CN115692506A - A gate-all-round transistor and its manufacturing method - Google Patents
A gate-all-round transistor and its manufacturing method Download PDFInfo
- Publication number
- CN115692506A CN115692506A CN202211477340.4A CN202211477340A CN115692506A CN 115692506 A CN115692506 A CN 115692506A CN 202211477340 A CN202211477340 A CN 202211477340A CN 115692506 A CN115692506 A CN 115692506A
- Authority
- CN
- China
- Prior art keywords
- gate
- work function
- region
- stack structure
- gate stack
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 31
- 239000000463 material Substances 0.000 claims abstract description 70
- 239000004065 semiconductor Substances 0.000 claims abstract description 39
- 239000000758 substrate Substances 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims description 33
- 230000000694 effects Effects 0.000 claims description 19
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 239000010410 layer Substances 0.000 description 235
- 230000005684 electric field Effects 0.000 description 24
- 239000002070 nanowire Substances 0.000 description 20
- 230000008569 process Effects 0.000 description 20
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- 230000000875 corresponding effect Effects 0.000 description 13
- 230000004888 barrier function Effects 0.000 description 10
- 239000003989 dielectric material Substances 0.000 description 9
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 238000002955 isolation Methods 0.000 description 7
- 125000006850 spacer group Chemical group 0.000 description 7
- 230000009286 beneficial effect Effects 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 238000000231 atomic layer deposition Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 3
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229910008482 TiSiN Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体技术领域,尤其涉及一种环栅晶体管及其制造方法。The invention relates to the technical field of semiconductors, in particular to a gate-around transistor and a manufacturing method thereof.
背景技术Background technique
环栅晶体管相对于平面晶体管和鳍式场效应晶体管具有较高的栅控能力等优势,可以提高包括该环栅晶体管的半导体器件的工作性能。Compared with planar transistors and fin field effect transistors, gate-all-around transistors have advantages such as higher gate control capability, and can improve the working performance of semiconductor devices including the gate-all-around transistors.
但是,在实际的应用过程中,环栅晶体管的工作性能提升情况并不理想。However, in an actual application process, the performance improvement of the gate-all-around transistor is not ideal.
发明内容Contents of the invention
本发明的目的在于提供一种环栅晶体管及其制造方法,用于提升环栅晶体管的工作性能。The object of the present invention is to provide a gate-all-around transistor and a manufacturing method thereof, which are used to improve the working performance of the gate-all-round transistor.
为了实现上述目的,本发明提供了一种环栅晶体管,该环栅晶体管包括:半导体基底、有源结构、第一栅堆叠结构和第二栅堆叠结构。In order to achieve the above object, the present invention provides a gate-all-around transistor, which includes: a semiconductor substrate, an active structure, a first gate stack structure and a second gate stack structure.
上述有源结构形成在半导体基底上。有源结构包括源区、漏区、以及位于源区和漏区之间的沟道区。沿源区至漏区的方向,第一栅堆叠结构和第二栅堆叠结构依次环绕在沟道区外周。第一栅堆叠结构包括的第一功函数层和第二栅堆叠结构包括的第二功函数层的材料完全不同,第一功函数层和第二功函数层均为非夹断层。The above active structure is formed on the semiconductor substrate. The active structure includes a source region, a drain region, and a channel region between the source region and the drain region. Along the direction from the source region to the drain region, the first gate stack structure and the second gate stack structure surround the periphery of the channel region in turn. The materials of the first work function layer included in the first gate stack structure and the second work function layer included in the second gate stack structure are completely different, and both the first work function layer and the second work function layer are non-pinching layers.
与现有技术相比,本发明提供的环栅晶体管中,沿源区至漏区的方向,第一栅堆叠结构和第二栅堆叠结构依次环绕在沟道区的外周。并且,第一栅堆叠结构包括的第一功函数层和第二栅堆叠结构包括的第二功函数层的材料完全不同。基于此,因不同材料的功函数层的功函数值不同,并且功函数值较小的一者对电子的束缚能力较低、且功函数值较大的一者对电子的束缚能力较高,故在环栅晶体管处于导通状态下,第一功函数层和第二功函数层之间可以形成内建电场。在此情况下,在实际的应用过程中,可以对第一功函数层和第二功函数层的功函数值进行调整,以通过该内建电场增强源端的电场,改善漏致势垒降低效应,提升环栅晶体管的工作性能。或者,也可以对第一功函数层和第二功函数层的功函数值进行调整,以通过该内建电场降低漏端的电场,改善热载流子注入效应,提高环栅晶体管的工作性能。Compared with the prior art, in the gate-around transistor provided by the present invention, along the direction from the source region to the drain region, the first gate stack structure and the second gate stack structure surround the periphery of the channel region in sequence. Moreover, the materials of the first work function layer included in the first gate stack structure and the second work function layer included in the second gate stack structure are completely different. Based on this, because the work function values of the work function layers of different materials are different, and the one with the smaller work function value has a lower ability to bind electrons, and the one with a larger work function value has a higher ability to bind electrons, Therefore, a built-in electric field can be formed between the first work function layer and the second work function layer when the gate-all-around transistor is in the on state. In this case, in the actual application process, the work function values of the first work function layer and the second work function layer can be adjusted to enhance the electric field at the source through the built-in electric field and improve the drain-induced barrier lowering effect , to improve the working performance of the gate-around transistor. Alternatively, the work function values of the first work function layer and the second work function layer can also be adjusted to reduce the electric field at the drain through the built-in electric field, improve the hot carrier injection effect, and improve the working performance of the gate-all-around transistor.
本发明还提供了一种环栅晶体管的制造方法,该环栅晶体管的制造方法包括:The present invention also provides a method for manufacturing a gate-all-round transistor, which includes:
提供一半导体基底。A semiconductor substrate is provided.
在半导体基底上形成有源结构。有源结构包括源区、漏区、以及位于源区和漏区之间的沟道区。Active structures are formed on the semiconductor substrate. The active structure includes a source region, a drain region, and a channel region between the source region and the drain region.
沿源区至漏区的方向,形成依次环绕在沟道区外周的第一栅堆叠结构和第二栅堆叠结构。第一栅堆叠结构包括的第一功函数层和第二栅堆叠结构包括的第二功函数层的材料完全不同,第一功函数层和第二功函数层均为非夹断层。Along the direction from the source region to the drain region, a first gate stack structure and a second gate stack structure surrounding the periphery of the channel region are sequentially formed. The materials of the first work function layer included in the first gate stack structure and the second work function layer included in the second gate stack structure are completely different, and both the first work function layer and the second work function layer are non-pinching layers.
与现有技术相比,本发明提供的环栅晶体管的制造方法具有的有益效果,可以参考前文所述的环栅晶体管的有益效果分析,此处不再赘述。Compared with the prior art, for the beneficial effects of the manufacturing method of the gate-all-around transistor provided by the present invention, reference may be made to the analysis of the beneficial effect of the gate-all-around transistor described above, and details are not repeated here.
附图说明Description of drawings
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The accompanying drawings described here are used to provide a further understanding of the present invention, and constitute a part of the present invention. The schematic embodiments of the present invention and their descriptions are used to explain the present invention, and do not constitute improper limitations to the present invention. In the attached picture:
图1为本发明实施例中形成鳍状结构后的结构示意图;Fig. 1 is a structural schematic diagram after forming a fin structure in an embodiment of the present invention;
图2为本发明实施例中形成牺牲栅和栅极侧墙后的结构示意图;FIG. 2 is a schematic structural diagram after forming a sacrificial gate and gate sidewalls in an embodiment of the present invention;
图3为本发明实施例中形成源区和漏区后的结构纵向断面示意图;3 is a schematic longitudinal cross-sectional view of a structure after forming a source region and a drain region in an embodiment of the present invention;
图4为本发明实施例中形成介电层后的结构纵向断面示意图;4 is a schematic longitudinal cross-sectional view of a structure after forming a dielectric layer in an embodiment of the present invention;
图5为本发明实施例中形成沟道区后的结构纵向断面示意图;5 is a schematic longitudinal cross-sectional view of the structure after forming the channel region in the embodiment of the present invention;
图6为本发明实施例中形成第一栅堆叠材料后的结构纵向断面示意图;6 is a schematic longitudinal cross-sectional view of the structure after forming the first gate stack material in an embodiment of the present invention;
图7为本发明实施例中形成第一栅堆叠结构后的结构纵向断面示意图;7 is a schematic longitudinal cross-sectional view of the structure after the first gate stack structure is formed in an embodiment of the present invention;
图8为本发明实施例中去除掩膜层后的结构纵向断面示意图;8 is a schematic longitudinal cross-sectional view of the structure after removing the mask layer in the embodiment of the present invention;
图9为本发明实施例中形成第二栅堆叠结构后的第一种结构纵向断面示意图;9 is a schematic longitudinal cross-sectional view of the first structure after forming the second gate stack structure in an embodiment of the present invention;
图10为本发明实施例中形成第一栅介质层和第二栅介质层后的结构纵向断面示意图;10 is a schematic longitudinal cross-sectional view of the structure after forming the first gate dielectric layer and the second gate dielectric layer in the embodiment of the present invention;
图11为本发明实施例中形成第一功函数层和第二功函数层后的结构纵向断面示意图;11 is a schematic longitudinal cross-sectional view of the structure after forming the first work function layer and the second work function layer in the embodiment of the present invention;
图12为本发明实施例中形成第一栅堆叠结构和第二栅堆叠结构后的结构纵向断面示意图;12 is a schematic longitudinal cross-sectional view of the structure after forming the first gate stack structure and the second gate stack structure in the embodiment of the present invention;
图13为本发明实施例提供的环栅晶体管的制造方法流程图。FIG. 13 is a flowchart of a method for manufacturing a gate-all-around transistor provided by an embodiment of the present invention.
附图标记:11为半导体基底,12为浅槽隔离结构,13为鳍状结构,131为叠层,1311为牺牲层,1312为沟道层,14为源形成区,15为漏形成区,16为过渡区,17为牺牲栅,18为栅极侧墙,19为源区,20为漏区,21为介电层,22为沟道区,221为纳米线/片,23为第一栅堆叠材料,24为掩膜层,25为第一栅堆叠结构,251为第一栅介质层,252为第一功函数层,253为第一栅金属层,26为第二栅堆叠结构,261为第二栅介质层,262为第二功函数层,263为第二栅金属层。Reference numerals: 11 is a semiconductor substrate, 12 is a shallow trench isolation structure, 13 is a fin structure, 131 is a stacked layer, 1311 is a sacrificial layer, 1312 is a channel layer, 14 is a source formation region, 15 is a drain formation region, 16 is a transition region, 17 is a sacrificial gate, 18 is a gate spacer, 19 is a source region, 20 is a drain region, 21 is a dielectric layer, 22 is a channel region, 221 is a nanowire/sheet, and 23 is the first Gate stack material, 24 is a mask layer, 25 is a first gate stack structure, 251 is a first gate dielectric layer, 252 is a first work function layer, 253 is a first gate metal layer, 26 is a second gate stack structure, 261 is a second gate dielectric layer, 262 is a second work function layer, and 263 is a second gate metal layer.
具体实施方式Detailed ways
以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. It should be understood, however, that these descriptions are exemplary only, and are not intended to limit the scope of the present disclosure. Also, in the following description, descriptions of well-known structures and techniques are omitted to avoid unnecessarily obscuring the concept of the present disclosure.
在附图中示出了根据本公开实施例的各种结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状以及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。Various structural schematic diagrams according to embodiments of the present disclosure are shown in the accompanying drawings. The figures are not drawn to scale, with certain details exaggerated and possibly omitted for clarity of presentation. The shapes of the various regions and layers shown in the figure, as well as their relative sizes and positional relationships are only exemplary, and may deviate due to manufacturing tolerances or technical limitations in practice, and those skilled in the art will Regions/layers with different shapes, sizes, and relative positions can be additionally designed as needed.
在本公开的上下文中,当将一层/元件称作位于另一层/元件“上”时,该层/元件可以直接位于该另一层/元件上,或者它们之间可以存在居中层/元件。另外,如果在一种朝向中一层/元件位于另一层/元件“上”,那么当调转朝向时,该层/元件可以位于该另一层/元件“下”。为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In the context of the present disclosure, when a layer/element is referred to as being "on" another layer/element, the layer/element may be directly on the other layer/element, or there may be intervening layers/elements in between. element. Additionally, if a layer/element is "on" another layer/element in one orientation, the layer/element can be located "below" the other layer/element when the orientation is reversed. In order to make the technical problems, technical solutions and beneficial effects to be solved by the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。“若干”的含义是一个或一个以上,除非另有明确具体的限定。In addition, the terms "first" and "second" are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as "first" and "second" may explicitly or implicitly include one or more of these features. In the description of the present invention, "plurality" means two or more, unless otherwise specifically defined. "Several" means one or more than one, unless otherwise clearly and specifically defined.
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the description of the present invention, it should be noted that unless otherwise specified and limited, the terms "installation", "connection" and "connection" should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connection, or integral connection; it may be mechanical connection or electrical connection; it may be direct connection or indirect connection through an intermediary, and it may be the internal communication of two elements or the interaction relationship between two elements. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention according to specific situations.
环栅晶体管包括的沟道区具有至少一层纳米线/片。每层纳米线/片均与半导体基底之间具有空隙。并且,当沟道区包括至少两层纳米线/片时,相邻纳米线/片之间也具有空隙。基于此,环栅晶体管包括的栅堆叠结构可以通过上述空隙环绕在每一层纳米线/片的外周。换句话说,环栅晶体管包括的栅堆叠结构不仅可以形成在每层纳米线/片的顶部、以及沿宽度方向的侧壁上,还可以形成在每层纳米线/片的底部,因此环栅晶体管相对于平面晶体管和鳍式场效应晶体管具有较高的栅控能力等优势,可以提高包括该环栅晶体管的半导体器件的工作性能。The gate-all-around transistor includes a channel region having at least one layer of nanowires/sheets. Each layer of nanowires/sheets has a gap with the semiconductor substrate. Moreover, when the channel region includes at least two layers of nanowires/sheets, there are gaps between adjacent nanowires/sheets. Based on this, the gate stack structure included in the gate-all-around transistor can surround the outer periphery of each layer of nanowires/sheets through the aforementioned gap. In other words, the gate stack structure included in the gate-all-around transistor can not only be formed on the top of each layer of nanowires/sheets and the sidewalls along the width direction, but also can be formed on the bottom of each layer of nanowires/sheets, so the gate-around Compared with planar transistors and fin field effect transistors, transistors have advantages such as higher gate control capability, and can improve the working performance of semiconductor devices including the gate-around transistors.
但是,在实际的应用过程中,环栅晶体管的工作性能的提升情况并不理想。例如:以环栅晶体管为输入输出晶体管为例进行说明:当环栅晶体管的栅极长度进一步减小的情况下,输入输出晶体管中的源区和漏区之间的电场强度较大,使得载流子从电场中获得较多能量,导致载流子的能量不再保持热平衡状态。并且,当载流子的能量超过半导体基底与栅介质层之间的界面势垒时便会注入至栅介质层内,从而产生界面态、栅介质层缺陷或被缺陷所俘获,使栅介质层电荷增加或波动不稳定,进而导致栅极漏电,致使环栅晶体管的工作性能提升困难。又例如:以环栅晶体管为核心晶体管为例进行说明:当环栅晶体管的栅极长度进一步减小的情况下,沟道区长度减小、电压Vds增加,使得漏结与源结的耗尽层靠近时,沟道中的电力线可以从漏区穿越到源区,并导致源极端势垒高度降低,从而使得源区注入到沟道的载流子数量增加,导致漏端电流增加,最终使得环栅晶体管不能关断。However, in the actual application process, the improvement of the working performance of the gate-all-around transistor is not ideal. For example, take the gate-around transistor as an example of an input-output transistor for illustration: when the gate length of the gate-around transistor is further reduced, the electric field strength between the source region and the drain region of the input-output transistor is relatively large, making the load The carriers gain more energy from the electric field, causing the energy of the carriers to no longer maintain a state of thermal equilibrium. Moreover, when the energy of the carrier exceeds the interface barrier between the semiconductor substrate and the gate dielectric layer, it will be injected into the gate dielectric layer, thereby generating interface states, gate dielectric layer defects or being trapped by defects, making the gate dielectric layer The charge increases or fluctuates unstable, which in turn leads to gate leakage, making it difficult to improve the working performance of the gate-all-around transistor. Another example: take the gate-all-round transistor as the core transistor for example: when the gate length of the gate-all-around transistor is further reduced, the length of the channel region decreases and the voltage V ds increases, so that the power consumption of the drain junction and the source junction When the best layer is close, the electric force line in the channel can cross from the drain region to the source region, and cause the source barrier height to decrease, thereby increasing the number of carriers injected into the channel from the source region, resulting in an increase in the drain current, and finally making The gate-around transistor cannot be turned off.
为了解决上述技术问题,本发明实施例提供了一种环栅晶体管及其制造方法。其中,在本发明实施例提供的环栅晶体管中,第一栅堆叠结构包括的第一功函数层和第二栅堆叠结构包括的第二功函数层的材料完全不同,以提升环栅晶体管的工作性能。In order to solve the above technical problems, an embodiment of the present invention provides a gate-all-around transistor and a manufacturing method thereof. Wherein, in the gate-all-around transistor provided by the embodiment of the present invention, the materials of the first work function layer included in the first gate stack structure and the second work function layer included in the second gate stack structure are completely different, so as to improve the gate-all-around transistor. work performance.
如图9和图12所示,本发明实施例提供的环栅晶体管包括:半导体基底11、有源结构、第一栅堆叠结构25和第二栅堆叠结构26。上述有源结构形成在半导体基底11上。有源结构包括源区19、漏区20、以及位于源区19和漏区20之间的沟道区22。沿源区19至漏区20的方向,第一栅堆叠结构25和第二栅堆叠结构26依次环绕在沟道区22外周。第一栅堆叠结构25包括的第一功函数层252和第二栅堆叠结构26包括的第二功函数层262的材料完全不同,第一功函数层252和第二功函数层262均为非夹断层。As shown in FIG. 9 and FIG. 12 , the gate-all-around transistor provided by the embodiment of the present invention includes: a
具体来说,上述半导体基底的具体结构可以根据实际应用场景设置。例如:该半导体基底可以为硅衬底、锗硅衬底、锗衬底、绝缘体上硅衬底等其上未形成有其它结构的半导体衬底。又例如:若本发明实施例提供的环栅晶体管应用至集成电路包括的第二层或更高层的环栅晶体管,则半导体基底可以至少包括半导体衬底、形成在半导体衬底上的第一层器件结构、以及覆盖在第一层器件结构上的介电层。在此情况下,半导体基底所包括的各部分的材料可以根据实际需求设置,只要能够应用至本发明实施例提供的环栅晶体管中均可。Specifically, the specific structure of the above-mentioned semiconductor substrate can be set according to actual application scenarios. For example, the semiconductor substrate may be a silicon substrate, a silicon germanium substrate, a germanium substrate, a silicon-on-insulator substrate, and the like without other structures formed thereon. Another example: if the gate-all-around transistor provided by the embodiment of the present invention is applied to a second-layer or higher-layer gate-all-around transistor included in an integrated circuit, the semiconductor substrate may at least include a semiconductor substrate, a first layer formed on the semiconductor substrate A device structure, and a dielectric layer covering the first layer of the device structure. In this case, the materials of each part included in the semiconductor substrate can be set according to actual needs, as long as they can be applied to the gate-all-around transistor provided by the embodiment of the present invention.
对于上述有源结构来说,从材料方面来讲,有源结构包括的源区、漏区和沟道区的材料可以为硅、锗硅、锗或三五族化合物等半导体材料。具体的,源区和漏区的材料可以相同,也可以不同。其中,当源区和漏区的材料相同时,可以在统一操作步骤中同时形成源区和漏区,简化环栅晶体管的制造过程。For the above active structure, in terms of materials, the material of the source region, drain region and channel region included in the active structure may be semiconductor materials such as silicon, silicon germanium, germanium or III-V compounds. Specifically, the materials of the source region and the drain region may be the same or different. Wherein, when the materials of the source region and the drain region are the same, the source region and the drain region can be formed simultaneously in a unified operation step, which simplifies the manufacturing process of the gate-around transistor.
从结构方面来讲,沟道区包括至少一层纳米线/片。其中,沟道区包括的纳米线/片的层数可以根据实际应用场景设置,此处不做具体限定。另外,每层纳米线/片均与半导体基底之间具有空隙。并且,在沟道区包括至少两层纳米线/片的情况下,相邻两层纳米线/片之间也具有空隙。环栅晶体管包括的第一栅堆叠结构和第二栅堆叠结构通过上述空隙环绕在每层纳米线/片的外周,因此可以根据第一栅堆叠结构和第二栅堆叠结构的尺寸确定上述空隙的规格。Structurally, the channel region includes at least one layer of nanowires/sheets. Wherein, the number of layers of nanowires/sheets included in the channel region can be set according to actual application scenarios, and is not specifically limited here. In addition, each layer of nanowires/sheets has a gap with the semiconductor substrate. Moreover, in the case that the channel region includes at least two layers of nanowires/sheets, there are gaps between adjacent two layers of nanowires/sheets. The first gate stack structure and the second gate stack structure included in the gate-all-around transistor surround the periphery of each nanowire/sheet through the above-mentioned gap, so the size of the above-mentioned gap can be determined according to the size of the first gate stack structure and the second gate stack structure. Specification.
对于上述第一栅堆叠结构和第二栅堆叠结构来说,第一栅堆叠结构可以仅包括第一栅介质层和第一功函数层。其中,第一栅介质层形成在每层纳米线/片靠近源区的外周。该第一栅介质层的材料可以为HfO2、ZrO2、TiO2或Al2O3等绝缘材料。上述第一功函数层形成在第一栅介质层上。该第一功函数层的材料可以为TiN、TaN或TiSiN等导电材料。其中,如图9和图10所示,第一功函数层252为非夹断层是指:在实际的应用过程中,第一功函数层252形成在第一栅介质层251上的实际厚度等于第一功函数层252的初始设计厚度。换句话说,在实际的制造过程中,在第一栅介质层251上形成第一功函数层252后上述空隙恰好被填充满,或者并未被填充满。另外,如图9和图10所示,第一栅堆叠结构25还可以包括第一栅金属层253。此时,第一栅堆叠结构25包括的第一栅介质层251、第一功函数层252和第一栅金属层253共同将上述空隙靠近源区19的部分填充满。其中,上述第一栅金属层253的材料可以为钨、银、金或铂等导电材料。For the above first gate stack structure and the second gate stack structure, the first gate stack structure may only include the first gate dielectric layer and the first work function layer. Wherein, the first gate dielectric layer is formed on the outer periphery of each nanowire/sheet close to the source region. The material of the first gate dielectric layer may be insulating materials such as HfO 2 , ZrO 2 , TiO 2 or Al 2 O 3 . The above-mentioned first work function layer is formed on the first gate dielectric layer. The material of the first work function layer may be a conductive material such as TiN, TaN or TiSiN. Wherein, as shown in FIG. 9 and FIG. 10 , the fact that the first
至于第二栅堆叠结构,第二栅堆叠结构可以仅包括第二栅介质层和第二功函数层。其中,第二栅介质层形成在每层纳米线/片靠近漏区的外周。第二功函数层形成在第二栅介质层上。另外,如图9和图10所示,第二栅堆叠结构26还可以包括第二栅金属层263。其中,第二功函数层262为非夹断层的含义可以参考前文,此处不再赘述。并且,上述第二栅介质层261和第二栅金属层263的材料可以分别参考前文所述的第一栅介质层251和第一栅金属层253的材料进行确定,此处不做具体限定。具体的,第一栅介质层251的材料可以与第二栅介质层261的材料相同,也可以不同。第一栅介质金属层的材料可以与第二栅金属层263的材料相同,也可以不同。As for the second gate stack structure, the second gate stack structure may only include the second gate dielectric layer and the second work function layer. Wherein, the second gate dielectric layer is formed on the periphery of each layer of nanowires/sheets close to the drain region. The second work function layer is formed on the second gate dielectric layer. In addition, as shown in FIGS. 9 and 10 , the second
至于第二功函数层的材料的种类可以根据第一功函数层的材料,以及实际需求进行设置。基于此,因不同材料的功函数层的功函数值不同,并且功函数值较小的一者对电子的束缚能力较低、且功函数值较大的一者对电子的束缚能力较高,故在环栅晶体管处于导通状态、且第一功函数层和第二功函数层的材料完全不同的情况下,不同材料的第一功函数层和第二功函数层之间形成内建电场。在此情况下,在实际的应用过程中,可以对第一功函数层和第二功函数层的功函数值进行调整,以通过上述内建电场增强源端的电场,改善漏致势垒降低效应,提升环栅晶体管的工作性能。或者,也可以对第一功函数层和第二功函数层的功函数值进行调整,以通过该内建电场降低漏端的电场,改善热载流子注入效应,提高环栅晶体管的工作性能。The type of material of the second work function layer can be set according to the material of the first work function layer and actual requirements. Based on this, because the work function values of the work function layers of different materials are different, and the one with the smaller work function value has a lower ability to bind electrons, and the one with a larger work function value has a higher ability to bind electrons, Therefore, when the gate-all-around transistor is on and the materials of the first work function layer and the second work function layer are completely different, a built-in electric field is formed between the first work function layer and the second work function layer of different materials. . In this case, in the actual application process, the work function values of the first work function layer and the second work function layer can be adjusted to enhance the electric field at the source through the above-mentioned built-in electric field and improve the drain-induced barrier lowering effect , to improve the working performance of the gate-around transistor. Alternatively, the work function values of the first work function layer and the second work function layer can also be adjusted to reduce the electric field at the drain through the built-in electric field, improve the hot carrier injection effect, and improve the working performance of the gate-all-around transistor.
由此可见,第一功函数层和第二功函数层的具体材料可以根据实际应用场景中所要改善的环栅晶体管中相应效应的具体类型、以及环栅晶体管的导电类型和每种功函数材料的功函数值进行确定。It can be seen that the specific materials of the first work function layer and the second work function layer can be based on the specific type of the corresponding effect in the gate-around transistor to be improved in the actual application scene, as well as the conductivity type of the gate-around transistor and each work function material The work function value is determined.
在一种示例中,在上述环栅晶体管为核心晶体管的情况下,因核心环栅晶体管包括的栅介质层的厚度相对较小,故随着核心晶体管的进一步微缩,核心晶体管内的漏致感应势垒降低效应更为明显。基于此,在该情况下,当环栅晶体管为N型环栅晶体管时,第一功函数层的功函数值大于第二功函数层的功函数值。此时,在环栅晶体管处于导通状态时,漏区电位高于源区。而第一功函数层的功函数值大于第二功函数层的功函数值。基于此,第一功函数层和第二功函数层之间产生的内建电场方向包括由漏区指向源区的方向,从而可以通过该内建电场增强源端的电场,改善环栅晶体管的漏致感应势垒降低效应。In one example, when the above-mentioned gate-around transistor is a core transistor, since the thickness of the gate dielectric layer included in the core gate-around transistor is relatively small, as the core transistor is further scaled down, the leakage induced in the core transistor The barrier lowering effect is more pronounced. Based on this, in this case, when the gate-around transistor is an N-type gate-around transistor, the work function value of the first work function layer is greater than the work function value of the second work function layer. At this time, when the gate-around transistor is in an on state, the potential of the drain region is higher than that of the source region. And the work function value of the first work function layer is greater than the work function value of the second work function layer. Based on this, the direction of the built-in electric field generated between the first work function layer and the second work function layer includes the direction from the drain region to the source region, so that the electric field at the source terminal can be enhanced through the built-in electric field, and the drain of the gate-around transistor can be improved. induced barrier-lowering effect.
在该情况下,当环栅晶体管为P型晶体管时,第一功函数层的功函数值小于第二功函数层的功函数值。该情况下的工作原理分析可以参考前文对该情况下的N型环栅晶体管的原理分析,此处不再赘述。In this case, when the gate-around transistor is a P-type transistor, the work function value of the first work function layer is smaller than the work function value of the second work function layer. For the analysis of the working principle in this case, reference may be made to the previous analysis of the principle of the N-type gate-all-round transistor in this case, and details will not be repeated here.
当然,除了核心晶体管之外,只要环栅晶体管内存在漏致感应势垒降低效应均可以采用上述方式进行调整。Of course, in addition to the core transistor, as long as there is a drain-induced barrier lowering effect in the gate-around transistor, the above-mentioned method can be used for adjustment.
在另一种示例中,在上述环栅晶体管为输入输出晶体管的情况下,因输入输出晶体管包括的栅介质层的厚度相对较大,故随着输入输出晶体管的进一步微缩,输入输出晶体管内的热载流子注入效应更为明显。基于此,当环栅晶体管为N型环栅晶体管时,第一功函数层的功函数值小于第二功函数层的功函数值。此时,在环栅晶体管处于导通状态时,漏区电位高于源区。而第一功函数层的功函数值小于第二功函数层的功函数值。基于此,第一功函数层和第二功函数层之间产生的内建电场方向包括由源区指向漏区的方向,从而可以通过该内建电场降低漏端的电场,改善环栅晶体管的热载流子注入效应。In another example, when the above-mentioned gate-around transistor is an input-output transistor, since the thickness of the gate dielectric layer included in the input-output transistor is relatively large, with the further scaling of the input-output transistor, the The hot carrier injection effect is more obvious. Based on this, when the gate-around transistor is an N-type gate-around transistor, the work function value of the first work function layer is smaller than the work function value of the second work function layer. At this time, when the gate-around transistor is in an on state, the potential of the drain region is higher than that of the source region. And the work function value of the first work function layer is smaller than the work function value of the second work function layer. Based on this, the direction of the built-in electric field generated between the first work function layer and the second work function layer includes the direction from the source region to the drain region, so that the electric field at the drain terminal can be reduced by the built-in electric field, and the thermal stability of the gate-around transistor can be improved. Carrier injection effect.
在该情况下,当环栅晶体管为P型环栅晶体管时,第一功函数层的功函数值大于第二功函数层的功函数值。该情况下的工作原理分析可以参考前文对该情况下的N型环栅晶体管的原理分析,此处不再赘述。In this case, when the gate-around transistor is a P-type gate-around transistor, the work function value of the first work function layer is greater than the work function value of the second work function layer. For the analysis of the working principle in this case, reference may be made to the previous analysis of the principle of the N-type gate-all-round transistor in this case, and details will not be repeated here.
当然,除了输入输出晶体管之外,只要环栅晶体管内存在漏致感应势垒降低效应均可以采用上述方式进行调整。Of course, in addition to the input and output transistors, as long as there is a drain-induced barrier lowering effect in the gate-around transistor, the above-mentioned method can be used for adjustment.
其中,上述第一功函数层和第二功函数层对应的功函数值,以及二者之间的功函数差值可以根据实际应用场景设置,此处不做具体限定。Wherein, the work function values corresponding to the above-mentioned first work function layer and the second work function layer, and the work function difference between them can be set according to actual application scenarios, and are not specifically limited here.
示例性的,上述第一功函数层的功函数值和/或第二功函数层的功函数值大于3.9eV、且小于5.2eV。在此情况下,因制造环栅晶体管的功函数层的材料对应的功函数值大多在3.9eV至5.2eV,因此在第一功函数层的功函数值和/或第二功函数层的功函数值大于3.9eV、且小于5.2eV的情况下,便于通过已知材料制造第一功函数层和第二功函数层,降低环栅晶体管的制造难度。Exemplarily, the work function value of the first work function layer and/or the work function value of the second work function layer are greater than 3.9 eV and less than 5.2 eV. In this case, because the work function value corresponding to the material of the work function layer of the gate-all-around transistor is mostly in the range of 3.9eV to 5.2eV, the work function value of the first work function layer and/or the work function value of the second work function layer When the function value is greater than 3.9eV and less than 5.2eV, it is convenient to manufacture the first work function layer and the second work function layer by using known materials, reducing the manufacturing difficulty of the gate-all-around transistor.
示例性的,上述第一功函数层和第二功函数层之间的功函数差值的绝对值大于等于0.3eV、且小于等于0.9eV。在实际的应用过程中,在一定的范围内,第一功函数层和第二功函数层的功函数差值的绝对值越大,二者之间形成的内建电场的场强越大,相应的能够改善漏致感应势垒降低效应或改善热载流子注入效应的程度越大。但是,当二者之间形成的内建电场的场强越大时,也会增大对环栅晶体管的阈值电压的影响程度。基于此,在第一功函数层和第二功函数层之间的功函数差值的绝对值大于等于0.3eV、且小于等于0.9eV的情况下,二者之间的功函数差值的绝对值大小适中,可以防止因该绝对值较小而难以抑制热载流子注入效应或漏致感应势垒降低效应的发生。同时,还可以防止因该绝对值较大而导致环栅晶体管的阈值电压无法达到工作要求。Exemplarily, the absolute value of the work function difference between the first work function layer and the second work function layer is greater than or equal to 0.3 eV and less than or equal to 0.9 eV. In the actual application process, within a certain range, the greater the absolute value of the work function difference between the first work function layer and the second work function layer, the greater the field strength of the built-in electric field formed between the two. Correspondingly, the degree to which the leakage-induced barrier lowering effect can be improved or the hot carrier injection effect can be improved is greater. However, when the field strength of the built-in electric field formed between the two is greater, the degree of influence on the threshold voltage of the gate-around transistor will also increase. Based on this, when the absolute value of the work function difference between the first work function layer and the second work function layer is greater than or equal to 0.3eV and less than or equal to 0.9eV, the absolute value of the work function difference between the two The value is moderate, which can prevent the hot carrier injection effect or leakage-induced barrier lowering effect from being difficult to suppress due to the small absolute value. At the same time, it can also prevent the threshold voltage of the gate-around transistor from failing to meet the working requirement due to the large absolute value.
在实际的应用过程中,沿沟道区的长度方向,第一栅堆叠结构和第二栅堆叠结构的具体长度、以及二者长度之间的比例关系可以根据实际需求进行设置,此处不做具体限定。示例性的,第一栅堆叠结构的长度和第二栅堆叠结构的长度的比值范围可以为1:2至4:1。此时,第一栅堆叠结构的长度和第二栅堆叠结构的长度之间的比值具有一定的可选范围,便于根据不同的实际应用场景要求将第一栅堆叠结构的长度和第二栅堆叠结构的长度设置为相应范围,提高本发明实施例提供的环栅晶体管在不同应用场景下的适用性。In the actual application process, along the length direction of the channel region, the specific lengths of the first gate stack structure and the second gate stack structure, and the proportional relationship between the lengths of the two can be set according to actual needs, which will not be discussed here. Specific limits. Exemplarily, the ratio of the length of the first gate stack structure to the length of the second gate stack structure may range from 1:2 to 4:1. At this time, the ratio between the length of the first gate stack structure and the length of the second gate stack structure has a certain optional range, so that the length of the first gate stack structure and the length of the second gate stack structure can be adjusted according to different actual application scenarios. The length of the structure is set to a corresponding range, which improves the applicability of the gate-all-around transistor provided by the embodiment of the present invention in different application scenarios.
其中,优选的,第一栅堆叠结构的长度和第二栅堆叠结构的长度之间的比值为1:1。此时,第一栅堆叠结构的长度等于第二栅堆叠结构的长度。相应的,第一栅堆叠结构的形成空间与第二栅堆叠结构的形成空间的大小相等,以防止因第一栅堆叠结构和第二栅堆叠结构的长度不同而导致难以根据所要降低的漏端电场的程度或所要增强的源端电场的程度,来确定第一功函数层和第二功函数层的功函数值、以及对应的材料。Wherein, preferably, the ratio between the length of the first gate stack structure and the length of the second gate stack structure is 1:1. At this time, the length of the first gate stack structure is equal to the length of the second gate stack structure. Correspondingly, the formation space of the first gate stack structure is equal to the size of the formation space of the second gate stack structure, so as to prevent the difficulty of lowering the drain terminal due to the different lengths of the first gate stack structure and the second gate stack structure. The degree of the electric field or the degree of the source electric field to be enhanced determines the work function values of the first work function layer and the second work function layer, and the corresponding materials.
另外,上述第一栅堆叠结构包括的第一栅介质层和第二栅堆叠结构包括的第二栅介质层的厚度可以相同,也可以不同。基于此,沿沟道区的长度方向,第一栅介质层更靠近源区,而第二栅介质层更靠近漏区。并且,因场强与栅介质层的厚度成反比,故在第一栅介质层和第二栅介质层的厚度不同时,可以将第一栅介质层的厚度设置为小于第二栅介质层的厚度,从而可以通过减小第一栅介质层的厚度的方式,进一步增强源端电场,改善环栅晶体管的漏致感应势垒降低效应;并可以通过增大第二栅介质层的厚度的方式,进一步降低漏端电场,改善环栅晶体管的热载流子注入效应。In addition, the thicknesses of the first gate dielectric layer included in the first gate stack structure and the second gate dielectric layer included in the second gate stack structure may be the same or different. Based on this, along the length direction of the channel region, the first gate dielectric layer is closer to the source region, and the second gate dielectric layer is closer to the drain region. Moreover, since the field strength is inversely proportional to the thickness of the gate dielectric layer, when the thicknesses of the first gate dielectric layer and the second gate dielectric layer are different, the thickness of the first gate dielectric layer can be set to be smaller than that of the second gate dielectric layer. Thickness, so that by reducing the thickness of the first gate dielectric layer, the electric field at the source terminal can be further enhanced, and the drain-induced barrier reduction effect of the gate-around transistor can be improved; and the thickness of the second gate dielectric layer can be increased , to further reduce the electric field at the drain end, and improve the hot carrier injection effect of the gate-all-around transistor.
在一些情况下,如图1、图9和图12所示,上述环栅晶体管还包括浅槽隔离结构12、栅极侧墙18和介电层21。其中,上述浅槽隔离结构12形成在半导体基底11上,用于将半导体基底11具有的不同有源区隔离开,防止漏电。浅槽隔离结构12的厚度可以根据实际情况设置。浅槽隔离结构12的材料可以为SiN、Si3N4、SiO2或SiCO等绝缘材料。上述栅极侧墙18至少形成在第一栅堆叠结构25靠近源区19的一侧、以及第二栅堆叠结构26靠近漏区20的一侧,以将第一栅堆叠结构25和第二栅堆叠结构26与后续形成的其它导电结构隔离开,提高环栅晶体管的电学特性。栅极侧墙18的材料可以为氧化硅或氮化硅等绝缘材料。上述介电层21覆盖在半导体基底11上、且其顶部与第一栅堆叠结构和第二栅堆叠结构的顶部平齐。在实际制造过程中,该介电层21的存在可以保护源区19和漏区20不受后续去除牺牲栅和牺牲层等操作的影响,提高环栅晶体管的良率。介电层21的材料可以为氧化硅或氮化硅等绝缘材料。In some cases, as shown in FIG. 1 , FIG. 9 and FIG. 12 , the above-mentioned gate-all-around transistor further includes a shallow
如图13所示,本发明实施例提供了一种环栅晶体管的制造方法。下文将根据图1至图12示出的操作的立体图或断面图,对制造过程进行描述。具体的,该环栅晶体管的制造方法包括:As shown in FIG. 13 , an embodiment of the present invention provides a method for manufacturing a gate-all-around transistor. Hereinafter, the manufacturing process will be described based on perspective views or cross-sectional views of operations shown in FIGS. 1 to 12 . Specifically, the manufacturing method of the gate-around transistor includes:
首先,提供一半导体基底。具体的,该半导体基底的具体结构和材料可以参考前文,此处不再赘述。First, a semiconductor substrate is provided. Specifically, for the specific structure and material of the semiconductor substrate, reference may be made to the foregoing, which will not be repeated here.
如图5所示,在半导体基底11上形成有源结构。有源结构包括源区19、漏区20、以及位于源区19和漏区20之间的沟道区22。As shown in FIG. 5 , an active structure is formed on a
具体的,该有源结构包括的源区、漏区和沟道区的具体结构与材料等信息可以参考前文,此处不再赘述。Specifically, information such as the specific structure and material of the source region, the drain region and the channel region included in the active structure can be referred to above, and will not be repeated here.
在实际的应用过程中,可以采用外延生长、光刻和刻蚀等工艺,在半导体基底上形成鳍部。并采用沉积和刻蚀等工艺,在半导体基底暴露在鳍部之外的部分上形成浅槽隔离结构。其中,鳍部暴露在浅槽隔离结构之外的部分为鳍状结构。如图1所示,沿半导体基底11的厚度方向,鳍状结构13包括至少一层叠层131。每层叠层131包括牺牲层1311、以及位于牺牲层1311上的沟道层1312。具体的,上述沟道层1312是用于制造沟道区包括的纳米线/片的膜层,因此鳍状结构13包括的叠层131的层数等于沟道区包括的纳米线/片的层数,每层沟道层1312的材料和厚度分别等于相应纳米线/片的材料和厚度。另外,上述牺牲层1311的材料可以是与沟道层1312不同的任一种半导体材料。例如:在沟道层1312的材料为硅的情况下,牺牲层1311的材料为锗硅。In practical applications, processes such as epitaxial growth, photolithography and etching can be used to form fins on the semiconductor substrate. A shallow trench isolation structure is formed on the part of the semiconductor substrate exposed outside the fins by using processes such as deposition and etching. Wherein, the part of the fin exposed outside the shallow trench isolation structure is a fin structure. As shown in FIG. 1 , along the thickness direction of the
其次,如图1所示,沿鳍状结构13的长度方向,鳍状结构13包括源形成区14、漏形成区15、以及位于源形成区14和漏形成区15之间的过渡区16。如图2所示,接着可以采用沉积和刻蚀等工艺,依次形成横跨在鳍状结构13对应过渡区的部分上的牺牲栅17和栅极侧墙18。牺牲栅17的材料可以为多晶硅等易于去除的材料。该栅极侧墙18至少位于牺牲栅17沿长度方向的两侧,栅极侧墙18的材料可以参考前文,此处不再赘述。然后,可以在牺牲栅和栅极侧墙的掩膜作用下,去除鳍状结构位于源形成区和漏形成区的部分。并如图3所示,采用外延生长等工艺,并沿鳍状结构的长度方向,在鳍状结构的剩余部分的两侧分别形成源区19和漏区20。如图4所示,可以采用沉积和化学机械抛光等工艺,形成覆盖在半导体基底11上的介电层21。该介电层21的顶部与牺牲栅17的顶部平齐。最后,如图5所示,采用湿法刻蚀或干法刻蚀等工艺,依次去除牺牲栅、以及牺牲层位于过渡区的部分,使得每层沟道层位于过渡区内的部分形成相应层纳米线/片221,获得有源结构。Next, as shown in FIG. 1 , along the length direction of the
需要说明的是,可以通过多种方式来形成上述有源结构。如何形成上述有源结构并非本发明的主要特征所在,因此在本说明书中,只对其进行简要地介绍,以便本领域普通技术人员能够容易地实施本发明。本领域普通技术人员完全可以设想别的方式来制作上述有源结构。It should be noted that the above active structure can be formed in various ways. How to form the above active structure is not the main feature of the present invention, so in this specification, it is only briefly introduced so that those skilled in the art can easily implement the present invention. Those skilled in the art can completely imagine other ways to manufacture the above-mentioned active structure.
如图9和图12所示,沿源区19至漏区20的方向,形成依次环绕在沟道区22外周的第一栅堆叠结构25和第二栅堆叠结构26。第一栅堆叠结构25包括的第一功函数层252和第二栅堆叠结构26包括的第二功函数层262的材料完全不同,第一功函数层252和第二功函数层262均为非夹断层。As shown in FIG. 9 and FIG. 12 , along the direction from the
具体的,第一栅堆叠结构和第二栅堆叠结构包括的各个结构、以及各个结构的材料等信息可以参考前文,此处不再赘述。此外,第一栅堆叠结构和第二栅堆叠结构的形成先后顺序可以根据实际需求进行确定,此处不做具体限定。Specifically, information such as each structure included in the first gate stack structure and the second gate stack structure, and materials of each structure can be referred to above, and will not be repeated here. In addition, the sequence of forming the first gate stack structure and the second gate stack structure can be determined according to actual needs, and is not specifically limited here.
在一种示例中,沿沟道区的长度方向,沟道区具有第一区域和第二区域。第一栅堆叠结构环绕在第一区域的外周,第二栅堆叠结构环绕在第二区域的外周。在此情况下,当第一栅堆叠结构先于第二栅堆叠结构形成时,上述沿源区至漏区的方向,形成依次环绕在沟道区外周的第一栅堆叠结构和第二栅堆叠结构可以包括以下步骤:如图6所示,形成环绕在第一区域和第二区域外周的第一栅堆叠材料23。具体的,可以采用原子层沉积等工艺,形成依次环绕在整个沟道区22外周的第一栅介质材料(用于制造第一栅介质层)、第一功函数材料(用于制造第一功函数层)、以及第一栅金属材料(用于制造第一栅金属层)。并采用化学机械抛光等工艺,去除上述第一栅介质材料、第一功函数材料和第一栅金属材料暴露在栅极区域之外的部分,获得第一栅堆叠材料23。接着,可以采用光刻等工艺,在第一栅堆叠材料对应第一区域的部分上形成掩膜层。其中,该掩膜层可以仅形成在第一栅堆叠材料对应第一区域的部分上,也还可以形成在介电层对应源区的部分上。然后如图7所示,在掩膜层24的掩膜作用下,采用湿法刻蚀或干法刻蚀等工艺,选择性去除第一栅堆叠材料位于第二区域外周的部分,以使得第一栅堆叠材料的剩余部分形成第一栅堆叠结构25。并如图8所示,采用湿法刻蚀或干法刻蚀等工艺,去除掩膜层。最后如图9所示,形成环绕在第二区域外周的第二栅堆叠结构26。具体的,可以采用原子层沉积等工艺,形成依次环绕在沟道区22具有的第二区域外周的第二栅介质材料(用于制造第二栅介质层)、第二功函数材料(用于制造第二功函数层)、以及第二栅金属材料(用于制造第二栅金属层)。并采用化学机械抛光等工艺,去除上述第二栅介质材料、第二功函数材料和第二栅金属材料暴露在栅极区域之外的部分,获得第二栅堆叠结构26。In one example, along the length direction of the channel region, the channel region has a first region and a second region. The first gate stack structure surrounds the periphery of the first region, and the second gate stack structure surrounds the periphery of the second region. In this case, when the first gate stack structure is formed before the second gate stack structure, along the direction from the source region to the drain region, the first gate stack structure and the second gate stack structure surrounding the outer periphery of the channel region are sequentially formed. The structure may include the following steps: as shown in FIG. 6 , forming a first
当然,也可以采用上述方式,先形成环绕在沟道区具有的第二区域外周的第二栅堆叠结构,然后再形成环绕在沟道区具有的第一区域外周的第一栅堆叠结构。Of course, the above method may also be adopted, first forming the second gate stack structure surrounding the periphery of the second region in the channel region, and then forming the first gate stack structure surrounding the periphery of the first region in the channel region.
在另一种示例中,当第一栅堆叠结构和第二栅堆叠结构同时形成的情况下,上述沿源区至漏区的方向,形成依次环绕在沟道区外周的第一栅堆叠结构和第二栅堆叠结构可以包括以下步骤:如图10所示,沿源区19至漏区20的方向,在沟道区22的外周依次形成第一栅堆叠结构25包括的第一栅介质层251和第二栅堆叠结构26包括的第二栅介质层261。如图11所示,依次形成位于第一栅介质层251上的第一功函数层252,以及位于第二栅介质层261上的第二功函数层262。In another example, when the first gate stack structure and the second gate stack structure are formed at the same time, along the direction from the source region to the drain region, the first gate stack structure and the first gate stack structure surrounding the periphery of the channel region are sequentially formed. The second gate stack structure may include the following steps: as shown in FIG. 10 , sequentially forming the first
具体的,在该情况下,当第一栅介质层和第二栅介质层的材料和厚度均相同时,可以采用原子层沉积等工艺同时形成第一栅介质层和第二栅介质层。Specifically, in this case, when the material and thickness of the first gate dielectric layer and the second gate dielectric layer are the same, the first gate dielectric layer and the second gate dielectric layer can be formed simultaneously by using processes such as atomic layer deposition.
而当第一栅介质层与第二栅介质层的厚度和/或材料不同的情况下,以沿沟道区的长度方向,沟道区具有第一区域和第二区域。并且第一栅堆叠结构环绕在第一区域的外周,第二栅堆叠结构环绕在第二区域的外周进行说明:可以先形成环绕在第一区域和第二区域外周的第一栅介质材料。并选择性去除第一栅介质材料对应第二区域的部分,获得第一栅介质层。接着,采用原子层沉积等工艺,形成覆盖在第一栅介质层和第二区域上的第二栅介质材料。然后,在相应掩膜层的掩膜作用下,对第二栅介质材料进行选择性刻蚀,仅保留第二栅介质材料位于第二区域外周的部分,获得第二栅介质层。其中,上述第一栅介质层和第二栅介质层的形成顺序可以互换。When the thickness and/or material of the first gate dielectric layer and the second gate dielectric layer are different, along the length direction of the channel region, the channel region has a first region and a second region. And the first gate stack structure surrounds the periphery of the first region, and the second gate stack structure surrounds the periphery of the second region. For illustration: the first gate dielectric material surrounding the first region and the second region may be formed first. And selectively remove the part of the first gate dielectric material corresponding to the second region to obtain the first gate dielectric layer. Next, a second gate dielectric material covering the first gate dielectric layer and the second region is formed by using a process such as atomic layer deposition. Then, under the effect of the mask of the corresponding mask layer, the second gate dielectric material is selectively etched, and only the part of the second gate dielectric material located on the periphery of the second region is reserved, so as to obtain the second gate dielectric layer. Wherein, the forming sequence of the first gate dielectric layer and the second gate dielectric layer can be interchanged.
最后,也可以采用该方式依次形成第一功函数层和第二功函数层。其中,上述第一功函数层和第二功函数层的形成顺序也可以互换。另外,如图12所示,在第一栅堆叠结构25和第二栅堆叠结构26还分别包括第一栅金属层253和第二栅金属层263的情况下,还可以采用物理气相沉积等工艺形成第一栅金属层253和第二栅金属层263,从而获得第一栅堆叠结构25和第二栅堆叠结构26。Finally, the first work function layer and the second work function layer may also be sequentially formed in this way. Wherein, the formation order of the above-mentioned first work function layer and the second work function layer may also be interchanged. In addition, as shown in FIG. 12 , in the case where the first
与现有技术相比,本发明实施例提供的环栅晶体管具有的有益效果,可以参考前文所述的环栅晶体管的有益效果分析,此处不再赘述。Compared with the prior art, for the beneficial effects of the gate-all-around transistor provided by the embodiment of the present invention, reference may be made to the analysis of the beneficial effect of the gate-all-around transistor described above, and details will not be repeated here.
在以上的描述中,对于各层的构图、刻蚀等技术细节并没有做出详细的说明。但是本领域技术人员应当理解,可以通过各种技术手段,来形成所需形状的层、区域等。另外,为了形成同一结构,本领域技术人员还可以设计出与以上描述的方法并不完全相同的方法。另外,尽管在以上分别描述了各实施例,但是这并不意味着各个实施例中的措施不能有利地结合使用。In the above description, technical details such as patterning and etching of each layer are not described in detail. However, those skilled in the art should understand that various technical means can be used to form layers, regions, etc. of desired shapes. In addition, in order to form the same structure, those skilled in the art can also design a method that is not exactly the same as the method described above. In addition, although the various embodiments are described above separately, this does not mean that the measures in the various embodiments cannot be advantageously used in combination.
以上对本公开的实施例进行了描述。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本公开的范围。本公开的范围由所附权利要求及其等价物限定。不脱离本公开的范围,本领域技术人员可以做出多种替代和修改,这些替代和修改都应落在本公开的范围之内。The embodiments of the present disclosure have been described above. However, these examples are for illustrative purposes only and are not intended to limit the scope of the present disclosure. The scope of the present disclosure is defined by the appended claims and their equivalents. Various substitutions and modifications can be made by those skilled in the art without departing from the scope of the present disclosure, and these substitutions and modifications should all fall within the scope of the present disclosure.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211477340.4A CN115692506A (en) | 2022-11-23 | 2022-11-23 | A gate-all-round transistor and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211477340.4A CN115692506A (en) | 2022-11-23 | 2022-11-23 | A gate-all-round transistor and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115692506A true CN115692506A (en) | 2023-02-03 |
Family
ID=85056498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211477340.4A Pending CN115692506A (en) | 2022-11-23 | 2022-11-23 | A gate-all-round transistor and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115692506A (en) |
-
2022
- 2022-11-23 CN CN202211477340.4A patent/CN115692506A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110190109B (en) | Semiconductor device and method for manufacturing the same | |
TWI630719B (en) | Epitaxial structure, heterogeneous structure, nanowire lateral tunneling field effect transistor | |
CN111755512A (en) | A kind of semiconductor device and preparation method thereof | |
CN103985754B (en) | Semiconductor device and method for manufacturing the same | |
CN114613850A (en) | Junction-free field effect transistor and preparation method thereof | |
CN115692506A (en) | A gate-all-round transistor and its manufacturing method | |
CN111710718B (en) | A ring-gate semiconductor device, manufacturing method, and electronic device | |
CN115566071A (en) | C-shaped channel portion semiconductor device with sidewall, manufacturing method thereof, and electronic device | |
CN104078466B (en) | Flash device and manufacturing method thereof | |
CN112736141A (en) | Nano-sheet transistor with heterogeneous gate dielectric and preparation method | |
CN112992899B (en) | A kind of semiconductor device and its manufacturing method | |
CN113130488B (en) | Semiconductor device and manufacturing method thereof | |
CN113013164B (en) | Semiconductor device and manufacturing method thereof | |
CN114496796B (en) | Trench transistor and forming method thereof | |
CN113540217B (en) | Semiconductor structure and forming method thereof | |
CN115692475A (en) | Semiconductor device and manufacturing method thereof | |
CN115425080A (en) | A kind of transistor and semiconductor device | |
CN115732560A (en) | Ring gate transistor and manufacturing method thereof | |
CN116469938A (en) | Gate-around transistor and manufacturing method thereof | |
CN115036357A (en) | Ring gate transistor and manufacturing method thereof | |
CN116190425A (en) | A gate-all-round transistor and its manufacturing method | |
CN114709175A (en) | Method for manufacturing semiconductor device | |
CN115424933A (en) | Method for manufacturing transistor and semiconductor device | |
CN116741838A (en) | Transistor and manufacturing method thereof | |
WO2017079979A1 (en) | Tunnel field-effect transistor, and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |