CN115779329A - 一种连续流加过氧化氢协同锰过氧化物酶降解黄曲霉毒素b1的方法 - Google Patents

一种连续流加过氧化氢协同锰过氧化物酶降解黄曲霉毒素b1的方法 Download PDF

Info

Publication number
CN115779329A
CN115779329A CN202211443891.9A CN202211443891A CN115779329A CN 115779329 A CN115779329 A CN 115779329A CN 202211443891 A CN202211443891 A CN 202211443891A CN 115779329 A CN115779329 A CN 115779329A
Authority
CN
China
Prior art keywords
afb
degradation
manganese peroxidase
hydrogen peroxide
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211443891.9A
Other languages
English (en)
Other versions
CN115779329B (zh
Inventor
荚荣
徐梦君
陈平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN202211443891.9A priority Critical patent/CN115779329B/zh
Publication of CN115779329A publication Critical patent/CN115779329A/zh
Application granted granted Critical
Publication of CN115779329B publication Critical patent/CN115779329B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Enzymes And Modification Thereof (AREA)

Abstract

本发明公开了一种连续流加过氧化氢协同锰过氧化物酶降解黄曲霉毒素B1的方法,通过向体系中连续流加H2O2启动锰过氧化物酶对AFB1的降解反应,通过H2O2与锰过氧化物酶的协同作用提高AFB1的降解效率。本发明利用流动池启动MnP1进行AFB1降解,每小时产生10μM H2O2时,3h后过氧化氢与酶协同组对AFB1降解率达到55.846%;每小时产生30μMH2O2时,3h后过氧化氢与酶协同组对AFB1降解率达到85.359%;每小时产生50μM H2O2时,3h后过氧化氢与酶协同组对AFB1降解率达到80.166%。

Description

一种连续流加过氧化氢协同锰过氧化物酶降解黄曲霉毒素B1 的方法
技术领域
本发明属于生物技术领域,具体涉及一种连续流加过氧化氢协同锰过氧化物酶降解黄曲霉毒素B1(AFB1)的方法。
背景技术
锰过氧化物酶(Manganese peroxidase,MnP,EC1.11.1.13)是一种血红素过氧化物酶,主要由白腐真菌经胞外分泌产生。由于MnP能够降解木质素、真菌毒素和多种异生芳香化合物,因此,该类酶对污染物的去除和治理具有巨大的应用前景。
黄曲霉毒素B1(AFB1)是曲霉菌产生的次生代谢产物,一种二呋喃氧杂萘邻酮的衍生物。目前,已有20多种黄曲霉毒素衍生物被报道。其中,AFB1毒性最强,被国际癌症研究机构列为I类致癌物。AFB1污染存在于各类农作物中,如玉米、小麦、花生和水稻等。摄入受污染的食物或饲料会导致人类和动物患上急性和慢性疾病,并造成重大经济损失。
加热和吸附法是目前降解和去除AFB1的主要物理方法,存在能耗高、粮食品质破坏等缺点;碱处理和氧化剂处理是降解AFB1的主要化学方法,存在成本高和安全性等问题。而生物方法,如生物酶转化法,可以通过温和、环境友好的方式降低食品中的AFB1浓度。
MnP具有高的氧化还原电位,能够氧化降解真菌毒素。MnP的催化氧化作用需要H2O2启动反应,将底物Mn2+氧化为Mn3+,Mn3+与有机酸结合形成高氧化还原电势的螯合物,催化氧化底物。由于H2O2在运输过程中存在易爆等危险,且生物酶法降解AFB1的时间较长,这些实际因素增加了MnP对毒素降解的难度。
发明内容
针对上述现有技术所存在的问题,本发明提供了一种连续流加过氧化氢协同锰过氧化物酶降解黄曲霉毒素B1的方法。本发明利用自动产生H2O2的流动池,启动锰过氧化物酶的催化氧化反应,并协同其对AFB1的降解,有效地加速了AFB1的酶降解,且减少原料消耗,降低了经济成本。
本发明连续流加过氧化氢协同锰过氧化物酶降解黄曲霉毒素B1的方法,向体系中连续流加H2O2启动锰过氧化物酶对AFB1的降解反应,通过H2O2与锰过氧化物酶的协同作用提高AFB1的降解效率。
进一步的,向体系中连续流加H2O2时,控制流加速度为10-50μM/h。此时当体系中锰过氧化物酶为0.1U/mL时,对1-10mg/L浓度的AFB1均能保持高的降解率。
所述锰过氧化物酶是通过大肠杆菌异源表达获得的重组锰过氧化物酶MnP1(GenBank:AG086670),来自于乳白耙齿菌F17(Irpexlacteus F17,CCTCCAF 2014020)。锰过氧化物酶MnP1的氨基酸序列参见授权专利ZL 2020 1 1250108.8(MnP1);另外,关于重组MnP1的来源在已发表文章中公开(Process Biochemistry,2015,50:1748-1759)。
本发明在对AFB1的降解反应过程中,体系中连续流加的H2O2是在通电与氧气的条件下,通过在流动池中发生的双电子还原反应产生。所述流动池包括电源、反应池、电解液以及电极材料。所述流动池被萘酚膜分隔成池A和池B两个部分,其中池A中装有电解质溶液A——丙二酸-丙二酸钠溶液(pH 6.5,90mM),该部分的电极材料为泡沫镍(对电极),与电源正极相连;池B中装有电解质B——丙二酸-丙二酸钠溶液(pH 6.5,90mM),并含有0.1U/mLMnP1、0.1mM Mn2+和1mg/LAFB1,该部分的电极材料为均匀涂抹在碳纸上的CMK-3碳材料(气体扩散电极),与电源负极相连。通电后在反应池中发生双电子还原反应产生H2O2,用H2O2浓度测定试剂盒测定产生的H2O2浓度,在所选的的3种H2O2浓度,电压均在-0.2至-0.5V之间。产生的H2O2随着蠕动泵在体系中循环,参与MnP1降解AFB1
本发明使用的连续产生H2O2的装置为现有技术具体详见文章J.Mater.Chem.A,2019,7,21329。
本发明采用H2O2浓度测定试剂盒测定流动池中的H2O2浓度,选用了3种H2O2浓度,利用流动池启动MnP1进行AFB1降解。每小时产生10μM H2O2时,3h后过氧化氢与酶协同组对AFB1降解率达到55.846%;每小时产生30μM H2O2时,3h后过氧化氢与酶协同组对AFB1降解率达到85.359%;每小时产生50μM H2O2时,3h后过氧化氢与酶协同组对AFB1降解率达到80.166%。
本发明利用自动产生H2O2的流动池,启动锰过氧化物酶的催化氧化反应,并协同其对AFB1的降解,有效地加速了AFB1的酶降解,极大提高了降解效率,且减少原料消耗,降低了经济成本。
附图说明
图1是流动池实物图。
图2是流动池原理示意图。
图3外源添加不同浓度H2O2对MnP1降解AFB1的影响。A:外源添加10μM H2O2对MnP1降解AFB1的影响;B:外源添加30μM H2O2对MnP1降解AFB1的影响;C:外源添加50μM H2O2对MnP1降解AFB1的影响。
图4每小时外源添加不同浓度H2O2对MnP1降解AFB1的影响。A:每小时外源添加10μMH2O2对MnP1降解AFB1的影响;B:每小时外源添加30μM H2O2对MnP1降解AFB1的影响;C:每小时外源添加50μM H2O2对MnP1降解AFB1的影响。
图5流动池每小时产生不同浓度H2O2对MnP1降解AFB1的影响。A:流动池每小时产生10μM H2O2对MnP1降解AFB1的影响;B:流动池每小时产生30μM H2O2对MnP1降解AFB1的影响;C:流动池每小时产生50μM H2O2对MnP1降解AFB1的影响。
具体实施方式
下面以具体实施例对本发明技术方案做详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方法和具体的操作过程。
实施例1:重组蛋白MnP1的制备
1、MnP1的表达与纯化
实验用的MnP1是通过大肠杆菌异源表达,获得的重组锰过氧化物酶(MnP1,GenBank:AG086670)。该酶来自于乳白耙齿菌F17(Irpexlacteus F17,CCTCCAF 2014020)。
①活化:实验室已成功构建Rosetta-pET28a-Il-MnP1的大肠杆菌(Escherichiacoli)表达菌株,取50μL保存的甘油菌加入到含有50μg/mL盐酸卡那霉素和34μg/mL的氯霉素的5mL的LB液体培养基中,220rpm,37℃过夜培养活化。
②诱导:转入到含有50μg/mL盐酸卡那霉素和34μg/mL的氯霉素的400mL的LB液体培养基中扩大培养,220rpm,37℃培养至OD600=0.4-0.6,加入异丙醇-β-D硫代半乳糖苷(IPTG,终浓度0.5mM),继续培养3h。
③重悬:收集发酵液,8000rpm离心10min,弃上清,加入50mLTris-HCl(50mM,pH8.5)、400μL EDTA(500mM)、100μLDTT(1M)、10μLPMSF(100mM)重悬菌体沉淀,超声破碎25min,4℃,12000rpm离心20min,弃上清。
④变性:向上述沉淀中加入5mL尿素(8M)、200μL EDTA(500mM)、10μL DTT(1M),吹吸均匀,置于4℃变性3h。
⑤复性:将④中的变性体系倒入复性体系中,4℃复性36h。复性体系(53.366mL):42.074mL(50mM,pH 8.5)、5.3mL甘油、3.2mL CaCl2(2.5M)、1.326mL氯高铁血红素(1mM)、1.06mLKCl(1M)、380μL GSSG(70mM)、26μLMnSO4(0.1M)。
⑥透析:透析液为500mL乙酸钠(10mM,pH 6.0),透析膜孔径为14kDa,4℃透析24h,透析后的酶液在4℃,12000rpm离心30min,弃沉淀,0.45μm的水系滤膜,将上清液抽滤,所得即为粗酶液。
⑦纯化:选择Ni-NTA亲和层析柱对所得粗酶液进行纯化。分别用30,100mM咪唑洗脱杂蛋白,200mM洗脱目的蛋白,SDS-PAGE检验目的蛋白。纯化后的蛋白储存在4℃。
2、MnP1的酶活测定
酶活性是用分光光度法测量的,在110mM的乳酸钠缓冲液中,加入0.1mM的MnSO4、0.1mM的H2O2和1mM的ABTS,在pH 4.0的条件下测定酶的活力,测定第一分钟在420nm处的吸光度变化(ε420nm=L·mol-1·cm-1)。酶活定义是单位时间(min)内氧化1μMABTS的酶量为一个酶活力单位(U)。
酶活力计算公式如下:
Figure BDA0003949148700000041
ΔA:空白样品与实验样品吸光度的变化量
Vt:反应体系的体积(mL)
T:反应时间(min)
L:比色皿内径(cm)
ε:氧化底物在氧化态时的摩尔吸收系数(L·mol-1·cm-1)
VE:酶液体积(mL)
实施例2:AFB1降解率的测定
降解体系中含有0.1U/mL(对ABTS的酶活)的MnP1、0.1mMMn2+、1mg/LAFB1,丙二酸-丙二酸钠(pH6.5,90mM)补齐体积至40mL。以反应开始的一瞬间记为0h,每30min取样,至180min反应结束。取样操作为:取200μL降解体系中的溶液,加入800μL的甲醇,其目的是使酶变性失活。随后将样品置于12000rpm离心20min,随后通过0.22μm滤膜过滤,最后用HPLC检测AFB1降解率。HPLC条件如下:流动相:甲醇:水=45:55,流速为0.8mL/min,所用色谱柱为C18柱,柱温为25℃,接柱后光化学衍生器,所用检测器为荧光检测器,激发波长Ex=360nm,发射波长Em=440nm,进样20μL。用不同浓度的AFB1标准品作出标准曲线,带入实验组求出各个时间段AFB1的浓度。
降解率(%)=(1-Ct/C0)×100%
Ct:th的AFB1浓度(mg/L)
C0:0h的AFB1浓度(mg/L)
首先外源分别添加10、30和50μMH2O2条件下,分别在3h、6h、9h、12h、24h、36h、48h、60h、72h取样,检测AFB1降解率。一组是只加H2O2,且不加酶;另一组是过氧化氢加酶组。
结果如图3所示,由图3可知,外源添加10、30和50μMH2O2时,至反应结束(72h),3种H2O2浓度条件下过氧化氢与酶协同组的AFB1降解率分别为87.928%、87.308%、85.969%,而过氧化氢组中,3种H2O2浓度条件下AFB1的降解率均为0。
实施例3:H2O2与MnP1协同降解
对电极材料为泡沫镍,将泡沫镍剪裁成2×2cm的正方形,冲压成薄片,将萘酚膜也剪裁成2×2cm的正方形,气体扩散电极为碳纸,将碳纸也裁剪成2×2cm的正方形。称取100mg CMK-3碳材料置于微波炉中处理20s,随后液氮处理40s,接着称取5mg处理后的CMK-3溶于1mL萘酚溶液中,之后超声混匀,最后均匀喷涂于碳纸上,置于红外灯下烘干。随后,按照示意图组装好装置。电解液均为40mL丙二酸-丙二酸钠(pH 6.5,90mM),浸泡气体扩散电极的电解液还含有0.1U/mLMnP1,0.1mM Mn2+,1mg/LAFB1。装置内部电解液流向均由下向上,流速为20mL/min;装置内部气体流向由上向下,流速为40mL/min。对电极与电源正极相连,气体扩散电极与电源负极相连。
电源闭合后,气体扩散电极上发生双电子还原反应:
O2+H2O+e-→OOH*+OH-
OOH*+H++e-→H2O2
产生的H2O2会随着蠕动泵在AFB1降解体系中循环,启动MnP的反应。通过H2O2浓度检测试剂盒检测产生的H2O2浓度。实验通过改变电荷量C从而改变H2O2的产生量。
每小时向反应体系中外源添加10、30和50μM的H2O2,每隔30min取样200μL,加入800μL甲醇,随后将样品置于12000rpm离心20min,再用0.22μm滤膜过滤,最后通过HPLC检测AFB1降解率,检测条件如上所述。
与每小时外源添加的H2O2浓度相对应,选用了10、30和50μM的H2O2浓度,每隔30min取样200μL,加入800μL甲醇,随后将样品置于12000rpm离心20min,用0.22μm滤膜过滤,最后通过HPLC检测AFB1降解率,检测条件如上所述。
如图4所示,每小时向静止反应体系中外源添加10、30和50μM的H2O2,在180min时,3种H2O2浓度下,过氧化氢和酶协同组AFB1降解率分别为24.037%、25.365%、20.933%,过氧化氢组AFB1降解率分别为7.769%,7.801%,5.328%。
如图5所示,在每小时产生10、30和50μM的H2O2流动池中,在180min时,3种H2O2浓度下,过氧化氢和酶协同组AFB1降解率分别为55.846%、85.359%、85.359%,过氧化氢组AFB1降解率分别为34.253%,46.520%,46.921%。表明通过流动池产生H2O2与锰过氧化物酶协同作用后,黄曲霉素的降解效率得到了大幅度的提高。

Claims (4)

1.一种连续流加过氧化氢协同锰过氧化物酶降解黄曲霉毒素B1的方法,其特征在于:
向体系中连续流加H2O2启动锰过氧化物酶对AFB1的降解反应,通过H2O2与锰过氧化物酶的协同作用提高AFB1的降解效率。
2.根据权利要求1所述的方法,其特征在于:
向体系中连续流加H2O2时,控制流加速度为10-50μM/h,体系中锰过氧化物酶为0.1U/mL。
3.根据权利要求1或2所述的方法,其特征在于:
所述锰过氧化物酶是通过大肠杆菌异源表达获得的重组锰过氧化物酶MnP1,来自于乳白耙齿菌F17(CCTCCAF 2014020)。
4.根据权利要求2所述的方法,其特征在于:
向体系中连续流加H2O2时,控制流加速度为30-50μM/h。
CN202211443891.9A 2022-11-18 2022-11-18 一种连续流加过氧化氢协同锰过氧化物酶降解黄曲霉毒素b1的方法 Active CN115779329B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211443891.9A CN115779329B (zh) 2022-11-18 2022-11-18 一种连续流加过氧化氢协同锰过氧化物酶降解黄曲霉毒素b1的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211443891.9A CN115779329B (zh) 2022-11-18 2022-11-18 一种连续流加过氧化氢协同锰过氧化物酶降解黄曲霉毒素b1的方法

Publications (2)

Publication Number Publication Date
CN115779329A true CN115779329A (zh) 2023-03-14
CN115779329B CN115779329B (zh) 2024-01-30

Family

ID=85438729

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211443891.9A Active CN115779329B (zh) 2022-11-18 2022-11-18 一种连续流加过氧化氢协同锰过氧化物酶降解黄曲霉毒素b1的方法

Country Status (1)

Country Link
CN (1) CN115779329B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109504666A (zh) * 2018-12-11 2019-03-22 中国农业科学院饲料研究所 锰过氧化物酶PcMnP1及其编码基因和应用
WO2020113962A1 (zh) * 2018-12-07 2020-06-11 中国农业大学 细菌漆酶CotA蛋白在降解霉菌毒素中的应用
CN111808831A (zh) * 2020-07-13 2020-10-23 浙江康星生物科技有限公司 一种重组锰过氧化物酶的制备方法及其在中草药木质素降解中的应用
CN113528477A (zh) * 2021-08-20 2021-10-22 江南大学 一种能降解黄曲霉毒素b1的锰过氧化物酶的突变体构建方法及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020113962A1 (zh) * 2018-12-07 2020-06-11 中国农业大学 细菌漆酶CotA蛋白在降解霉菌毒素中的应用
CN109504666A (zh) * 2018-12-11 2019-03-22 中国农业科学院饲料研究所 锰过氧化物酶PcMnP1及其编码基因和应用
CN111808831A (zh) * 2020-07-13 2020-10-23 浙江康星生物科技有限公司 一种重组锰过氧化物酶的制备方法及其在中草药木质素降解中的应用
CN113528477A (zh) * 2021-08-20 2021-10-22 江南大学 一种能降解黄曲霉毒素b1的锰过氧化物酶的突变体构建方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Cloning and expression of a new manganese peroxidase from Irpexlacteus F17 and its application in decolorization of reactive black 5", 《PROCESS BIOCHEMISTRY》, pages 1748 *
YUN-LU WANG,等: ""One minute from pristine carbon to an electrocatalyst for hydrogen peroxide production"", 《JOURNAL OF MATERIALS CHEMISTRY A》, pages 21329 - 21337 *

Also Published As

Publication number Publication date
CN115779329B (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
Kornecki et al. Enzyme production of D-gluconic acid and glucose oxidase: successful tales of cascade reactions
CN109439701B (zh) 生物合成制备麦角硫因的方法和发酵培养基
Hartmeier Immobilized biocatalysts—from simple to complex systems
Asgher et al. CHARACTERIZATION OF A NOVEL MANGANESE PEROXIDASE PURIFIED FROM SOLID STATE CULTURE OF Trametes versicolor IBL-04.
Dikshit et al. Investigations in sonication-induced intensification of crude glycerol fermentation to dihydroxyacetone by free and immobilized Gluconobacter oxydans
US20190309315A1 (en) Genetically engineered candida utilis capable of degrading and utilizing kitchen waste and construction method therefor
Liu et al. Fed-batch production of Thermothelomyces thermophilus lignin peroxidase using a recombinant Aspergillus nidulans strain in stirred-tank bioreactor
Liu et al. Process optimization and scale-up production of fungal aryl alcohol oxidase from genetically modified Aspergillus nidulans in stirred-tank bioreactor
Karube et al. Methane production from wastewaters by immobilized methanogenic bacteria
Yang et al. A lipase–glucose oxidase system for the efficient oxidation of N-heteroaromatic compounds and tertiary amines
Wang et al. Gluconic acid production by gad mutant of Klebsiella pneumoniae
Mao et al. Efficient production of sugar-derived aldonic acids by Pseudomonas fragi TCCC11892
Voulgaris et al. Inactivating alternative NADH dehydrogenases: enhancing fungal bioprocesses by improving growth and biomass yield?
CN110564640A (zh) 一株用于降解黄曲霉毒素b1的暹罗芽孢杆菌wf2019菌株及其应用
CN103275960B (zh) 一种人工设计的青霉素g酰化酶原及编码序列和发酵方法
CN111154737B (zh) 一种能降解黄曲霉毒素b1的锰过氧化物酶及其应用
CN100457915C (zh) 包括间接电化学再生nad(p)h的方法
CN115779329A (zh) 一种连续流加过氧化氢协同锰过氧化物酶降解黄曲霉毒素b1的方法
Rosfarizan et al. Importance of carbon source feeding and pH control strategies for maximum kojic acid production from sago starch by Aspergillus flavus
Hota et al. Immobilization of tannase from Rhizopus oryzae and its efficiency to produce gallic acid from tannin rich agro-residues
CN112852773B (zh) 一种发酵生产d-氨基酸氧化酶的方法
EP3943598A1 (en) Use of uv-activated enzymes to implement oxidation reactions and the corresponding processes
Jeon et al. Production of ethanol directly from potato starch by mixed culture of Saccharomyces cerevisiae and Aspergillus niger using electrochemical bioreactor
Bečka et al. Cross-linked cell aggregates of Trigonopsis variabilis: D-amino acid oxidase catalyst for oxidation of cephalosporin C
Gottvaldová et al. Enhancement of cellulase production by Trichoderma viride using carbon/nitrogen double-fed-batch

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant