CN115754970B - 一种分布式无人机载雷达空时自适应目标检测方法与系统 - Google Patents

一种分布式无人机载雷达空时自适应目标检测方法与系统 Download PDF

Info

Publication number
CN115754970B
CN115754970B CN202211653299.1A CN202211653299A CN115754970B CN 115754970 B CN115754970 B CN 115754970B CN 202211653299 A CN202211653299 A CN 202211653299A CN 115754970 B CN115754970 B CN 115754970B
Authority
CN
China
Prior art keywords
unmanned aerial
detection
aerial vehicle
target
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211653299.1A
Other languages
English (en)
Other versions
CN115754970A (zh
Inventor
刘维建
李�浩
孙合敏
李槟槟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Force Early Warning Academy
Original Assignee
Air Force Early Warning Academy
Filing date
Publication date
Application filed by Air Force Early Warning Academy filed Critical Air Force Early Warning Academy
Priority to CN202211653299.1A priority Critical patent/CN115754970B/zh
Publication of CN115754970A publication Critical patent/CN115754970A/zh
Application granted granted Critical
Publication of CN115754970B publication Critical patent/CN115754970B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种分布式无人机载雷达空时自适应目标检测方法与系统,根据发射信号的无人机数量、接收信号的无人机数量、每架无人机具备的阵元数、发射脉冲数、待检测目标方位,构造待检测数据、信号导向矢量、训练样本;利用待检测数据、信号导向矢量、训练样本构造子检测统计量;将子检测统计量相加求和构造最终的检测统计量;利用检测统计量和虚警概率确定检测门限;比较检测统计量与检测门限之间的大小,并判决目标是否存在。通过分布式探测并联合利用空时特性,既降低了单架无人机的压力,又能兼顾在强杂波环境中探测运动目标的功能,并且可从多个角度对目标探测,降低了目标闪烁带来的不利影响,从而提升了目标检测性能。

Description

一种分布式无人机载雷达空时自适应目标检测方法与系统
技术领域
本发明涉及分布式无人机载雷达目标检测方法与系统,尤其涉及一种分布式无人机载雷达空时自适应目标检测方法与系统。
背景技术
无人机作为新兴的空中作战力量,可提供持久的情报、监视和侦察能力,以及精确和及时的火力支持,具有零人员伤亡、使用限制少、隐蔽性好、可远程作战、效费比高等特点。然而,单部无人机由于载荷有效,作战效能不佳。而由多部无人机组成的无人机集群可以分布式模型展开探测及火力攻击,作战效能大为提高。雷达是最主要的战场信息获取传感器之一,现有无人机分布式雷达目标检测方法较少。
专利(分布式无人机MIMO雷达的非相参融合目标检测方法,申请公布号CN110412559 A,申请号201910681853.9)提出了一种针对分布式无人机的MIMO雷达非相参融合目标检测方法,利用分布式无人机对目标进行融合检测。由于无人机克服了地形地物的遮挡,可从高空探测目标,从而增加了预警时间。此外,由于无人机集群以分布式方式对目标进行探测,降低了目标闪烁特性带来的不利影响。然而,上述专利所提方法假设待检测距离单元的杂波加噪声协方差矩阵已知,这一要求往往在实际中无法满足。
发明内容
为了解决上述技术难题,本发明提供一种分布式无人机载雷达空时自适应目标检测方法与系统,用以克服现有技术中分布式无人机载雷达目标检测困难的问题。
为实现上述目的,本发明提供一种分布式无人机载雷达空时自适应目标检测方法,包括:
步骤1,根据发射信号的无人机数量、接收信号的无人机数量、每架无人机具备的阵元数、发射脉冲数、待检测目标方位,构造待检测数据、信号导向矢量、训练样本;
步骤2,利用所述待检测数据、信号导向矢量、训练样本构造子检测统计量;
步骤3,将所述子检测统计量相加求和构造最终的检测统计量;
步骤4,利用所述检测统计量和虚警概率确定检测门限;
步骤5,比较所述检测统计量与所述检测门限之间的大小,并判决目标是否存在。
进一步,所述步骤1中,发射信号的无人机数量为、接收信号的无人机数量为、每架发射信号的无人机含有的阵元天线数为,每架发射信号的无人机均发射个脉冲,每架接收信号的无人机含有的阵元天线数为,待检测数据为的维数为,信号导向矢量为,维数为,训练样本为为训练样本数。
进一步,所述步骤1中,信号导向矢量具有下式所示结构:
符号表示Kronecker积,分别为目标的多普勒导向矢量、第架用于发射信号的无人机相对目标的发射导向矢量和第架用于接收信号的无人机相对目标的接收导向矢量,且表达式分别为:
符号表示转置,为目标相对于第架用于发射信号的无人机及第架用于接收信号的无人机的归一化多普勒频率,为第架用于发射信号的无人机的发射信号角度,为第架用于接收信号的无人机的接收信号角度。
进一步,所述步骤2中,所构造的子检测统计量为:
其中,符号表示绝对值,表示共轭转置;
表示矩阵的逆,
进一步,所述步骤3中,所构造的最终检测统计量为:
进一步,所述步骤4中,所述检测门限为:
其中,为蒙特卡洛仿真次数,为系统的虚警概率值,为取整操作,为序列由大到小排列第个最大值;
其中,为仅含噪声分量的待检测数据矩阵的第次实现,为第个训练样本数据的第次实现,其中
进一步,所述步骤5中,判决目标是否存在根据下述结果进行:若所述检测统计量大于检测门限,则判决目标存在,反之则判决目标不存在。
另一方面,本发明提供一种分布式无人机载雷达空时自适应目标检测方法的系统,包含:
待检测数据和训练样本数据构造模块,用以构造待检测数据和训练样本数据;
信号导向矢量构造模块,用以构造信号导向矢量;
子检测统计量构造模块,用以利用所述待检测数据、训练样本和信号导向矢量构造子检测统计量;
总检测统计量构造模块,用以利用子检测统计量构造检测统计量;
检测门限确定模块,用以利用所述检测统计量和虚警概率确定检测门限;
目标判决模块,用以比较所述检测统计量与所述检测门限之间的大小,并判决目标是否存在。
与现有技术相比,本发明的有益效果在于:
(1)通过布局发射信号无人机、接收信号无人机,使雷达从不同角度观测目标,降低了目标闪烁对雷达探测性能的影响;
(2)通过构造子检测统计量,实现了强杂波抑制,并且子检测统计量具有恒虚警特性,因而避免了后续的恒虚警处理;
(3)通过利用子检测统计量构造最终的检测统计量,积累了所有子检测统计量的能量,提升了检测性能。
附图说明
图1为本发明所述方法原理示意图;
图2为利用本发明所述方法构建的系统流程图;
图3为本发明所述方法与现有方法在不同信杂噪比下的检测概率比较图。
具体实施方式
为了使本发明的目的和优点更加清楚明白,下面结合实施例对本发明作进一步描述;应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
下面参照附图来描述本发明的优选实施方所述式。本领域技术人员应当理解的是,这些实施方所述式仅仅用于解释本发明的技术原理,并非在限制本发明的保护范围。
需要说明的是,在本发明的描述中,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
首先,实施例中用到的专业术语进行解释,
蒙特卡洛(Monte Carlo)仿真:是一种器件参数变化分析,使用随机抽样估计来估算数学函数的计算的方法。
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非在限制本发明的保护范围。
假设有架无人机发射信号、架无人机接收信号,无人机之间均分布散开,第架发射信号的无人机含有个阵元天线,,每个发射天线发射个脉冲,且不同阵元天线发射的波形相互正交;第架接收信号的无人机含有个阵元天线,。令第架发射信号的无人机的第个发射阵元发射的波形为,则经过匹配滤波消除波形信息后第架接收信号的无人机接收到的第个发射机发射的个回波信号可表示为:
(1)
其中,为目标回波未知复值幅度,分别为杂波和热噪声,为目标导向矢量,表达式为
(2)
符号表示Kronecker积,分别为目标的多普勒导向矢量、第架用于发射信号的无人机的发射导向矢量和第架用于接收信号的无人机的接收导向矢量,且三者的表达式分别为
(3)
(4)
(5)符号表示转置,
为目标相对于第架用于发射信号的无人机及第架用于接收信号的无人机的归一化多普勒频率,
为第架用于发射信号的无人机的发射信号角度,
为第架用于接收信号的无人机的接收信号角度。
则检测问题可用下式所示的二元假设检验表示为
(6)
其中,表示待检测数据含有目标信号的假设检验,表示待检测数据不含有目标信号的假设检。为了叙述方便,令杂波和热噪声之和的协方差矩阵为
需要指出的是,无人机处于运动状态时,原本固定的地杂波返回无人机载雷达的回波具有非零的多普勒频率,并且多普勒频率覆盖范围广、强度大,远远高于目标回波的强度,即协方差矩阵的大特征值远远大于目标幅度。为了消除杂波的影响,必须要对杂波进行有效抑制才能检测到目标。然而,协方差矩阵在实际环境中通常是未知的。为了对协方差矩阵进行估计,需要用到一定数量的训练样本,设定存在个不含目标的训练样本,中最大值,中最大值。记第架用于发射信号的无人机和第架用于接收信号的无人机对应的第个训练样本为
(7)
式中,分别为第个训练样本中的杂波分量和热噪声分量。为了体现对协方差矩阵估计的稳健特性,假设训练样本的协方差矩阵也为
综述所述,式(6)中的检测问题可修正为下式所示的二元假设检验:
(8)
为了解决上述问题,可先给出待检测数据与训练样本数据的联合概率密度函数,然后采用相应的检测器设计准则设计有效检测器。在假设检验下,待检测数据和训练样本的联合概率密度函数分别为
(9)
(10)
其中,为训练样本数据矩阵,表示待检测数据和训练样本在假设检验下的联合概率密度函数,表示待检测数据和训练样本在假设检验下的联合概率密度函数,符号表示矩阵的行列式,符号表示矩阵的迹,符号表示共轭转置,符号表示矩阵逆。在式(9)和(10)中,未知。
为了实现分布式无人机载雷达目标检测,请参阅图1所示,本发明提供了一种分布式无人机载雷达空时自适应目标检测方法与系统,包括:
步骤1,根据发射信号的无人机数量、接收信号的无人机数量、每架无人机具备的阵元数、发射脉冲数、待检测目标方位,构造待检测数据、信号导向矢量、训练样本;
步骤2,利用所述待检测数据、信号导向矢量、训练样本构造子检测统计量;
步骤3,将所述子检测统计量相加求和构造最终的检测统计量;
步骤4,利用所述检测统计量和虚警概率确定检测门限;
步骤5,比较所述检测统计量与所述检测门限之间的大小,并判决目标是否存在。
具体而言,所述步骤1中,发射信号的无人机数量为 、接收信号的无人机数量为、每架发射信号的无人机含有的阵元天线数为,每架发射信号的无人机均发射个脉冲,每架接收信号的无人机含有的阵元天线数为,待检测数据为的维数为,信号导向矢量为,维数为,训练样本为为训练样本数。
具体而言,所述步骤1中,信号导向矢量具有下式所示结构:
符号表示Kronecker积,分别为目标的多普勒导向矢量、第架用于发射信号的无人机相对目标的发射导向矢量和第架用于接收信号的无人机相对目标的接收导向矢量,且表达式分别为:
符号表示转置,为目标相对于第架用于发射信号的无人机及第架用于接收信号的无人机的归一化多普勒频率,为第架用于发射信号的无人机的发射信号角度,为第架用于接收信号的无人机的接收信号角度。
具体而言,所述步骤2中,所构造的子检测统计量为:
其中,符号表示绝对值,表示共轭转置,表示矩阵的逆,
具体而言,所述步骤3中,所构造的最终检测统计量为:
具体而言,所述步骤4中,所述检测门限为:
其中,为蒙特卡洛仿真次数,为系统的虚警概率值,为取整操作,为序列由大到小排列第个最大值;
其中,为仅含噪声分量的待检测数据矩阵的第次实现,为第个训练样本数据的第次实现,其中
具体而言,所述步骤5中,判决目标是否存在根据下述结果进行:若所述检测统计量大于检测门限,则判决目标存在,反之则判决目标不存在。
请参阅图2所示,本发明提供了一种分布式无人机载雷达空时自适应目标检测方法的系统,其特征在于,包含:
待检测数据和训练样本数据构造模块,用以构造待检测数据和训练样本数据;
信号导向矢量构造模块,用以构造信号导向矢量;
子检测统计量构造模块,用以利用所述待检测数据、训练样本和信号导向矢量构造子检测统计量;
总检测统计量构造模块,用以利用子检测统计量构造检测统计量;
检测门限确定模块,用以利用所述检测统计量和虚警概率确定检测门限;
目标判决模块,用以比较所述检测统计量与所述检测门限之间的大小,并判决目标是否存在。
请参阅图3所示,其为本发明所述方法与现有方法在不同信杂噪比下的检测概率比较图;为简化计算,令,虚警概率被设置为0.01,信杂噪比定义为,其中,表示绝对值。
从图中可以看出,本发明所提方法相比单基地自适应匹配滤波检测器,检测性能有明显提升,并且检测概率随着无人机架次的增加而提升。
至此,已经结合附图所示的优选实施方所述式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方所述式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征做出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。
以上所述仅为本发明的优选实施例,并不用于限制本发明;对于本领域的技术人员来说,本发明可以有各种更改和变化。 凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种分布式无人机载雷达空时自适应目标检测方法,其特征在于,包括:
步骤1,根据发射信号的无人机数量、接收信号的无人机数量、每架无人机具备的阵元数、发射脉冲数、待检测目标方位,构造待检测数据、信号导向矢量、训练样本;
步骤2,利用所述待检测数据、信号导向矢量、训练样本构造子检测统计量;
步骤3,将所述子检测统计量相加求和构造最终的检测统计量;
步骤4,利用所述检测统计量和虚警概率确定检测门限;
步骤5,比较所述检测统计量与所述检测门限之间的大小,并判决目标是否存在;
所述步骤1中,发射信号的无人机数量为、接收信号的无人机数量为、每架发射信号的无人机含有的阵元天线数为,每架发射信号的无人机均发射个脉冲,每架接收信号的无人机含有的阵元天线数为,待检测数据为的维数为,信号导向矢量为,其维数为,训练样本为为训练样本数;
所述步骤2中,所构造的子检测统计量为:
其中,符号表示绝对值,表示共轭转置,表示矩阵的逆,
所述步骤4中,所述检测门限为:
其中,为蒙特卡洛仿真次数,为系统的虚警概率值,为取整操作,为序列由大到小排列第个最大值;
其中,为仅含噪声分量的待检测数据矩阵的第次实现,为第个训练样本数据的第次实现,其中
为目标相对于第架用于发射信号的无人机及第架用于接收信号的无人机的归一化多普勒频率,为第架用于发射信号的无人机的发射信号角度,为第架用于接收信号的无人机的接收信号角度。
2.根据权利要求1所述的一种分布式无人机载雷达空时自适应目标检测方法,其特征在于,所述步骤1中,信号导向矢量具有下式所示结构:
符号表示Kronecker积, 和分别为目标的多普勒导向矢量、第架用于发射信号的无人机相对目标的发射导向矢量和第架用于接收信号的无人机相对目标的接收导向矢量,且表达式分别为:
符号表示转置。
3.根据权利要求2所述的一种分布式无人机载雷达空时自适应目标检测方法,其特征在于,所述步骤3中,所构造的最终检测统计量为:
4.根据权利要求3所述的一种分布式无人机载雷达空时自适应目标检测方法,其特征在于,所述步骤5中,判决目标是否存在根据下述结果进行:若所述检测统计量大于检测门限,则判决目标存在,反之则判决目标不存在。
5.根据权利要求1-4任一所述的一种分布式无人机载雷达空时自适应目标检测方法的系统,其特征在于,包含:
待检测数据和训练样本数据构造模块,用以构造待检测数据和训练样本数据;
信号导向矢量构造模块,用以构造信号导向矢量;
子检测统计量构造模块,用以利用所述待检测数据、训练样本和信号导向矢量构造子检测统计量;
总检测统计量构造模块,用以利用子检测统计量构造检测统计量;
检测门限确定模块,用以利用所述检测统计量和虚警概率确定检测门限;
目标判决模块,用以比较所述检测统计量与所述检测门限之间的大小,并判决目标是否存在。
CN202211653299.1A 2022-12-22 一种分布式无人机载雷达空时自适应目标检测方法与系统 Active CN115754970B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211653299.1A CN115754970B (zh) 2022-12-22 一种分布式无人机载雷达空时自适应目标检测方法与系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211653299.1A CN115754970B (zh) 2022-12-22 一种分布式无人机载雷达空时自适应目标检测方法与系统

Publications (2)

Publication Number Publication Date
CN115754970A CN115754970A (zh) 2023-03-07
CN115754970B true CN115754970B (zh) 2024-07-09

Family

ID=

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101887119A (zh) * 2010-06-18 2010-11-17 西安电子科技大学 基于子带anmf海杂波中动目标检测方法
CN106054165A (zh) * 2016-06-08 2016-10-26 中国人民解放军海军航空工程学院 一种实现分布式无源雷达目标检测的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101887119A (zh) * 2010-06-18 2010-11-17 西安电子科技大学 基于子带anmf海杂波中动目标检测方法
CN106054165A (zh) * 2016-06-08 2016-10-26 中国人民解放军海军航空工程学院 一种实现分布式无源雷达目标检测的方法

Similar Documents

Publication Publication Date Title
CN110412559B (zh) 分布式无人机mimo雷达的非相参融合目标检测方法
CN109444820B (zh) 杂波和干扰共存时多通道雷达先干扰抑制后目标检测方法
CN108089167B (zh) 一种合成孔径雷达跨脉冲干扰信号检测方法
CN107015205B (zh) 一种分布式mimo雷达检测的虚假目标消除方法
CN110058233B (zh) 一种多基地合成孔径雷达系统的抗欺骗性干扰方法
CN113253251B (zh) 目标速度未知时的fda-mimo雷达检测方法与系统
CN105891817A (zh) 一种无直达波条件下分布式无源雷达目标检测的方法
CN111896928B (zh) 基于有源欺骗式干扰消除的多站雷达目标检测方法
CN108614245A (zh) 一种基于射频隐身的边跟踪边干扰方法
CN108572353A (zh) 一种低截获雷达的脉冲时间序列规划方法
Yu et al. Polarimetric multiple-radar architectures with distributed antennas for discriminating between radar targets and deception jamming
CN112834999B (zh) 一种干扰方位已知时雷达目标恒虚警检测方法与系统
CN115754970B (zh) 一种分布式无人机载雷达空时自适应目标检测方法与系统
CN111796266B (zh) 一种匀加速运动目标rd平面检测前跟踪方法
CN115575921B (zh) 一种基于俯仰向多通道多干扰基压制干扰抑制方法
CN113267759B (zh) 一种fda-mimo雷达运动目标检测方法与系统
CN115902881B (zh) 一种分布式无人机载雷达扩展目标检测方法与系统
CN115575905A (zh) 噪声背景下抑制多秩干扰的智能融合检测方法
CN106019250A (zh) 基于角闪烁转发式假目标鉴别方法
CN115508791A (zh) 未知干噪环境下目标智能融合检测方法
CN115902810B (zh) 非均匀环境中分布式无人机载雷达扩展目标检测器与系统
CN113030928B (zh) 非均匀环境中极化雷达扩展目标自适应检测方法与系统
CN115754970A (zh) 一种分布式无人机载雷达空时自适应目标检测方法与系统
Tan et al. Airborne target detection using dual matched filter discriminator with matched waveform illumination for coherent jammer suppression
CN108983227B (zh) 一种基于白化滤波的极化mimo雷达检测方法

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Liu Weijian

Inventor after: Li Hao

Inventor after: Sun Hemin

Inventor after: Li Binbin

Inventor before: Liu Weijian

Inventor before: Li Hao

Inventor before: Sun Hemin

Inventor before: Li Binbin

GR01 Patent grant