CN115627410A - 一种钒氮合金设计满足核电建筑用螺纹钢的控制方法 - Google Patents

一种钒氮合金设计满足核电建筑用螺纹钢的控制方法 Download PDF

Info

Publication number
CN115627410A
CN115627410A CN202211344925.9A CN202211344925A CN115627410A CN 115627410 A CN115627410 A CN 115627410A CN 202211344925 A CN202211344925 A CN 202211344925A CN 115627410 A CN115627410 A CN 115627410A
Authority
CN
China
Prior art keywords
vanadium
nitrogen
steel bar
nuclear power
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211344925.9A
Other languages
English (en)
Other versions
CN115627410B (zh
Inventor
梁治国
朱守欣
程维玮
邹翔宇
邓伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Iron and Steel Co Ltd
Original Assignee
Nanjing Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Iron and Steel Co Ltd filed Critical Nanjing Iron and Steel Co Ltd
Priority to CN202211344925.9A priority Critical patent/CN115627410B/zh
Publication of CN115627410A publication Critical patent/CN115627410A/zh
Application granted granted Critical
Publication of CN115627410B publication Critical patent/CN115627410B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • B21B1/163Rolling or cold-forming of concrete reinforcement bars or wire ; Rolls therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/08Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires for concrete reinforcement
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C60/00Computational materials science, i.e. ICT specially adapted for investigating the physical or chemical properties of materials or phenomena associated with their design, synthesis, processing, characterisation or utilisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/26Composites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

本发明公开了一种钒氮合金设计满足核电建筑用螺纹钢的控制方法,该方法通过转炉合金化,转炉出钢合金微调,连铸钢坯和钢坯加热等步骤,实现了热轧含钒螺纹钢保氮降钒与成分设计最优化,通过尽可能减少高成本钒含量的添加来保证核电站专用钢筋的高强度和高延伸率要求;本发明通过热力学、动力学计算与试验研究,明确氮元素与钒元素的相互作用规律,以及氮对热轧含钒螺纹钢组织、性能的影响作用机理,辅以适宜的控轧控冷工艺,大大降低了工艺成本同时保证了钢材的力学性能。

Description

一种钒氮合金设计满足核电建筑用螺纹钢的控制方法
技术领域
本发明涉及一种螺纹钢的控制方法,尤其涉及一种钒氮合金设计满足核电建筑用螺纹钢的控制方法。
背景技术
核电站建设专用热轧直条HRB400和HRB500钢筋要求比一般建筑用螺纹钢的强度和塑性高,目前国内绝大多数钢厂采用添加更多的V合金来保证,但这样导致合金价格较高。现有技术中对钢中的钒氮合金化工艺也进行了较多的研究,但是,实际上可能会有一些偏差。对于热轧含钒螺纹钢来说,需要通过理论与现场试验相结合的方法,明确氮在热轧螺纹钢中的作用机理,找到适合南钢螺纹钢工艺的最佳钒氮比通过热力学、动力学计算与试验研究,明确氮元素与钒元素的相互作用规律、氮对热轧含钒螺纹钢组织、性能的影响作用机理,辅以适宜的控轧控冷工艺,从而实现热轧含钒螺纹钢保氮降钒与成分设计最优化,来保证核电站专用钢筋的高强度和高延伸率要求,这项研究在实际探索中存在较大难度。
发明内容
发明目的:本发明旨在提供一种成分设计优化的钒氮合金设计满足核电建筑用螺纹钢的控制方法,实现热轧含钒螺纹钢保氮降钒与成分设计最优化,来保证核电站专用钢筋的高强度和高延伸率要求。
技术方案:本发明所述的钒氮合金设计满足核电建筑用螺纹钢的控制方法,包括如下步骤:
(1)在转炉合金化前,记录每炉钢水的铁水重量、废钢重量、元素成分及含量;
(2)在转炉合金化过程中,控制碳在GB/T 1499.2标准要求的上限,即0.0230~0.0254%,控制氧含量为300~500ppm,并控制每炉钢水总重量波动≤5吨,并控制转炉冶炼过程中进行的吹氮总量、底吹搅拌时间参数保持平稳,有利于合金收得率的稳定;
(3)钢水出钢后立即取样,采用炉前快分系统化验成分,再进行微调,确保主要元素碳、硅、锰、钒、氮的质量百分比分别控制为0.230~0.254%、0.42~0.52%、1.35~1.50%、0.035~0.048%,100~125ppm,所述钒氮元素质量比为3.4~3.6,微调成分后钢水上连铸;
(4)连铸过程中拉速尽量恒定在3.0m/min,控制在28~32分钟,以确保每炉钢水从转炉冶炼→出钢微调成分→连铸结束,整个过程节奏均衡,有利于各炉成分波动较小;
(5)对钢坯进行加热;
(6)钢坯轧制成钢筋。
优选地,步骤(2)中所述钢水出钢温度为1550~1580℃;所述钢水总重量波动为136~141吨,冶炼周期为28~32分钟;所述吹氮总量为23000~25000m3,底吹搅拌时间为520~560秒
优选地,步骤(3)中所述钒氮元素质量比为3.4~3.6。更优选地,步骤(3)中所述钒氮元素质量比为3.5:1。
优选地,步骤(5)中所述加热过程为控制钢坯热段温度为1125~1132℃,开轧温度为1046~1055℃,上冷床温度为952~991℃。
对于含钒热轧螺纹钢,随着氮含量的增加,能提高钒析出相的析出驱动力,使原来处于固溶状态的钒大量转变成析出状态的钒,钢中V(C、N)、VN的析出量增加,充分发挥了钒的析出强化作用;同时,随着含氮量的增加,V(C、N)、VN析出相的颗粒尺寸显著减小,析出相不仅对晶界有“钉扎”作用,而且也提高了动态再结晶的激活能,阻滞了动态再结晶行为,主要起到了细晶强化的作用。对于热轧含钒螺纹钢来说,需要通过理论与现场试验相结合的方法,明确氮在热轧螺纹钢中的作用机理,找到适合南钢螺纹钢工艺的最佳钒氮比。具体研究步骤如下:
①通过热力学与动力学计算,研究氮元素与钒元素的相互作用规律,不同氮含量水平与不同钒含量水平时,钒的氮化物、碳氮化物在螺纹钢奥氏体组织及相变后组织中的溶解、析出规律。
②通过试验研究氮含量变化对含钒热轧螺纹钢屈服强度、抗拉强度、延伸率及微观组织的影响规律,寻求提高热轧螺纹钢综合性能的最佳钒氮比。
③根据模拟计算与工业试验结果,对含钒热轧螺纹钢成分设计进行优化。
本发明通过研究氮含量与钢水终点氧含量、不同合金加入时机及加入量、转炉底吹工艺、炉后吹氩工艺等的关系,明确不同氧位下普通氮化合金氮的收得率与氧势的影响规律,寻求有利于稳定提高含氮合金氮元素收得率的操作及工艺方法,从而实现螺纹钢氮含量的稳定控制。通过研究明确了不同氧位下普通氮化合金氮的收得率随氧势变化的回归模型:y =35.89 +48.82e-0.013x,其中y为含氮合金氮的收得率,x为氧位。通过采用在转炉出钢氧位较高时及时加入一些脱氧剂,降低钢水氧位;含氮合金加入时机选择在硅铁及硅锰等合金加入后再添加;确保足够的吹氮时间等关键工艺的实施,可实现螺纹钢含氮合金氮收得率稳定在40%~60%。
另外,加热工艺是影响原始奥氏体晶粒大小的主要因素,原始奥氏体晶粒尺寸越大,轧后奥氏体晶粒尺寸越大。另当加热、轧制温度高时,钒元素的强化能力有所降低,当加热、轧制温度低时,钒元素的强化能力会更高。这就要求我们对于钢坯加热温度要有严格的控制,范围波动不能太大,为了保证终轧后能得到细小的奥氏体晶粒,可以在轧机设备电机允许范围内,尽量降低加热温度。本发明轧后采用强化弱穿水工艺,确保钢筋表面无明显急冷层,以满足标准GB/T 1499.2-2018要求。
有益效果:与现有技术相比,本发明具有如下显著优点:所述设计方法实现了热轧含钒螺纹钢保氮降钒与成分设计最优化,通过尽可能减少高成本钒含量的添加来保证核电站专用钢筋的高强度和高延伸率要求;本发明通过热力学、动力学计算与试验研究,明确氮元素与钒元素的相互作用规律,以及氮对热轧含钒螺纹钢组织、性能的影响作用机理,辅以适宜的控轧控冷工艺,大大降低了工艺成本同时保证了钢材的力学性能。
具体实施方式
下面结合实施例对本发明的技术方案作进一步说明。
实施例
针对核电建筑用钢坯HRB400,所述控制方法步骤如下:
(1)在转炉合金化前,记录每炉钢水的铁水重量、废钢重量、元素成分及含量;
(2)在转炉合金化过程中,出钢碳控制在0.230~0.254%,钢水出钢温度1557~1578℃,氧含量357~452ppm。钢水总重量波动136~141吨,吹氮总量23000~25000m3、底吹搅拌时间520~560秒,冶炼周期28~32分钟。
(3)钢水出钢后,控制主要元素成分及其重量百分比为:C为0.230~0.254%,Mn为1.41~1.47%,Si为0.45~0.50%,V为0.036~0.044%,N为100~125ppm,V/N为3.4~3.6。
(4)连铸过程中拉速尽量恒定在3.0m/min,控制在28~32分钟。
(5)棒材厂轧制φ36和φ40规格,钢坯热段温度1125~1132℃,开轧温度1046~1055℃,上冷床温度952~991℃。
检测其屈服强度为450~490MPa,平均470MPa,晶粒度8.5~10.0级,平均9.0级。
对比例
针对核电建筑用钢坯HRB400,主要元素C为0.228~0.247%,Mn为1.43~1.49%,Si为0.44~0.51%,V为0.042~0.049%,N为103~132ppm,V/N为3.7~4.1,其余步骤同时实施例,轧制钢筋最终测得的屈服强度为435~500MPa,平均450MPa,晶粒度为7.0~9.0级,平均8.0级。
由此可见,本发明通过控制钒氮比,并加强冶炼和轧钢过程主要参数控制,不但可以减少钒含量,且钢筋的性能主要参数屈服强度平均值由450MPa提高470MPa,提高20MPa,波动范围由65MPa减少到40MPa,晶粒度由平均值8.0级提高到9.0级,提高1.0级。

Claims (7)

1.一种钒氮合金设计满足核电建筑用螺纹钢的控制方法,其特征在于,包括如下步骤:
(1)在转炉合金化前,记录每炉钢水的铁水重量、废钢重量、元素成分及含量;
(2)在转炉合金化过程中,控制出钢碳含量为0.0230~0.0254%,氧含量为300~500ppm,若氧位较高,则加入脱氧剂用于降低钢水氧位;并控制每炉钢水总重量波动≤5吨,并控制转炉冶炼过程中进行的吹氮总量、底吹搅拌时间参数保持平稳,有利于合金收得率的稳定;
(3)钢水出钢后立即取样,采用炉前快分系统化验成分,再进行成分微调,确保主要元素碳、硅、锰、钒、氮的质量百分比分别控制为0.230~0.254%、0.42~0.52%、1.35~1.50%、0.035~0.048%,100~125ppm,所述钒氮元素质量比为3.4~3.6,微调成分后钢水上连铸;
(4)连铸过程中拉速保持恒定,控制在28~32分钟;
(5)对钢坯进行加热轧制。
2.根据权利要求1所述的钒氮合金设计满足核电建筑用螺纹钢的控制方法,其特征在于,步骤(2)中所述钢水出钢温度为1550~1580℃。
3.根据权利要求1所述的钒氮合金设计满足核电建筑用螺纹钢的控制方法,其特征在于,步骤(2)中所述钢水总重量波动为136~141吨,冶炼周期为28~32分钟。
4.根据权利要求1所述的钒氮合金设计满足核电建筑用螺纹钢的控制方法,其特征在于,步骤(2)中所述吹氮总量为23000~25000m3
5.根据权利要求1所述的钒氮合金设计满足核电建筑用螺纹钢的控制方法,其特征在于,步骤(2)中所述底吹搅拌时间为520~560秒。
6.根据权利要求1所述的钒氮合金设计满足核电建筑用螺纹钢的控制方法,其特征在于,步骤(3)中所述钒氮元素质量比为3.5:1。
7.根据权利要求1所述的钒氮合金设计满足核电建筑用螺纹钢的控制方法,其特征在于,步骤(5)中所述加热过程为控制钢坯热段温度为1125~1132℃,开轧温度为1046~1055℃,上冷床温度为952~991℃。
CN202211344925.9A 2022-10-31 2022-10-31 一种钒氮合金设计满足核电建筑用螺纹钢的控制方法 Active CN115627410B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211344925.9A CN115627410B (zh) 2022-10-31 2022-10-31 一种钒氮合金设计满足核电建筑用螺纹钢的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211344925.9A CN115627410B (zh) 2022-10-31 2022-10-31 一种钒氮合金设计满足核电建筑用螺纹钢的控制方法

Publications (2)

Publication Number Publication Date
CN115627410A true CN115627410A (zh) 2023-01-20
CN115627410B CN115627410B (zh) 2024-06-14

Family

ID=84909419

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211344925.9A Active CN115627410B (zh) 2022-10-31 2022-10-31 一种钒氮合金设计满足核电建筑用螺纹钢的控制方法

Country Status (1)

Country Link
CN (1) CN115627410B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101008065A (zh) * 2006-01-23 2007-08-01 湖南华菱涟源钢铁有限公司 一种ⅱ级螺纹钢筋的生产工艺
US20170137904A1 (en) * 2014-07-03 2017-05-18 Nippon Steel & Sumitomo Metal Corporation Rolled steel bar for machine structural use and method of producing the same
CN107675078A (zh) * 2017-09-26 2018-02-09 阳春新钢铁有限责任公司 一种高屈服强度的含钒氮钢材及其生产方法和用途
CN112575250A (zh) * 2020-11-04 2021-03-30 沙钢集团安阳永兴特钢有限公司 一种加入高氮强化合金的hrb400e螺纹钢筋及其生产工艺
CN114196876A (zh) * 2021-11-05 2022-03-18 柳州钢铁股份有限公司 高安全性热轧钢筋及其生产方法
WO2022211640A1 (en) * 2021-03-30 2022-10-06 Elkem Asa Ferrosilicon vanadium and/or niobium alloy, production of a ferrosilicon vanadium and/or niobium alloy, and the use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101008065A (zh) * 2006-01-23 2007-08-01 湖南华菱涟源钢铁有限公司 一种ⅱ级螺纹钢筋的生产工艺
US20170137904A1 (en) * 2014-07-03 2017-05-18 Nippon Steel & Sumitomo Metal Corporation Rolled steel bar for machine structural use and method of producing the same
CN107675078A (zh) * 2017-09-26 2018-02-09 阳春新钢铁有限责任公司 一种高屈服强度的含钒氮钢材及其生产方法和用途
CN112575250A (zh) * 2020-11-04 2021-03-30 沙钢集团安阳永兴特钢有限公司 一种加入高氮强化合金的hrb400e螺纹钢筋及其生产工艺
WO2022211640A1 (en) * 2021-03-30 2022-10-06 Elkem Asa Ferrosilicon vanadium and/or niobium alloy, production of a ferrosilicon vanadium and/or niobium alloy, and the use thereof
CN114196876A (zh) * 2021-11-05 2022-03-18 柳州钢铁股份有限公司 高安全性热轧钢筋及其生产方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
本书编辑委员会: "《钢铁工业节能减排新技术5000问 下轧钢系统分册》", 中国科学技术出版社, pages: 193 *

Also Published As

Publication number Publication date
CN115627410B (zh) 2024-06-14

Similar Documents

Publication Publication Date Title
CN108342641B (zh) 一种630MPa级热轧高强抗震钢筋及其生产方法
CN109136755B (zh) 一种汽车用冷轧高强度钢及其生产方法
CN110885952A (zh) 400MPa级热轧带肋钢筋及其制备方法
CN114134430B (zh) 一种工程机械耐磨部件用高淬透性35SiMnCrMoB钢及其制造方法
CN114369764B (zh) 一种屈服强度460MPa级高性能厚重热轧H型钢及其生产方法
CN110438413B (zh) 一种含钒钢筋的生产工艺
CN102296160A (zh) 一种低成本rh钢水增氮控氮工艺
CN111172459A (zh) 一种hrb600e钒钛微合金化高强抗震热轧钢筋
CN114457290B (zh) 一种1200MPa级沉淀强化含钒高锰奥氏体钢及其制备方法
CN113667890A (zh) 一种低硅微合金化高温渗碳齿轮钢及其制备方法
CN109680130B (zh) 一种高强塑积冷轧中锰钢及其制备方法
CN107557690B (zh) 一种耐低温和抗层状撕裂的特厚钢板及其制造方法
CN111500920A (zh) 一种hrb600高强抗震螺纹钢及其生产方法
CN113604738A (zh) 一种高强度和高韧性大规格风电螺栓用圆钢及其制造方法
CN114480962B (zh) 一种620MPa级煤矿液压支架用钢及其制造方法
CN109518079A (zh) 一种临氢设备用15CrMoR钢板的生产方法
CN102268615A (zh) 心部低温冲击韧性优良及抗层状撕裂的工程钢材及其生产方法
CN113235000A (zh) 一种Φ40mmHRB600高强抗震钢筋及生产方法
CN115627410B (zh) 一种钒氮合金设计满足核电建筑用螺纹钢的控制方法
CN108998742B (zh) 一种极低屈服强度钢板及其制造方法
CN109576570B (zh) 一种大断面含硼低屈强比355MPa热轧H型钢及其生产方法
CN104233058A (zh) 一种超低成本的低屈服点钢及其生产方法
CN111334721A (zh) 一种正火轧制中厚船板钢及其消除带状组织的生产方法
CN117286392A (zh) 一种生产大规格抗震钢筋的方法
CN115386788B (zh) 一种hrb500e螺纹钢冷弯开裂控制工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant