CN109680130B - 一种高强塑积冷轧中锰钢及其制备方法 - Google Patents

一种高强塑积冷轧中锰钢及其制备方法 Download PDF

Info

Publication number
CN109680130B
CN109680130B CN201910144522.1A CN201910144522A CN109680130B CN 109680130 B CN109680130 B CN 109680130B CN 201910144522 A CN201910144522 A CN 201910144522A CN 109680130 B CN109680130 B CN 109680130B
Authority
CN
China
Prior art keywords
cold
steel
strength
rolling
medium manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910144522.1A
Other languages
English (en)
Other versions
CN109680130A (zh
Inventor
张喜亮
刘涛
刘宏基
周骞
吕征
石银冬
赵雷杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Engineering
Original Assignee
Hebei University of Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Engineering filed Critical Hebei University of Engineering
Priority to CN201910144522.1A priority Critical patent/CN109680130B/zh
Publication of CN109680130A publication Critical patent/CN109680130A/zh
Application granted granted Critical
Publication of CN109680130B publication Critical patent/CN109680130B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明涉及一种超高强塑积冷轧中锰钢及其制备方法,化学成分按重量百分比为:C:0.2%、Mn:7~9%、Al:1.5%、Zr:0.08~0.10%、P<0.008%、S<0.008%,余量为Fe。制备方法为:⑴冶炼与锻造:将材料真空冶炼成钢锭,去掉冒口及氧化皮;加热至1200℃保温2h后锻造成厚度30~40mm板坯,终锻温度不低于900℃;⑵热轧:加热至1200℃,轧制至4~5mm厚度钢板,终轧温度大于900℃;⑶两相区退火+冷轧:在660~680℃退火1h后空冷至室温,酸洗,冷轧,压下量50%。⑷退火+低温回火:加热至660~690℃,保温10min空冷至室温,200℃回火20min。本发明利用添加微量Zr元素的微合金化技术,通过熔炼、锻造、热轧、两相区退火和冷轧过程,使C、Al含量均较低的冷轧中锰TRIP钢达到高强度和高塑性。

Description

一种高强塑积冷轧中锰钢及其制备方法
技术领域
本发明属于先进高强钢板生产技术领域,涉及一种超高强塑积冷轧中锰钢及其制备方法。
背景技术
安全、节能、环保作为当前汽车技术的三大主题,极大地推动了车身轻量化技术的研究和发展,因此,高强度与高塑性(高强塑积)已成为汽车用钢板发展的必然趋势。第一代汽车用钢强塑积为10~20GPa·%,由于强度与强塑积均较低,无法适应未来汽车用钢的高强高塑和高安全性能的发展要求。第二代汽车用钢以TWIP钢为主,强塑积高达50~70GPa·%,但其抗拉强度很少达到1000MPa以上,且其高的合金含量导致成本上升,工艺性能较差而限制其应用。近年来以中锰TRIP钢(锰含量为4~12%)为代表的第三代先进高强钢正成为国内外学者的研究热点,通过添加大量Al(3~9wt%)可以使中锰TRIP钢的强塑积达到50GPa·%以上,然而较高的Al含量使中锰钢在浇注过程中容易堵塞水口,不利于连铸生产。因此,目前对Mn含量为5~10wt%,C、Al含量相对较低(C<0.3wt%、Al<1.8wt%)中锰钢报道中,强塑积不超过45GPa·%,均达不到TWIP钢水平。此外,目前中锰钢多数采用奥氏体逆转变工艺,奥氏体化后在临界区保温时间较长,需要数小时甚至更长时间,生效率低,如何通过成分设计及工艺优化,研发强度大于1000MPa,强塑积大于50GPa·%先进高强钢已成为本领域科研人员致力追求的目标。
发明内容
本发明的目的是提供一种超高强塑积冷轧中锰钢,利用微合金化并配合快速退火工艺,使C、Al含量均较低的中锰TRIP钢达到高强度、高塑性,总延伸率>50%,开发第三代汽车用钢。本发明的另一目的是提供一种超高强塑积冷轧中锰钢的制备方法。
本发明的技术方案是:超高强塑积冷轧中锰钢,化学成分按重量百分比为:C:0.2%、Mn:7~9%、Al:1.5%、Zr:0.08~0.10%、P<0.008%、S<0.008%,余量为Fe。
本发明超高强塑积冷轧中锰钢的制备方法,包括如下步骤:
⑴冶炼与锻造:根据合金成分真空熔炼制成钢锭,去掉冒口并车掉氧化皮;钢锭在1200℃保温2h后进行锻造,终锻温度不低于900℃,然后空冷至室温,最终锻成板坯,板坯厚度30~40mm;
⑵热轧:将板坯加热至1200℃,保温1.5h,经3~5道次轧制成4~5mm厚的钢板,终轧温度大于900℃;
⑶两相区退火+冷轧:将热轧板坯在660~680℃退火1h后空冷至室温,对退火态热轧钢板进行酸洗,随后在两辊冷轧机进行冷轧,总压下量为50%;
⑷退火+低温回火:冷轧板坯以2~4℃/S升温速率加热至660~690℃,保温10min后空冷至室温,在200℃下回火20min后空冷至室温。
本发明超高强塑积冷轧中锰钢的抗拉强度大于1200MPa,屈服强度:852~1056MPa,延伸率:50~56%,强塑积>65GPa·%。步骤⑶中酸洗用质量浓度为10%的稀盐酸。超高强塑积冷轧中锰钢中P和S含量尽可能低。
本发明超高强塑积冷轧中锰钢具有下列特点:⑴C含量低,不超过0.2wt%,Al含量低,1.5wt%,锰含量适中7~9wt%,钢板具有优异的良好的焊接性能,且制造工艺性能好。⑵添加微量的Zr元素在中锰TRIP钢中主要发挥四个重要作用:①Zr元素在一定范围内可以提高中锰TRIP钢的层错能,使奥氏体稳定性增加,使其在高应变区域发生相变,从而提高中锰TRIP钢的强度与塑性。②根据船舶用钢经验添加一定量的Zr元素,可以使钢在热处理过程中生成针状铁素体,根据目前文献报道,超高强塑积冷轧中锰钢微观组织均由等轴状的奥氏体和铁素体构成,其奥氏体稳定性相对均匀,而本发明中添加微量锆,其促使中锰TRIP钢在再结晶退火过程中生成不同形貌、不同尺寸的奥氏体与铁素体(有等轴状、颗粒状、片层状,具体微观结构见EBSD图),导致钢中奥氏体具有一定的稳定性梯度,使其在不同应变甚至高应变下发生TRIP效应,从而同时提高钢的强度与塑性。③加微量Zr元素另一个作用为细化奥氏体晶粒尺寸,见奥氏体晶粒尺寸分布图。④Zr的脱氧、脱氮能力极强,在熔炼过程中能固定钢中的氧、硫、碳、氮元素,使钢中杂质含量降低,提高钢的纯净度,进而降低拉伸过程中裂纹萌生几率,从而提高钢的塑性。⑶本发明提供冷轧中锰TRIP钢经退火及回火后奥氏体含量为38~45%,在拉伸过程中由于具有一定的梯度稳定性,逐步发生TRIP效应,产生高强高塑性。⑷本发明冷轧中锰TRIP钢力学性能满足抗拉强度1200MPa,屈服强度800~950MPa,延伸率50~56%,强塑积>65GPa·%,。
本发明超高强塑积冷轧中锰钢的制备方法,通过熔炼、锻造、热轧、两相区退火和冷轧过程,然后在两相区进行退火后低温回火,利用微合金化技术(添加微量Zr元素)并配合快速退火工艺,使C、Al含量均较低的中锰TRIP钢达到高强(>1200MPa)、高塑性(总延伸率>50%)性,为第三代汽车用钢开发提供借鉴。
附图说明
图1为本发明超高强塑积冷轧中锰钢的EBSD相图;
图2为本发明超高强塑积冷轧中锰钢的奥氏体晶粒尺寸分布图;
图3为本发明超高强塑积冷轧中锰钢的冷轧退火后XRD测试结果;
图4为本发明超高强塑积冷轧中锰钢的工程应力应变曲线;
图5为普通冷轧中锰TRIP钢工程应力应变曲线。
具体实施方式
下面结合实施例和附图对本发明进行详细说明。本发明保护范围不限于实施例,本领域技术人员在权利要求限定的范围内做出任何改动也属于本发明保护的范围。
实施例1
本发明超高强塑积冷轧中锰钢,化学成分按重量百分比为:C:0.2%、Mn:8%、Al:1.5%、Zr:0.10%、P<0.008%、S<0.008%,余量为Fe。超高强塑积冷轧中锰钢的制备方法,包括如下步骤:
⑴冶炼与锻造:根据合金成分真空熔炼制成钢锭,去掉冒口并车掉氧化皮;钢锭在1200℃保温2h后进行锻造,终锻温度大于900℃,然后空冷至室温,最终锻成板坯试样,板坯厚度30mm;
⑵热轧:将板坯加热至1200℃,保温1.5h,进行4道次轧制成4mm厚钢板,终轧温度大于900℃;
⑶两相区退火+冷轧:将热轧板坯在680℃退火1h后空冷至室温,对退火态热轧钢板进行酸洗,酸洗用质量浓度为10%的稀盐酸;随后在两辊冷轧机进行冷轧,总压下量为50%;
⑷退火+低温回火:冷轧板坯以3℃/S升温速率加热至680℃,保温10min后空冷至室温,在200℃下回火20min后空冷至室温。
发明超高强塑积冷轧中锰钢的微观组织(EBSD相图)如图1所示,黑色为奥氏体,灰色为铁素体。奥氏体晶粒尺寸分布图如果2所示,其奥氏体含量(冷轧退火及回火后XRD测试结果)如图3所示,中锰钢的工程应力应变曲线如图4所示,其抗拉强度为1295MPa,屈服强度为1017MPa,延伸率为53.2%,强塑积高达69GPa·%。
实施例2
本发明超高强塑积冷轧中锰钢另一实施方案,化学成分按重量百分比为:C:0.2%、Mn:8%、Al:1.5%、Zr:0.10%、P<0.008%、S<0.008%,余量为Fe。超高强塑积冷轧中锰钢的制备方法,包括如下步骤:
⑴冶炼与锻造:根据合金成分真空熔炼制成钢锭,去掉冒口并车掉氧化皮;钢锭在1200℃保温2h后进行锻造,终锻温度大于900℃,然后空冷至室温,最终锻成板坯试样,板坯厚度40mm;
⑵热轧:将板坯加热至1200℃,保温1.5h,进行3~5道次轧制成5mm厚度钢板,终轧温度大于900℃;
⑶两相区退火+冷轧:将热轧板坯在680℃退火1h后空冷至室温,对退火态热轧钢板进行酸洗,酸洗用质量浓度为10%的稀盐酸;随后在两辊冷轧机进行冷轧,总压下量为50%;
⑷退火+低温回火:冷轧板坯以4℃/S升温速率加热至690℃,保温10min后空冷至室温,在200℃下回火20min后空冷至室温。
试验超高强塑积冷轧中锰钢的抗拉强度为1262MPa,屈服强度为913MPa,延伸率为51.2%,强塑积>65GPa·%。
对比例
为了对比未添加Zr元素冷轧中锰TRIP钢性能,特熔炼一炉钢,化学成分按重量百分比为:C:0.2wt%、Al:1.5wt%、Mn:8%、P<0.008%、S<0.008%,余量为Fe。其冶炼,锻造、热轧+两相区退火、冷轧、两相区退火+低温回火工艺与实例1相同。其工程应力应变曲线如图5所示,抗压拉伸强度为1060MPa,强塑积仅为40.2GPa·%。明显低于本发明添加微量锆后的超高强塑积冷轧中锰钢。

Claims (2)

1.一种超高强塑积冷轧中锰钢,其特征是:所述中锰钢的化学成分按重量百分比为:C:0.2%、Mn:7~9%、Al:1.5%、Zr:0.08~0.10%、P<0.008%、S<0.008%,余量为Fe;所述超高强塑积冷轧中锰钢的抗拉强度大于1200MPa,屈服强度:852~1056MPa,延伸率:50~56%,强塑积>65GPa%;所述超高强塑积冷轧中锰钢的制备方法包括如下步骤:
⑴冶炼与锻造:根据合金成分真空熔炼制成钢锭,去掉冒口并车掉氧化皮;钢锭在1200℃保温2h后进行锻造,终锻温度大于900℃,然后空冷至室温,最终锻成板坯试样,板坯厚度30~40mm;
⑵热轧:将板坯加热至1200℃,保温1.5h,经3~5道次轧制成4~5mm厚度板坯,终轧温度不低于900℃;
⑶两相区退火+冷轧:将热轧板坯在660~680℃退火1h后空冷至室温,对退火态热轧钢板进行酸洗,随后在两辊冷轧机进行冷轧,总压下量为50%;
⑷退火+低温回火:冷轧板坯以2~4℃/S升温速率加热至660~690℃,保温10min后空冷至室温,在200℃下回火20min后空冷至室温。
2.根据权利要求1所述超高强塑积冷轧中锰钢,其特征是:所述步骤⑶中酸洗用质量浓度为10%的稀盐酸。
CN201910144522.1A 2019-02-27 2019-02-27 一种高强塑积冷轧中锰钢及其制备方法 Expired - Fee Related CN109680130B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910144522.1A CN109680130B (zh) 2019-02-27 2019-02-27 一种高强塑积冷轧中锰钢及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910144522.1A CN109680130B (zh) 2019-02-27 2019-02-27 一种高强塑积冷轧中锰钢及其制备方法

Publications (2)

Publication Number Publication Date
CN109680130A CN109680130A (zh) 2019-04-26
CN109680130B true CN109680130B (zh) 2020-09-25

Family

ID=66197041

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910144522.1A Expired - Fee Related CN109680130B (zh) 2019-02-27 2019-02-27 一种高强塑积冷轧中锰钢及其制备方法

Country Status (1)

Country Link
CN (1) CN109680130B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112063931B (zh) * 2020-09-07 2021-11-26 清华大学 一种低碳中锰高残奥高强韧钢及其热处理方法
CN112410681B (zh) * 2020-11-26 2022-07-26 燕山大学 一种高强塑积中锰钢及其制备方法
CN114480808B (zh) * 2022-02-14 2023-09-22 河北工程大学 一种复合梯度结构中锰钢及其制备方法
CN115323135B (zh) * 2022-08-12 2023-05-23 华北理工大学 一种强塑积不低于45GPa%的超高强塑积中锰钢的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1055564A (zh) * 1988-10-13 1991-10-23 川崎制铁株式会社 经改善深冲性能的可弯热轧薄钢板
CN103695765A (zh) * 2013-12-11 2014-04-02 蔡志辉 一种高强度高塑性冷轧中锰钢及其制备方法
CN107829037A (zh) * 2017-09-15 2018-03-23 东北大学 热冲压成形用钢板、热冲压成形构件及梯度力学性能控制方法
CN108330406A (zh) * 2018-05-17 2018-07-27 东北大学 一种高强度高塑性冷轧中锰钢及其制备方法
CN108330402A (zh) * 2018-02-01 2018-07-27 武汉科技大学 一种Nb-Mo合金高强高塑性冷轧中锰钢及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1055564A (zh) * 1988-10-13 1991-10-23 川崎制铁株式会社 经改善深冲性能的可弯热轧薄钢板
CN103695765A (zh) * 2013-12-11 2014-04-02 蔡志辉 一种高强度高塑性冷轧中锰钢及其制备方法
CN107829037A (zh) * 2017-09-15 2018-03-23 东北大学 热冲压成形用钢板、热冲压成形构件及梯度力学性能控制方法
CN108330402A (zh) * 2018-02-01 2018-07-27 武汉科技大学 一种Nb-Mo合金高强高塑性冷轧中锰钢及其制备方法
CN108330406A (zh) * 2018-05-17 2018-07-27 东北大学 一种高强度高塑性冷轧中锰钢及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Nb对基于动态相变的C-Mn-Al-Si热轧TRIP钢组织及力学性能的影响;付波 等;《第八届(2011)中国钢铁年会论文集》;20111231;1-5 *

Also Published As

Publication number Publication date
CN109680130A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
CN109680130B (zh) 一种高强塑积冷轧中锰钢及其制备方法
CN107858586B (zh) 一种高强塑积无屈服平台冷轧中锰钢板的制备方法
CN113106338B (zh) 一种超高强度高塑性热冲压成形钢的制备方法
CN102876999B (zh) 一种调质型低温压力容器用钢板及其制备方法
KR20220004220A (ko) LNG 저장탱크용 7Ni 강판 및 생산 공정
CN109957726A (zh) 一种低成本高强度冷轧退火板及制造方法
CN107012398A (zh) 一种铌微合金化trip钢及其制备方法
CN112048676A (zh) 一种抗应变时效低温韧性s420ml钢板及其生产方法
CN115181913A (zh) 一种低锰含量中锰钢的制备方法
CN113846269B (zh) 一种具有高强塑性冷轧高耐候钢板及其制备方法
CN108624820B (zh) 强塑积大于45 GPa·%的汽车用高强韧钢及制备方法
CN109554622B (zh) 淬火至贝氏体区获得Q&P组织的热轧Fe-Mn-Al-C钢及制造方法
CN110983189A (zh) 一种低成本345MPa特厚高层建筑用钢及制备方法
CN109628847A (zh) 一种正火s355nl-z35特厚钢板及制造方法
CN107541663B (zh) 一种饮料罐用电镀锡钢板及其生产方法
CN108411200B (zh) 一种高加工硬化率热轧q&p钢板及其制备方法
CN114318161B (zh) 一种低温高应变速率超塑性中锰钢及其制备方法
CN115961128A (zh) 一种1500MPa级免酸洗热成形钢及其制备方法
CN113444969A (zh) 一种美标容器低温服役条件用钢板及其生产方法
CN109930078A (zh) 一种高强度高塑性热轧中锰钢及制备方法
CN111763875A (zh) 一种瓶盖用高硬度冷轧电镀锡基板及其生产方法
CN109852892B (zh) 一种含微量锆的热轧中锰trip钢及其制备方法
CN111304516B (zh) 一种高强度高低温冲击韧性吊钩用非调质钢及生产工艺
CN113957350B (zh) 一种2000MPa级热成形钢及其生产方法
CN115386802B (zh) 一种10.9级大规格风电螺栓用非调质钢及其生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200925