但非限于电阻器、电感器、电容器等。例如,在至少一些实施例中,RF滤波器电路115包括串联连接的电感器和电容器117的组合(例如,分流电容器),其被配置作为在AC电源传输线路119上的低通频率滤波器,例如,以阻挡RF功率源110被配置成以其操作的频率中的一个或多个频率。例如,通过低通频率滤波器阻挡的频率种的一些可包括但非限于400kHz或更大、2MHz或更大、13.56MHz或更大、27MHz或更大、40MHz或更大、或60MHz或更大等。RF滤波器电路115还包括电容耦合至AC电源传输线路119的一个或多个电容耦合端口。例如,在至少一些实施例中,RF滤波器电路115包括电容耦合端口123。电容耦合端口123可具有任何适合的电容耦合功率。例如,在至少一些实施例中,电容耦合端口123可具有约-40dB至约-47dB的电容耦合功率。
图2示出了根据本公开的至少一些实施例的图1中所示的基板支撑组件104的部分的放大的示意性侧视图。基板支撑组件104包括环绕绝缘层205的接地板200、电极210(例如,被配置作为设施或底板的RF电极)和以垂直堆叠组装的静电吸盘215。
静电吸盘215包括嵌入其中用于将基板105吸附至静电吸盘215的支撑表面的一个或多个吸附电极(例如,第一电极109)。石英管状环220围绕电极210和静电吸盘215以将静电吸盘215与接地板200绝缘。等离子体护套225设置在石英管状环220的上部表面上,以促进将等离子体限制在处理腔室100中(如图1所示)。石英环230定位在等离子体护套225的上部表面上。
静电吸盘215包括形成在第一材料236中的一个或多个通道235,穿过所述一个或多个通道235提供流体以促进基板支撑组件104的温度控制。第一材料236为金属材料,例如铝。静电吸盘215包括嵌入第二材料240中的第一电极109。第二材料240为介电材料,诸如陶瓷材料,诸如氧化铝或氮化铝。
电极210可由导电材料(例如铝或其他适合的导电材料)制成,且定位在接地板200的下部部分与静电吸盘215之间。电极210耦合至RF功率源110,且被配置成使用RF能量加热基板105。电极210还可被配置成将流体和/或气体从(例如,在其底部处的,未示出)的输入地点路由至(例如,在其顶部处的,未示出)输出地点。
被陶瓷层246环绕或嵌入陶瓷层246(例如,氧化铝或氮化铝)的电极245设置为与静电吸盘215相邻或在静电吸盘215中,以促进基板105的温度控制。电极245例如可为具有嵌入其中的多个电阻加热元件的电阻加热器。电极245经由AC电源传输线路119耦合至AC电源113。
陶瓷环250设置在静电吸盘215上(例如,在第一材料236或加热器电极上)且环绕第二材料240的径向向外边缘。陶瓷环250可由例如氧化铝或氮化铝制成,且可具有在约1毫米至约20毫米的范围内的厚度。一个或多个O形环221可设置在陶瓷环250与第二材料240之间,以保护除暴露于其间之外的任何粘合材料。
环电极111可为陶瓷环250的部件或与陶瓷环250分开的部件。例如,在图示的实施例中,环电极111嵌入陶瓷环250中。环电极111可定位为距离陶瓷环250的上部表面约0.3毫米至约1毫米,诸如约0.75毫米。环电极111可具有约3毫米至约20毫米的宽度,诸如约15毫米。
环电极111从基板105的周界径向向外定位,且在边缘环106下方。在一个示例中,环电极111可具有大于200毫米、或大于300毫米、或大于450毫米的内部直径。环电极111通过可包括一个或多个电容器和/或电感器的边缘调节电路155电气耦合至接地和/或匹配网络112。环电极111可通过多个传输线路265(示出为两个)耦合至边缘调节电路155。例如,环电极111可通过以均匀间隔(例如,120度)在基板支撑组件104周围分隔开的三个传输线路265耦合至边缘调节电路155。
图3是根据本公开的至少一些实施例的在图2的RF电极(例如,电极210)与基板支撑组件104的嵌入的电阻加热器(例如,电极245)之间RF耦合的等效集总电路模型300的图。图4是根据本公开的至少一些实施例的在处理腔室的处理体积中监测处理条件的方法400。
发明人已发现由于电极245嵌入陶瓷层246中,电极210和电极245可表现为变压器302。例如,电极210可表现为变压器302的第一绕组304,且电极245可表现为变压器302的次要绕线306。由RF功率源110供应至电极210的RF能量耦合至电极245。耦合至电极245的RF能量沿着AC电源传输线路119行进,且其部分由于与AC电源传输线路119相关联的电阻合电感(其可通过电感器和电阻器结合318来表现)而衰退(例如,衰减),其在AC电源113的输入和输出两者上示出为。
在402处,将来自RF功率源的射频(RF)功率供应至用于处理基板的处理体积。例如,RF功率源110可用以将RF能量提供至电极210。提供至电极210的RF能量可用以加热例如支撑在基板支撑组件104上的基板105。RF能量中的一些RF能量间接感应(RF耦合)至电极245中,且沿着AC电源传输线路119行进。
在404处,在RF滤波器电路115的电容耦合端口123处监测(例如,测量)来自电极245的所感应的RF电压。例如,可通过控制器108测量RF电压,所述RF电压是感应至电极245中的RF电压的衰减(例如由于沿着AC电源传输线路119衰退)的部分。例如,控制器108可使用适合用于监测耦合的RF电压的一个或多个设备。例如,在至少一些实施例中,示波器、频谱分析仪等可用于在电容耦合端口123处监测/测量耦合的RF电压。在至少一些实施例中,监测RF电压包括监测RF电压峰-峰(Vpp)。控制器108可被配置成根据一个或多个控制方案监测RF Vpp。例如,控制器108可被配置成连续或周期地(例如,在某时间帧上)监测RF Vpp。例如,在至少一些实施例中,控制器108可被配置成在等离子体处理基板时(例如,实时)在电容耦合端口123处连续监测RF Vpp。
在406处,可基所于监测的RF电压确定处理体积中的处理状态。例如,控制器108被配置成将所测量的/所监测的RF电压与存储在例如存储器142中的先前测量的/监测的RF电压作比较。基于所测量的/所监测的RF电压,控制器108可确定处理状态,例如,在处理腔室100的处理体积中等离子体116的状态。例如,所测量的/所监测的RF电压的Vpp的突然改变可指示非稳定或稳定的等离子体条件。
此外,为了避免可能由与RF电压相关联的相对高的RF电流造成的对AC电源113和/或AC电源传输线路119的损伤,电感器和电容器117的组合可用于仅通过相对低的RF(例如,约60Hz至约100Hz)。
尽管以上涉及本公开的实施例,可设计出本公开的其他和进一步实施例而不会背离其基本范围。

Claims (20)

1.一种用于处理基板的处理腔室,包含:
腔室主体,所述腔室主体限定处理体积;
射频(RF)功率源,所述射频(RF)功率源被配置成将RF能量传输至用于处理基板的所述处理体积;
基板支撑件,所述基板支撑件包含电极;
AC电源,所述AC电源被配置成将功率供应至所述处理腔室;
RF滤波器电路,所述RF滤波器电路连接在所述电极与所述AC电源之间;以及
控制器,所述控制器被配置成在所述RF滤波器电路处监测在操作期间由所述RF功率源间接感应至所述电极中的RF电压,且被配置成基于所监测的所述RF电压确定在所述处理体积中的处理状态。
2.如权利要求1所述的处理腔室,其特征在于,所述RF滤波器电路连接至所述AC电源的AC电源供应器传输线路,且包含:
电容耦合端口,所述电容耦合端口耦合至所述控制器,且被配置成将所述RF电压的测量结果提供至所述控制器;以及
电感器和电容器,所述电感器和电容器串联连接且被配置作为低通频率滤波器。
3.如权利要求1或2任一项所述的处理腔室,其特征在于,所述电容耦合端口被配置成提供约-40dB至约-47dB的电容耦合功率。
4.如权利要求1所述的处理腔室,其特征在于,所监测的RF电压为电压峰-峰。
5.如权利要求1所述的处理腔室,其特征在于,所监测的RF电压为感应至所述电极中的所述RF电压的衰减的部分。
6.如权利要求1所述的处理腔室,其特征在于,在所述处理体积中的所述处理状态包含在所述处理体积中的等离子体状态。
7.如权利要求1、2或4至6任一项所述的处理腔室,其特征在于,所述电极为具有嵌入所述基板支撑件的陶瓷层中的多个电阻加热元件的电阻加热器。
8.一种在处理腔室的处理体积中监测处理条件的方法,包含以下步骤:
将射频(RF)功率从RF功率源供应至用于处理基板的所述处理体积;
在RF滤波器电路处监测由所述RF功率源间接感应至电极中的RF电压;以及
基于所述RF电压确定在所述处理体积中的处理状态。
9.如权利要求8所述的方法,其特征在于,所述RF滤波器电路连接至被配置成将功率供应至所述处理腔室的AC电源的AC电源传输线路,且包含:
电容耦合端口,所述电容耦合端口耦合至所述处理腔室的控制器,且被配置成将所述RF电压的测量结果提供至所述控制器;以及
电感器和电容器,所述电感器和电容器串联连接,且被配置作为低通频率滤波器。
10.如权利要求8或9任一项所述的方法,其特征在于,所述电容耦合端口被配置成提供约-40dB至约-47dB的电容耦合功率。
11.如权利要求8所述的方法,其特征在于,监测所述RF电压包含监测RF电压峰-峰。
12.如权利要求8所述的方法,其特征在于,在所述RF滤波器电路处的所述RF电压为感应至所述电极中的所述RF电压的衰减的部分。
13.如权利要求8所述的方法,其特征在于,在所述处理体积中的所述处理状态包含在所述处理体积中的等离子体状态。
14.如权利要求8、9或11至13任一项所述的方法,其特征在于,所述电极为具有嵌入所述处理腔室的基板支撑件的陶瓷层中的多个电阻加热元件的电阻加热器。
15.一种非瞬态计算机可读存储介质,具有存储于其上的指令,当由处理器执行时,实行在所述处理腔室的所述处理体积中监测处理条件的方法,所述方法包含:
将射频(RF)功率从RF功率源供应至用于处理基板的所述处理体积;
在RF滤波器电路处监测由所述RF功率源间接感应至电极中的RF电压;以及
基于所述RF电压确定在所述处理体积中的处理状态。
16.如权利要求15所述的非瞬态计算机可读存储介质,其特征在于,所述RF滤波器电路连接至被配置成将功率供应至所述处理腔室的AC电源供应器的AC电源供应器传输线路,且包含:
电容耦合端口,所述电容耦合端口耦合至所述处理腔室的控制器,且被配置成将所述RF电压的测量结果提供至所述控制器;以及
电感器和电容器,所述电感器和电容器串联连接,且被配置作为低通频率滤波器。
17.如权利要求15或16任一项所述的非瞬态计算机可读存储介质,其特征在于,所述电容耦合端口被配置成提供约-40dB至约-47dB的电容耦合功率。
18.如权利要求15所述的非瞬态计算机可读存储介质,其特征在于,监测所述RF电压包含监测RF电压峰-峰。
19.如权利要求15所述的非瞬态计算机可读存储介质,其特征在于,在所述RF滤波器电路处的所述RF电压为感应至所述电极中的所述RF电压的衰减的部分。
20.如权利要求15、16、18或19任一项所述的非瞬态计算机可读存储介质,其特征在于,在所述处理体积中的所述处理状态包含在所述处理空间中的等离子体状态。
CN202180043471.9A 2020-06-19 2021-02-19 处理基板的方法和装置 Pending CN115803845A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/906,875 2020-06-19
US16/906,875 US11361941B2 (en) 2020-06-19 2020-06-19 Methods and apparatus for processing a substrate
PCT/US2021/018699 WO2021257130A1 (en) 2020-06-19 2021-02-19 Methods and apparatus for processing a substrate

Publications (1)

Publication Number Publication Date
CN115803845A true CN115803845A (zh) 2023-03-14

Family

ID=79021957

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180043471.9A Pending CN115803845A (zh) 2020-06-19 2021-02-19 处理基板的方法和装置

Country Status (6)

Country Link
US (1) US11361941B2 (zh)
JP (1) JP2023530308A (zh)
KR (1) KR20230022254A (zh)
CN (1) CN115803845A (zh)
TW (1) TW202202002A (zh)
WO (1) WO2021257130A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7433271B2 (ja) * 2020-04-27 2024-02-19 東京エレクトロン株式会社 基板処理装置および基板処理装置の制御方法
US11481685B2 (en) * 2020-11-11 2022-10-25 T-Mobile Usa, Inc. Machine-learning model for determining post-visit phone call propensity

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5479340A (en) 1993-09-20 1995-12-26 Sematech, Inc. Real time control of plasma etch utilizing multivariate statistical analysis
US5770922A (en) 1996-07-22 1998-06-23 Eni Technologies, Inc. Baseband V-I probe
US5737177A (en) * 1996-10-17 1998-04-07 Applied Materials, Inc. Apparatus and method for actively controlling the DC potential of a cathode pedestal
US5867020A (en) 1996-10-31 1999-02-02 Sematech, Inc. Capacitively coupled RF voltage probe having optimized flux linkage
US6239587B1 (en) 1997-01-03 2001-05-29 Texas Instruments Incorporated Probe for monitoring radio frequency voltage and current
US5808415A (en) 1997-03-19 1998-09-15 Scientific Systems Research Limited Apparatus for sensing RF current delivered to a plasma with two inductive loops
US6449568B1 (en) 1998-02-27 2002-09-10 Eni Technology, Inc. Voltage-current sensor with high matching directivity
JP4819244B2 (ja) 2001-05-15 2011-11-24 東京エレクトロン株式会社 プラズマ処理装置
US8313664B2 (en) * 2008-11-21 2012-11-20 Applied Materials, Inc. Efficient and accurate method for real-time prediction of the self-bias voltage of a wafer and feedback control of ESC voltage in plasma processing chamber
KR20100106088A (ko) 2009-03-23 2010-10-01 삼성전자주식회사 플라즈마 진단장치
US10128090B2 (en) 2012-02-22 2018-11-13 Lam Research Corporation RF impedance model based fault detection
US9401264B2 (en) * 2013-10-01 2016-07-26 Lam Research Corporation Control of impedance of RF delivery path
US9578731B2 (en) * 2014-10-16 2017-02-21 Advanced Energy Industries, Inc. Systems and methods for obtaining information about a plasma load
US20200090907A1 (en) 2018-09-18 2020-03-19 Applied Materials, Inc. Systems and processes for plasma tuning
KR20210076154A (ko) 2018-11-09 2021-06-23 어플라이드 머티어리얼스, 인코포레이티드 프로세싱 챔버를 위한 라디오 주파수 필터 시스템

Also Published As

Publication number Publication date
WO2021257130A1 (en) 2021-12-23
KR20230022254A (ko) 2023-02-14
JP2023530308A (ja) 2023-07-14
US11361941B2 (en) 2022-06-14
TW202202002A (zh) 2022-01-01
US20210398778A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
TWI814837B (zh) 電漿處理裝置及電漿處理裝置的射頻電源之控制方法
US10109462B2 (en) Dual radio-frequency tuner for process control of a plasma process
JP6953133B2 (ja) 容量結合型プラズマ処理装置のエッジリングのrf振幅の制御
CN107710378B (zh) 多电极基板支撑组件与相位控制系统
EP1589793B1 (en) Plasma generation device
JP6099995B2 (ja) 試験装置
US9875881B2 (en) Plasma processing apparatus and plasma processing method
TWI239794B (en) Plasma processing apparatus and method
US6174450B1 (en) Methods and apparatus for controlling ion energy and plasma density in a plasma processing system
JP6224958B2 (ja) プラズマ処理装置及びプラズマ処理方法
US20060021580A1 (en) Plasma processing apparatus and impedance adjustment method
TW201342508A (zh) 用於靜電吸盤的射頻濾波器
JP7094856B2 (ja) フィルタユニットの調整方法およびプラズマ処理装置
JP2008182012A (ja) プラズマ処理装置用のプロセス性能検査方法及び装置
CN115803845A (zh) 处理基板的方法和装置
KR101893811B1 (ko) 플라스마 처리 장치
KR20200069245A (ko) 제어 방법 및 플라즈마 처리 장치
US11776835B2 (en) Power supply signal conditioning for an electrostatic chuck
US7611603B2 (en) Plasma processing apparatus having impedance varying electrodes
JP4467667B2 (ja) プラズマ処理装置
KR20210066726A (ko) 플라즈마 처리 장치 및 측정 방법
KR102207755B1 (ko) 플라스마 처리 장치
US6528949B2 (en) Apparatus for elimination of plasma lighting inside a gas line in a strong RF field
KR20190048414A (ko) 증착 공정 및 자기 모니터링 기능을 갖는 기판 지지대 그리고 이를 구비한 증착 공정 설비
CN112345814A (zh) 直流偏压检测方法、装置、治具以及下电极系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination