CN115677992A - 一种全自然域可降解的芳香族-脂肪族聚酯聚合物及其制备方法 - Google Patents

一种全自然域可降解的芳香族-脂肪族聚酯聚合物及其制备方法 Download PDF

Info

Publication number
CN115677992A
CN115677992A CN202110849192.3A CN202110849192A CN115677992A CN 115677992 A CN115677992 A CN 115677992A CN 202110849192 A CN202110849192 A CN 202110849192A CN 115677992 A CN115677992 A CN 115677992A
Authority
CN
China
Prior art keywords
polyester polymer
polymer
lactic acid
unit
butanediol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110849192.3A
Other languages
English (en)
Inventor
王格侠
季君晖
黄丹
甄志超
卢波
李飞
王萍丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technical Institute of Physics and Chemistry of CAS
Original Assignee
Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technical Institute of Physics and Chemistry of CAS filed Critical Technical Institute of Physics and Chemistry of CAS
Priority to CN202110849192.3A priority Critical patent/CN115677992A/zh
Publication of CN115677992A publication Critical patent/CN115677992A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

本发明提供一种全自然域可降解的聚酯聚合物,其具有如下结构式(I),其中,乳酸单元无规嵌入聚苯二甲酸丁二醇酯聚合物主链中:
Figure DDA0003181809530000011
其中,x=2至8,p=1至2。本发明的聚酯聚合物既保持了主链聚合物的良好的热力学稳定性和机械性能,同时使得聚合物产品还具有良好的堆肥降解性能和海水降解性能,这是解决现有技术中的塑料污染问题所需的理想产品。

Description

一种全自然域可降解的芳香族-脂肪族聚酯聚合物及其制备 方法
技术领域
本发明涉及可降解聚合物材料领域,具体而言,本发明涉及一种在全自然域可降解的芳香族-脂肪族聚酯材料及其制备方法。
背景技术
作为20世纪最伟大的发明之一,塑料极大地便利了人们的生活。然而,通用塑料在环境中可以存留几百年到几千年不消失。这类环境持久性塑料的过度使用,特别是近年来一次性包装领域中大量塑料薄膜的使用,使得地球环境无论是陆地还是海洋都在遭受日益严峻的塑料污染。从长远来看,开发和使用可降解的塑料制品替代通用的难降解的塑料制品,是防止这一问题继续发展的根本有效途径。
现行几种规模较大的降解塑料品种,使用时往往存在耐热性、机械性能不理想的问题,在降解能力方面,也存在降解周期可调节性差以及明显的环境差异性。例如堆肥中具有良好降解性能的聚乳酸(PLA)和聚对苯二甲酸丁酯(PBAT),在自然海水环境中降解缓慢甚至难以降解。那么,如何在改善降解塑料使用性能的同时,发展能在海洋及陆地环境良好降解且周期可调的新产品,成为一个极具有现实意义的课题。
工程塑料聚苯二甲酸丁二醇酯(PBT)和聚苯二甲酸乙二醇酯(PET)是廉价、用途广泛的芳香族聚酯,具有优异的机械、热稳定性等性能,然而其难以降解;因此对工程塑料PBT和PET进行修饰以改善其降解性能同时维持其具有优异的机械性能和热稳定性,是解决塑料污染的一种重要方法,由此改性得到的聚合物材料也是为了解决塑料污染问题亟需的聚合物产品。
发明内容
在本发明的第一方面,本发明提供一种全自然域可降解的聚酯聚合物,其具有如下结构式(I),其中,乳酸单元无规嵌入聚苯二甲酸丁二醇酯聚合物主链中:
Figure BDA0003181809510000021
其中,x=2至8,p=1至2。
在本发明的第一方面的一种实施方式中,在具有结构式(I)的聚酯聚合物中,乳酸单元、对苯二甲酸单元和丁二醇单元之间的摩尔比为1:20:20至4:10:10。
在本发明的第一方面的一种实施方式中,在具有结构式(I)的聚酯聚合物中,乳酸单元、对苯二甲酸单元和丁二醇单元之间的摩尔比为3:20:20至4:10:10。
在本发明的第一方面的一种示例性的实施方式中,在具有结构式(I)的聚酯聚合物中,x=6至8,p=1至2;并且,在该聚酯聚合物中,乳酸单元、对苯二甲酸单元和丁二醇单元之间的摩尔比为1:20:20。
在本发明的第一方面的一种示例性的实施方式中,在具有结构式(I)的聚酯聚合物中,x=5至7,p=1至2;并且,在该聚酯聚合物中,乳酸单元、对苯二甲酸单元和丁二醇单元之间的摩尔比为1:10:10。
在本发明的第一方面的一种示例性的实施方式中,在具有结构式(I)的聚酯聚合物中,x=3至6,p=1至2;并且,在该聚酯聚合物中,乳酸单元、对苯二甲酸单元和丁二醇单元之间的摩尔比为2:10:10。
在本发明的第一方面的一种示例性的实施方式中,在具有结构式(I)的聚酯聚合物中,x=2至5,p=1至2;并且,在该聚酯聚合物中,乳酸单元、对苯二甲酸单元和丁二醇单元之间的摩尔比为3:10:10。
在本发明的第一方面的一种示例性的实施方式中,在具有结构式(I)的聚酯聚合物中,x=2至4,p=1至2;并且,在该聚酯聚合物中,乳酸单元、对苯二甲酸单元和丁二醇单元之间的摩尔比为4:10:10。
在本发明的第一方面的一种实施方式中,本发明的聚酯聚合物的数均分子量为15,000g/mol至45,000g/mol。
在本发明的第一方面的一种实施方式中,本发明的聚酯聚合物的数均分子量为18,000g/mol至23,500g/mol。
在本发明的第二方面,本发明提供用于制备第一方面所述的具有结构式(I)的聚酯聚合物的方法,其包括:
使乳酸,对苯二甲酸和1,4-丁二醇接触并在升温和抽真空条件下进行酯化和缩聚反应,得到乳酸单元无规嵌入聚苯二甲酸丁二醇酯聚合物主链的聚合物,其中,乳酸、对苯二甲酸和1,4-丁二醇的投料摩尔比为1:20:30至2:2:3。
在本发明的第二方面的一种方法实施方式中,乳酸、对苯二甲酸和1,4-丁二醇的投料摩尔比为1:20:30至1:2:3。
在本发明的第二方面的一种方法实施方式中,所述升温条件包括210℃至250℃的温度条件,所述抽真空条件包括不高于800Pa的真空条件。
在本发明的第三方面,本发明提供由本发明的第二方面所述的方法制备得到的聚酯聚合物。
在本发明的第四方面,本发明提供具有结构式(I)的聚酯聚合物作为全自然域可降解材料的应用。
本发明的乳酸改性的聚苯二甲酸丁二醇酯(PBTL)聚合物产品具有乳酸单元以无规微小嵌段的形式嵌入聚苯二甲酸丁二醇酯聚合物主链的结构,由于对聚苯二甲酸丁二醇酯聚合物主链进行改性的乳酸单元以单个乳酸单体或乳酸二聚体的微小嵌段的形式引入,由此得到的聚合物产品既保持了主链聚合物的良好的热力学稳定性和机械性能,同时使得聚合物产品还具有良好的堆肥降解性能和海水降解性能,这是解决现有技术中的塑料污染问题所需的理想产品。
附图说明
图1显示了PBTL聚合物产品#1至#5的核磁图谱。
图2显示了PBTL聚合物产品#1至#5的GPC曲线图。
图3显示了PBTL聚合物产品#1至#5的热分解曲线(失重百分比-温度)。
图4显示了PBTL聚合物产品#1至#5的应力-应变曲线。
图5显示了PBTL聚合物产品#1至#5在3个月周期内堆肥矿化率随时间的变化曲线。
图6显示了PBTL聚合物产品#5在自然海水中浸泡降解90天后的直观形貌。
图7显示了PBTL#5在自然海水中浸泡降解90天后的扫描电镜显微照片形貌。
具体实施方式
释义
本文使用的术语“全自然域”是指包括堆肥环境、自然土壤、湖泊、自然海水环境在内的自然界环境。
实施例1.乳酸(LA)改性的聚苯二甲酸丁二醇酯聚合物产品(PBTL)及其表征
Figure BDA0003181809510000041
本发明的可在全自然域降解的乳酸改性的聚苯二甲酸丁二醇酯聚合物(其结构式如上所示)可使用本领域普通技术人员知晓的聚合物合成方法使三种单体乳酸、对苯二甲酸和1,4-丁二醇发生酯化和缩聚反应而制备得到。在本发明的乳酸改性的聚苯二甲酸丁二醇酯聚合物中,乳酸单体作为微小嵌段(单个单体或二聚体)以无规形式嵌入聚苯二甲酸丁二醇酯的主链中。
在本实施例中,以一锅法为例,在不同的单体投料比条件下制备PBTL聚合物产品#1至#5。具体而言,首先,将乳酸、对苯二甲酸和1,4-丁二醇按照下表1所示的摩尔比加入到反应烧瓶中,同时加入占乳酸和对苯二甲酸的总质量的0.3wt%的钛酸四丁酯(TBT)为催化剂,在210℃至230℃下加热搅拌,直至体系变成浅灰色澄清透明液体(大约2至4小时),随后再次升温至250℃并抽真空直至低于100Pa持续0.5小时至2小时。在最终体系出现明显爬杆现象停止搅拌,结束反应,冷却至室温得到PBTL聚合物产品#1至#5。
表1.乳酸(L)、对苯二甲酸(T)和1,4-丁二醇(B)的投料摩尔比
Figure BDA0003181809510000051
采用核磁氢谱表征PBTL聚合物产品#1至#5:将样品溶在氘代三氟乙酸,采用德国Bruker公司AMX-300核磁共振仪测试,内标TMS。制备得到的PBTL聚合物产品#1至#5的核磁图谱如图1所示。从图1中可以看出,δ=11.500ppm左右的信号峰对应溶剂氘代三氟乙酸的峰,而8.12-8.16ppm处出峰对应苯环质子峰,由此证明了苯环结构在主链中的存在。与对照样品均聚物聚苯二甲酸丁二醇酯(PBT)相比,PBTL聚合物产品出现了几个新的共振峰。乳酸(LA)单元中的-CH-和-CH3-信号分别出现在δ=1.734-1.830(e1,e2)ppm和5.606-5.588(d1,d2)ppm处。在这些共振中,d1和e1归属于T-L单元,而d2和e2对应于L-L单元,这是苯环共轭效应的结果。δ=4.517-4.642ppm处的峰值归因于丁二醇的-CH2-(b1、b2、b3)与对苯二甲酸(PTA)和或乳酸(LA)共价连接。丁二醇中远离PTA或LA单元中间-CH2-为2.058-2.166ppm(c1、c2、c3)。
主链中LA的摩尔含量(nLA)由a1、a2和d1、d2的积分通过公式(2.1)确定。由如下公式(2.2-2.4)确定了嵌入主链中的乳酸单元的数均长度(YLL)和聚苯二甲酸丁二醇酯主链的数均序列长度(YPBT)以及随机性程度参数(R)。下表2总结了制备得到的PBTL聚合物产品#1至#5的LA微嵌段链段长度、主链聚苯二甲酸丁二醇酯的链段长度以及产品中乳酸(L)单元、对苯二甲酸(T)和丁二醇酯(B)的摩尔比。
Figure BDA0003181809510000061
Figure BDA0003181809510000062
Figure BDA0003181809510000063
Figure BDA0003181809510000064
表2.根据核磁图谱计算得到的PBTL聚合物产品#1至#5的各链段长度以及产品中乳酸(L)单元、对苯二甲酸(T)和丁二醇酯(B)的摩尔比
Figure BDA0003181809510000065
随着乳酸含量的增加,YPBT从7.71逐渐降低到2.36,而YLL维持在稍大于1。这表明两个以上LA单元连接的可能性几乎不存在,证明在这个体系合成中LA共聚的趋势大于自缩聚。PBTL聚合物的主链片段随机度R均接近1.0,这是典型无规共聚酯的序列特征。
由此可见,本发明的乳酸改性的聚苯二甲酸丁二醇酯聚合物中,乳酸单元以单体微小嵌段的形式无规插入聚苯二甲酸丁二醇酯的主链中,无论乳酸单体的投料比提高至对苯二甲酸的摩尔数的50%,最终聚合物产品中乳酸单元与对苯二甲酸单元和丁二醇酯单元的摩尔比高达4:10:10,乳酸单元均以单体微小嵌段的形式无规插入聚苯二甲酸丁二醇酯的主链中。
实施例2.PBTL聚合物产品的分子量表征
PBTL聚合物产品的分子量通过美国Waters公司1515型号凝胶渗透色谱仪测定,流动相选择六氟异丙醇(HFIP),流速l.0mL/min,以PS作为标准物。
配置测试溶液:称取3-4mg样品装入5mL螺口玻璃瓶中,用带六氟异丙醇专用过滤头的注射器吸取3mL六氟异丙醇,注入玻璃瓶晃动,使其充分溶解均匀,保证样品浓度1-2mg/mL。
图2显示了PBTL聚合物产品#1至#5的GPC曲线图。在下表3中汇总了PBTL聚合物产品#1至#5的分子量相关数据,不同投料比条件下制备得到的PBTL聚合物的数均分子量(Mn)分布在18725-23275g/mol范围内。
表3.PBTL聚合物产品#1至#5的分子量相关数据
Figure BDA0003181809510000071
实施例3.PBTL聚合物产品的热力学稳定性表征
热重测试(TGA):N2保护下测试,采用美国Thermal Analysis公司的TGA Q50V20.10 Build 36热重分析仪测试样品热失重。气体流量100mL/min,升温区间为0℃至900℃,加热速率为20℃/min。
通过TGA测试观察了PBTL聚合物产品#1至#5的热稳定性。图3是PBTL聚合物的热分解曲线(失重百分比-温度)。
如图3所示,随着LA组分增加,失重达到起始重量5%(T5%)时的分解温度从388℃降低到374℃,大比率明显失重温度(TMax)从423℃降低到368℃,600℃下的残留质量介于2.285%~9.049%。热重分析表明,本发明的PBTL聚合物产品至少在374℃以下热稳定,这个温度远高于聚乳酸PLA,这说明PBTL聚合物具有优秀的热稳定性。
实施例4.PBTL聚合物的机械性能表征
首先使用BJ-1000A粉碎机将合成的块状样品粉碎,然后在HAAKE MiniJet Pro注塑机下加工成标准哑铃状样条。在拉伸试验中,将标准哑铃状样条(长25mm×宽4mm×厚2mm)采用百若仪器的型号为WDW-10的电子通用材料试验机,在25℃下以50mm min-1的拉伸速率拉伸至断裂。每个样品至少测试五个样品,并报告平均值。
图4显示了PBTL聚合物产品#1至#5的应力-应变曲线。PBTL聚合物产品#1至#5的杨氏模量、拉伸强度和断裂点的伸长率汇总见下表4。
表4.聚合物产品#1至#5的杨氏模量、拉伸强度和断裂点的伸长率。
Figure BDA0003181809510000081
Figure BDA0003181809510000091
引入LA单体后,PBTL相比于PBT拉伸强度逐渐减小,而断裂伸长率逐渐提高,虽然使用LA对PBT主链进行改性使得PBTL聚酯聚合物的力学强度略有下降,但是该聚酯聚合物的韧性有了显著提升。由不可降解的相对脆性材料变成兼具一定强度的高韧性的可降解材料。避免了现有生物降解材料PLA强度高但韧性差,PBAT韧性高但强度低的弊端,综合力学性能更优,既适合需要韧性的膜类材料应用,也适合高强度功能件的应用。更重要的是,LA的含量对材料力学性能具有很好的调节作用,从上表4的结合可以看出,可以根据材料的目标用途(例如用于制造可降解塑料袋)通过调节LA的含量来调整所需的材料韧性和机械强度。
实施例5.PBTL的堆肥降解性能测试
参考国标GB/T19277.1-2011设计并开展了堆肥降解测试,以PBTL聚合物中有机碳转为CO2的矿化率为指标,对其生物降解能力进行了评价。PBTL聚合物每个比例的样品均设置平行组,以粒径均匀的粉末形态受试。微晶纤维素是该试验的标准参照组,实验温度维持在58℃。图5是PBTL聚合物在3个月周期内,堆肥矿化率随时间的变化曲线。下表5列出了试验结束时,每个样品的矿化率结果。
表5.聚合物产品#1至#5的矿化率结果
Figure BDA0003181809510000092
从表5可以看出,每个受试样品在设定的周期内,均发生不同程度的降解。PBTL#4表现最好,矿化率高达48.31%。然而,与此形成鲜明对照的是,商售的PBT在降解周期内并未发生任何降解。由此可见,本发明的LA改性的PBT具有良好的堆肥降解性能,并且,整体来看,LA含量较高组分的好氧堆肥矿化率更高,降解速率更快。
实施例6.PBTL的海水降解性能测试
本发明的目的就是为了解决陆地和海洋中日益严峻的塑料污染问题而做出的,本发明的LA改性的聚苯二甲酸丁二醇酯聚合物(PBTL)在全自然域(包括陆地和海洋)都具有良好的降解性能。为了解本发明的PBTL聚合物在真实海洋环境中的降解情况,在中国南海开展了自然海水降解实验。自然海水中的降解条件相对于堆肥降解条件而言,温度较低(通常低于20℃),微生物稀少(通常为约30CFU/mL)并且盐度较高。
具体实验操作如下:待测样品为离心管中哑铃型的塑料样条。本次实验共7种样品。每种样品各三根分别放在7个不同的离心管中。按照第1次取样,第2次取样…第12次取样分类,用记号笔分别标记,用尼龙绳串成牢靠的小串。12次取样样品(每次取一串)共12小串一起系在一根主绳上形成一个大串。装入渔网中,放在海水环境中。放置地点选在海南海岛周边,渔网下沉深度保证退潮后,海水浸没深度0.5-1m左右。放置地点的自然环境如下:温度:14℃至25℃,盐度:8ppm至30ppm,微生物群落数:5CFU/mL至30CFU/mL。
图6显示了PBTL聚合物#5在自然海水中浸泡降解90天后的直观形貌。鉴于海水环境低温、微生物稀少的特殊性,自然海水中样品的降解整体要比堆肥环境中缓慢一些,但是从外观形貌上看,PBTL聚合物#5的表面已经出现被微生物侵蚀的形貌,表面不再光滑,在边缘开始出现脱落。
图7显示PBTL#5在自然海水中90天后的表面和断面的扫描电镜显微照片(SEM)的形貌,从图中可以看出,PBTL#5的表面已经出现细微裂缝,说明乳酸高含量PBTL在海水中具有降解性能。
下表6总结了PBTL聚合物在南海中浸泡90天后的分子量分布变化。从下表6中可以看出,作为对照的商售PBT在海水浸泡降解90天之后分子量没有减小,这说明商售的PBT并不会在海水中发生降解,而与此形成鲜明对照的是,本发明的PBTL聚合物在海水中浸泡降解90天之后,其Mn与Mw均显著降低。这进一步说明了本发明的PBTL聚合物产品具有海水可降解性。
表6.PBTL聚合物产品#1至#5在南海中浸泡降解90天后的分子量变化
Figure BDA0003181809510000111
结论:
本发明的乳酸改性的聚苯二甲酸丁二醇酯(PBTL)聚合物产品在其聚苯二甲酸丁二醇酯聚合物主链中嵌入了单个乳酸单体或乳酸二聚体进行改性,由此改性得到的PBTL聚合物产品既保持了可与商售PBT聚合物相媲美的良好的热力学稳定性和机械性能,并且同时由于乳酸单体以单个单体或二聚体的微小嵌段的形式嵌入主链使得聚合物产品还具有良好的堆肥降解性能和海水降解性能,这是解决现有技术中的塑料污染问题所需的理想产品。

Claims (15)

1.一种全自然域可降解的聚酯聚合物,其具有如下结构式(I),其中,乳酸单元无规嵌入聚苯二甲酸丁二醇酯聚合物主链中:
Figure FDA0003181809500000011
其中,x=2至8,p=1至2。
2.如权利要求1所述的聚酯聚合物,其中,在该聚酯聚合物中,乳酸单元、对苯二甲酸单元和丁二醇单元之间的摩尔比为1:20:20至4:10:10。
3.如权利要求2所述的聚酯聚合物,其中,在该聚酯聚合物中,乳酸单元、对苯二甲酸单元和丁二醇单元之间的摩尔比为3:20:20至4:10:10。
4.如权利要求1所述的聚酯聚合物,其中,x=6至8,p=1至2;并且,在该聚酯聚合物中,乳酸单元、对苯二甲酸单元和丁二醇单元之间的摩尔比为1:20:20。
5.如权利要求1所述的聚酯聚合物,其中,x=5至7,p=1至2;并且,在该聚酯聚合物中,乳酸单元、对苯二甲酸单元和丁二醇单元之间的摩尔比为1:10:10。
6.如权利要求1所述的聚酯聚合物,其中,x=3至6,p=1至2;并且,在该聚酯聚合物中,乳酸单元、对苯二甲酸单元和丁二醇单元之间的摩尔比为2:10:10。
7.如权利要求1所述的聚酯聚合物,其中,x=2至5,p=1至2;并且,在该聚酯聚合物中,乳酸单元、对苯二甲酸单元和丁二醇单元之间的摩尔比为3:10:10。
8.如权利要求1所述的聚酯聚合物,其中,x=2至4,p=1至2;并且,在该聚酯聚合物中,乳酸单元、对苯二甲酸单元和丁二醇单元之间的摩尔比为4:10:10。
9.如权利要求1至8中任一项所述的聚酯聚合物,其中,该聚酯聚合物的数均分子量为15,000g/mol至45,000g/mol。
10.如权利要求1至8中任一项所述的聚酯聚合物,其中,该聚酯聚合物的数均分子量为18,000g/mol至23,500g/mol。
11.用于制备权利要求1至10中任一项所述的聚酯聚合物的方法,其包括:
使乳酸,对苯二甲酸和1,4-丁二醇接触并在升温和抽真空条件下进行酯化和缩聚反应,得到乳酸单元无规嵌入聚苯二甲酸丁二醇酯聚合物主链的聚合物,其中,乳酸、对苯二甲酸和1,4-丁二醇的投料摩尔比为1:20:30至2:2:3。
12.如权利要求11所述的方法,其中,乳酸、对苯二甲酸和1,4-丁二醇的投料摩尔比为1:20:30至1:2:3。
13.如权利要求11所述的方法,其中,所述升温条件包括210℃至250℃的温度条件,所述抽真空条件包括不高于800Pa的真空条件。
14.由权利要求11至13中任一项所述的方法制备得到的聚酯聚合物。
15.权利要求1至10中任一项所述的聚酯聚合物作为全自然域可降解材料的应用。
CN202110849192.3A 2021-07-27 2021-07-27 一种全自然域可降解的芳香族-脂肪族聚酯聚合物及其制备方法 Pending CN115677992A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110849192.3A CN115677992A (zh) 2021-07-27 2021-07-27 一种全自然域可降解的芳香族-脂肪族聚酯聚合物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110849192.3A CN115677992A (zh) 2021-07-27 2021-07-27 一种全自然域可降解的芳香族-脂肪族聚酯聚合物及其制备方法

Publications (1)

Publication Number Publication Date
CN115677992A true CN115677992A (zh) 2023-02-03

Family

ID=85058875

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110849192.3A Pending CN115677992A (zh) 2021-07-27 2021-07-27 一种全自然域可降解的芳香族-脂肪族聚酯聚合物及其制备方法

Country Status (1)

Country Link
CN (1) CN115677992A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101412804A (zh) * 2008-11-23 2009-04-22 浙江大学宁波理工学院 制备芳香族-脂肪族共聚酯的方法
CN102268132A (zh) * 2010-06-01 2011-12-07 东丽纤维研究所(中国)有限公司 一种对苯二甲酸丁二醇乳酸共聚物的制备方法
US20120322908A1 (en) * 2009-11-05 2012-12-20 Novamont S.P.A Mixtures of biodegradable polyesters with at least one polymer of natural origin
US20140275436A1 (en) * 2011-10-12 2014-09-18 Molecon (Suzhou) Novel Materials Co., Ltd. Fast degradable polyester polymer and preparation method and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101412804A (zh) * 2008-11-23 2009-04-22 浙江大学宁波理工学院 制备芳香族-脂肪族共聚酯的方法
US20120322908A1 (en) * 2009-11-05 2012-12-20 Novamont S.P.A Mixtures of biodegradable polyesters with at least one polymer of natural origin
CN102268132A (zh) * 2010-06-01 2011-12-07 东丽纤维研究所(中国)有限公司 一种对苯二甲酸丁二醇乳酸共聚物的制备方法
US20140275436A1 (en) * 2011-10-12 2014-09-18 Molecon (Suzhou) Novel Materials Co., Ltd. Fast degradable polyester polymer and preparation method and use thereof

Similar Documents

Publication Publication Date Title
CA2419673C (en) Polymeric networks
CN113185679B (zh) 一种聚醚酯的制备方法
CN101891881B (zh) 可生物降解高分子添加剂及其制备方法与应用
CN110358273B (zh) 一种具有高抗穿刺性能的生物质抗菌膜
CN115716910B (zh) 一种可降解的芳香族-脂肪族聚酯聚合物及其制备方法
US20140221598A1 (en) Biodegradable polyester
JP5467997B2 (ja) 生体吸収性材料およびそれを用いた生体内留置物
Xu et al. Degradation performances of CL-modified PBSCL copolyesters in different environments
CN102443145B (zh) 一种三嵌段共聚酯及其制备方法
CN115677992A (zh) 一种全自然域可降解的芳香族-脂肪族聚酯聚合物及其制备方法
Chen et al. Bio-based and biodegradable electrospun fibers composed of poly (L-lactide) and polyamide 4
CN116535625B (zh) 一种二氧化碳基聚酯-聚碳酸酯生物降解共聚物及制备方法
CN102020773B (zh) 一种可生物降解共聚物及其制备方法
JP4390273B2 (ja) 生分解性樹脂組成物
CN115746295A (zh) 一种高强度高韧性高阻隔性的聚酯酰胺及其制备方法
Nagata Synthesis and properties of copolyesters based on hydroquinone, sebacic acid and p-hydroxybenzoic acid
CN115677993B (zh) 一种全自然域可降解的脂肪族聚酯聚合物及其制备方法
CN116041678A (zh) 一种全自然域可降解的芳香族聚酯聚合物及其制备方法
CN103788599B (zh) 一种聚乳酸-聚酯复合材料及其制备方法
CN117417515B (zh) 一种2-甲基-2-苄氧羰基-1,3-丙二醇改性pbat材料及制备方法
Fradet et al. Polyesters
Fang et al. Synthesis, characterization and degradation of well-defined crosslinkable aliphatic polyesters end-capped by biomesogenic units
CN111019173B (zh) 一种可降解聚乳酸-羟基乙酸复合材料的制备方法
CN115397883B (zh) 共聚物及其制备方法
CN118307754A (zh) 一种全自然域可降解的共聚酯及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination