CN115626821B - 一种用于肿瘤热疗的铁氧体材料及其制备方法 - Google Patents

一种用于肿瘤热疗的铁氧体材料及其制备方法 Download PDF

Info

Publication number
CN115626821B
CN115626821B CN202211406473.2A CN202211406473A CN115626821B CN 115626821 B CN115626821 B CN 115626821B CN 202211406473 A CN202211406473 A CN 202211406473A CN 115626821 B CN115626821 B CN 115626821B
Authority
CN
China
Prior art keywords
temperature
tumor
ferrite
ferrite material
thermotherapy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211406473.2A
Other languages
English (en)
Other versions
CN115626821A (zh
Inventor
葛辛亮
郑辉
郑鹏
郑梁
张阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN202211406473.2A priority Critical patent/CN115626821B/zh
Publication of CN115626821A publication Critical patent/CN115626821A/zh
Application granted granted Critical
Publication of CN115626821B publication Critical patent/CN115626821B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2625Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing magnesium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/004Magnetotherapy specially adapted for a specific therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/02Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • C04B2235/3274Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Manufacturing & Machinery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)

Abstract

本发明公开了一种用于肿瘤热疗的铁氧体材料及其制备方法。采用低温固相反应法制作化学式为Ni0.03Mg0.26Cu0.14Zn0.60Fe1.94O3.94的铁氧体材料,经测定,其居里温度为42.37℃、实部磁导率为~797.88@1MHz、磁损耗为0.316@1MHz。因此可以应用于肿瘤热疗装置中,作为热源使用,将治疗温度稳定在42℃附近。且磁损耗也可以带来较高的产热效率。利用该材料作为发热材料植入肿瘤部位进行肿瘤消融时,不需要额外的温度控制装置即可实现自动控温,对推广铁氧体材料的应用与肿瘤热疗都具有重要意义。

Description

一种用于肿瘤热疗的铁氧体材料及其制备方法
技术领域
本发明属于材料制备技术领域,具体涉及一种用于肿瘤热疗的铁氧体材料及其制备方法。
背景技术
癌症已经成为了经济发达国家的主要死因,也是发展中国家的第二大死因。如何预防和治疗癌症已经成为了医学领域的一大难题。现有技术通常采用外科手术切除、化疗、放疗以及生物治疗等方法治疗癌症。但是这些疗法都存在各自的局限性和副作用。一方面,这些疗法在杀死癌细胞的同时也会对人体自身细胞造成严重的损伤;另一方面,很难完全杀死癌细胞,导致较高的复发率和死亡率。
现代医学研究表明,肿瘤细胞比正常细胞对热更敏感。当体内癌变部位温度轻微升高至42摄氏度左右时,可以明显抑制肿瘤细胞呼吸以及DNA、RNA和蛋白质的合成,而人体正常细胞在此温度下仍然能存活。热疗法,就是通过对人体癌变部位进行加热,使局部的温度升高,从而达到杀死肿瘤细胞的目的。经过多年发展,热疗法已经成为治疗癌症的一种重要手段。因此相较于其他治疗方法,热疗法有着副作用少、侵入性低和治疗效果显著的特点,在很大程度上可以帮助癌症患者提高生活质量。
过去几年,技术人员研究了Fe2O3磁性纳米颗粒在肿瘤热疗中的应用。遗憾的是,这种以Fe2O3为磁核的磁流体热疗虽然可以吸收交变磁场更高的功率,但无法实现准确控制温度,容易导致人体正常细胞受损。温度的精准控制成为阻碍磁性材料在肿瘤热疗法中发展的重要因素。与铁磁体不同,铁氧体材料在交变磁场的作用下,会因为磁滞损耗而温度上升。但当铁氧体的温度超过其居里温度时,就会由铁磁性转为顺磁性,此时在交变磁场的作用下,铁氧体材料的温度不再上升。当温度逐渐下降至居里温度以下时,材料重新恢复铁磁性。如此往复,可以将铁氧体的温度控制在其居里温度附近。铁氧体的这一特性,使得其可以实现稳定的自动控温,有望作为热源应用在肿瘤热疗中。
虽然铁氧体磁性材料在计算机、微波通信、电视、自动控制、航天航空、仪器仪表、医疗、汽车工业等领域得到了广泛的应用,但是针对肿瘤热疗方面应用的研究还是一片空白。并且,现有的大多数铁氧体由于磁损耗较低,产热效率也很低,其居里温度也远远高于热疗法要求的42℃。
发明内容
针对现有技术的不足,本发明提出了一种用于肿瘤热疗的铁氧体材料及其制备方法,将材料的居里温度控制在42℃附近,并提高材料的初始磁导率,使其能够吸收交变磁场更高的功率,提高产热效率,符合肿瘤热疗法对热源的要求。
一种用于肿瘤热疗的铁氧体材料,其化学式为Ni0.03Mg0.26Cu0.14Zn0.60Fe1.94O3.94,具有单相立方尖晶石结构,居里温度为42.37℃、实部磁导率为~797.88@1MHz、磁损耗为0.316@1MHz。
一种用于肿瘤热疗的铁氧体材料的制备方法,采用低温固相反应法,具体包括以下步骤:
步骤1、将NiO、CuO、ZnO、MgO和Fe2O3按照摩尔比为0.003954:0.018454:0.079090:0.034272:0.127862的比例进行称重后,与乙醇溶液混合。
步骤2、将步骤1得到的液体放入行星式球磨机中,以225rpm的转速搅拌12小时。
步骤3、将步骤2搅拌后的液体烘干,然后在空气中预烧3个小时,预烧温度为800℃。
步骤4、对步骤3预烧后剩余的粉末进行称重,并根据重量加入0.3wt%Bi2O3粉末。在乙醇溶液中混合后,再次放入行星式球磨机中以225rpm的转速搅拌12小时。
步骤5、再次烘干称量后,加入5wt%聚乙烯醇和2.5wt%水作为粘结剂,对粉末进行造粒,然后使用小型油压机在6~10Mpa压力下压制成细条状样品。
步骤6、对步骤5得到的样品在空气中进行低温烧结,升温速率为4℃/min,烧结温度为950℃,烧结时间为3小时。
一种肿瘤热疗装置,包括串联谐振逆变器、交流铁芯线圈和植入热源材料。
所述串联谐振逆变器包括直流功率电源、全桥逆变器和RLC串联谐振电路,用于为交流铁芯线圈提供频率在10~200kHz的交流电。
所述交流铁芯线圈包括励磁线圈和磁芯。所述励磁线圈由多股导线绕制而成,磁芯设置在励磁线圈内,所述磁芯的材料为锰锌铁氧体。励磁线圈接收串联谐振逆变器输出的交流电,产生交变磁场。
所述植入热源材料为Ni0.03Mg0.26Cu0.14Zn0.60Fe1.94O3.94铁氧体材料,在交变磁场的作用下因磁滞损耗产热,从而破坏肿瘤细胞。
本发明具有以下有益效果:
本申请所述的铁氧体材料Ni0.03Mg0.26Cu0.14Zn0.60Fe1.94O3.94,居里温度在42℃左右,常温下利用交变磁场可以使材料的温度上升,当上升至居里温度时,材料转为顺磁性,温度不再受交变磁场的影响,会随着室温慢慢降低,并恢复铁磁性。如此往复,通过交变磁场可以控制该材料的温度在42℃左右,既满足肿瘤热疗法对最低温度的要求,又不用担心温度过高对健康细胞的伤害或灼伤皮肤的情况。温度控制方法简单,不需要增加额外的温度控制电路,且磁导率较高,产热效率高,对推广铁氧体材料在肿瘤热疗法中的应用具有重大意义。
附图说明
图1为实施例中不同样品的XRD谱图;
图2为实施例中不同环状样品的实物图;
图3为实施例中铁氧体材料的表面和断裂面SEM图;
图4为实施例中铁氧体材料的EDS分析结果;
图5为实施例中不同样品的磁滞回线测量结果;
图6为实施例中不同样品的复磁导率;
图7为实施例中不同样品的磁导率实部的温度依赖性;
图8为肿瘤热疗装置示意图。
具体实施方式
以下结合附图对本发明作进一步的解释说明;
为了证明本发明的有益效果,本实施例采用低温固相法制作了一系列Mg含量不同的NiCuZn铁氧体陶瓷Ni(0.29-X)MgXCu0.14Zn0.60Fe1.94O3.94,其中x=0、0.10、0.20、0.22、0.24、0.26、0.28、0.29。然后针对Mg含量不同的样品,测定其物理、化学特性。具体步骤如下:
步骤1、根据化学式Ni(0.29-X)MgXCu0.14Zn0.60Fe1.94O3.94(x=0、0.10、0.20、0.22、0.24、0.26、0.28、0.29)称取NiO、CuO、ZnO、MgO和Fe2O3,在浓度为99.9%的AR级乙醇中进行混合。
步骤2、将步骤1得到的液体放入行星式球磨机中,以225rpm的转速搅拌12小时。
步骤3、将步骤2搅拌后的液体放置在烘箱中干燥,然后放入氧化铝坩埚中,在空气氛围下预烧3个小时,预烧温度为800℃。
步骤4、对步骤3预烧后剩余的粉末进行称重,并根据重量加入0.3wt%Bi2O3粉末。在乙醇溶液中混合后,再次放入行星式球磨机中以225rpm的转速搅拌12小时。
步骤5、再次烘干称量后,采用X射线衍射仪(XRD)分析得到的粉末状样品内部的结构与形态,用于确定晶体结构。采用阿基米德法测量样品的密度。采用扫描电子显微镜(SEM)获取样品内部微观结构图像,利用能谱(EDS)图谱分析样品各元素含量和分布均匀性。X射线光电子能谱(XPS)用于检查材料中各种离子的化学状态和元素组成。采用振动样品磁力仪(VSM)测量样品的磁滞回线。
图1展示了不同Mg掺杂浓度的,添加了0.3%wt Bi2O3的NiMgCuZn铁氧体的XRD谱图。可以看出,所有样品的XRD谱图都呈现单相立方尖晶石结构,不同Mg含量的样品之间没有明显的差异。观察到的所有衍射峰均与NiCuZn铁氧体标准PDF卡匹配,无明显杂相存在。
步骤6、加入5wt%聚乙烯醇和2.5wt%水作为粘结剂,对粉末进行造粒。选取部分颗粒在10MPa压力下压制成环状样品,剩余颗粒在6Mpa压力下压制成片状样品。然后将两种样品分别在空气氛围下烧结3小时,烧结温度为950℃。
将环状样品绕上15匝线圈,采用HP4275A型磁芯烘箱加热。通过阻抗分析仪测量环状样品在不同温度下的电感值L,间接求取样品的磁导率和居里温度。磁导率的计算公式为:
Figure BDA0003937124990000041
其中,N为线圈匝数,d为磁环厚度,r1和r2分别为磁环的外径和内径。
在片状样品的两面镀Ag,通过阻抗分析仪测量电容值C,然后根据公式(2)计算其介电常数ε′:
Figure BDA0003937124990000042
其中,ε0为真空介电常数,ε0=8.854×10-12F/m,d和S分别是片状样品的厚度和横截面积。
采用扫描电子显微镜(SEM)获取样品内部微观结构图像,利用能谱(EDS)图谱分析样品各元素含量和分布均匀性。图2为不同Mg含量陶瓷环状样品的宏观图像。图3展示了Ni0.03Mg0.26Cu0.14Zn0.60Fe1.94O3.94铁氧体陶瓷的表面SEM图像和断裂面SEM图像,可以看出样品表面形成了致密的烧结体。晶粒结构完整,晶化程度高,几乎看不到气孔的存在。同时可以观察到样品形成了大尺寸和小尺寸晶粒并存的双重的微观结构,且大尺寸晶粒分布较为均匀,晶体致密化程度高。从样品断裂面的图像中也可以看到样品烧结致密,以大尺寸晶粒为主,在微观结构上分布均匀。
采用阿基米德法测量样品的密度,表1是不同Mg含量的NiMgCuZn铁氧体的体积密度、饱和磁化强度、实部磁导率、居里温度和磁损耗:
Figure BDA0003937124990000043
Figure BDA0003937124990000051
表1
本申请制备的铁氧体陶瓷孔隙率非常低,对磁环电磁性能的影响极小。使用X射线光电子能谱(XPS)检查x=0.26时,材料中各种离子的化学状态和元素组成,如图4所示,各被测元素Fe、O、Zn、Ni、Bi、Cu、Mg都均匀分布在样品内部,在大尺度上没有出现显著的集中点。进一步观察X射线衍射峰,没有出现除样品元素外其他元素的X射线衍射峰,证明样品中没有杂质元素存在。
室温下,采用振动样品磁力仪(VSM)测量样品的磁滞回线,结果如图5所示,所有样品都具有典型的铁氧体磁滞回线和软磁铁氧体特征,且所有样品的矫顽力都小于500Oe。图6给出了不同Mg含量下复磁导率实部(μ′)和虚部(μ″)随频率的变化关系、磁导率随Mg含量变化的关系。图7显示了在1MHz的恒定频率下不同Mg含量的NiMgCuZn铁氧体的磁导率的温度依赖性。结果表明,磁导率首先近似为一个恒定值,然后急剧下降至最小值,磁导率突然下降的温度即为居里温度(Tc)。当施加外部磁场时,由于磁损耗,磁性微粒(MPs)吸收热量并将其转移到肿瘤。位于癌变部位的MPs将磁能转换为热能,成为肿瘤的热源。当x=0.26时,制备成的铁氧体陶瓷(Ni0.03Mg0.26Cu0.14Zn0.60Fe1.94O3.94)具有42.37℃的居里温度,磁损耗tanδμ=0.316,因此其居里温度可以很好的满足肿瘤热疗条件,同时也具有较高的产热效率。
如图8所示,所述肿瘤热疗装置包括包括串联谐振逆变器、交流铁芯线圈和植入热源材料,其中串联谐振逆变器用于产生频率在10~200kHz范围内的交流电,交流铁芯线圈受交流电的影响,产生交变磁场,作用与植入热源材料,所述植入热源材料为Ni0.03Mg0.26Cu0.14Zn0.60Fe1.94O3.94铁氧体材料,在交变磁场的作用下由于磁滞损耗而发热,当温度上升至超过居里温度时,植入热源材料由铁磁性转为顺磁性,温度不再因受到交变磁场的作用而上升。当温度逐渐下降至居里温度以下时,材料重新恢复铁磁性。如此往复,植入性热源材料的温度将保持在居里温度附近,从而实现对肿瘤细胞的破坏。还可以通过控制单元,调整串联谐振逆变器的电路参数,改变交变磁场的频率和强度,控制植入热源材料的温度上升速度。

Claims (8)

1.一种用于肿瘤热疗的铁氧体材料,其特征在于:所述材料的化学式为Ni0.03Mg0.26Cu0.14Zn0.60Fe1.94O3.94,具有单相立方尖晶石结构,居里温度为42.37℃、实部磁导率为~797.88@1MHz、磁损耗为0.316@1MHz。
2.如权利要求1所述一种用于肿瘤热疗的铁氧体材料的制备方法,其特征在于:使用NiO、CuO、ZnO、MgO和Fe2O3作为原材料,通过低温固相反应法制备Ni0.03Mg0.26Cu0.14Zn0.60Fe1.94O3.94铁氧体材料。
3.如权利要求1所述一种用于肿瘤热疗的铁氧体材料的制备方法,其特征在于:具体包括以下步骤:
步骤1、将NiO、CuO、ZnO、MgO和Fe2O3按照摩尔比为0.003954:0.018454:0.079090:0.034272:0.127862的比例进行称重后,与乙醇溶液混合;
步骤2、将步骤1得到的液体放入行星式球磨机中,以225rpm的转速搅拌12小时;
步骤3、将步骤2搅拌后的液体烘干,然后在空气中预烧3个小时,预烧温度为800℃;
步骤4、对步骤3预烧后剩余的粉末进行称重,并根据重量加入0.3wt%Bi2O3粉末;在乙醇溶液中混合后,再次放入行星式球磨机中以225rpm的转速搅拌12小时;
步骤5、再次烘干称量后,加入5wt%聚乙烯醇和2.5wt%水作为粘结剂,对粉末进行造粒,然后使用小型油压机在6~10Mpa压力下压制成细条状样品;
步骤6、对步骤5得到的样品在空气中进行低温烧结。
4.如权利要求3所述的一种用于肿瘤热疗的铁氧体材料的制备方法,其特征在于:在步骤1与步骤4中,使用浓度为99.9%的AR级乙醇作为球磨介质。
5.如权利要求3或4所述的一种用于肿瘤热疗的铁氧体材料的制备方法,其特征在于:设置低温烧结的升温速率为4℃/min,烧结温度为950℃,烧结时间为3小时。
6.一种肿瘤热疗装置,其特征在于:包括串联谐振逆变器、交流铁芯线圈和植入热源材料;
所述串联谐振逆变器包括直流功率电源、全桥逆变器和RLC串联谐振电路,用于为交流铁芯线圈提供频率在10~200kHz的交流电;
所述交流铁芯线圈包括励磁线圈和磁芯;所述励磁线圈由多股导线绕制而成,磁芯设置在励磁线圈内;励磁线圈接收串联谐振逆变器输出的交流电,产生频率和强度可调的交变磁场;
所述植入热源材料为Ni0.03Mg0.26Cu0.14Zn0.60Fe1.94O3.94铁氧体材料,在交变磁场的作用下因磁滞损耗产热,从而破坏肿瘤细胞。
7.如权利要求6所述的一种肿瘤热疗装置,其特征在于:所述磁芯的材料为锰锌铁氧体。
8.如权利要求6所述的一种肿瘤热疗装置,其特征在于:还包括控制单元,用于调整串联谐振逆变器的电路参数,从而改变交流磁场的频率和强度。
CN202211406473.2A 2022-11-10 2022-11-10 一种用于肿瘤热疗的铁氧体材料及其制备方法 Active CN115626821B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211406473.2A CN115626821B (zh) 2022-11-10 2022-11-10 一种用于肿瘤热疗的铁氧体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211406473.2A CN115626821B (zh) 2022-11-10 2022-11-10 一种用于肿瘤热疗的铁氧体材料及其制备方法

Publications (2)

Publication Number Publication Date
CN115626821A CN115626821A (zh) 2023-01-20
CN115626821B true CN115626821B (zh) 2023-03-31

Family

ID=84907772

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211406473.2A Active CN115626821B (zh) 2022-11-10 2022-11-10 一种用于肿瘤热疗的铁氧体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115626821B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1115915A (en) * 1964-07-25 1968-06-06 Tdk Electronics Co Ltd Mgo-nio-cuo-zno series ferrite
JP2001284117A (ja) * 2000-03-30 2001-10-12 Tdk Corp コモンモードチョークコイル、コモンモードチョークコイル用フェライト焼結体
EP1231614A1 (en) * 2001-02-13 2002-08-14 TDK Corporation Oxide magnetic material and core using the same
CN101354941A (zh) * 2008-05-16 2009-01-28 广东风华高新科技股份有限公司 一种含镁、镍、锌元素的软磁铁氧体材料及其制造方法
CN101386530A (zh) * 2008-10-16 2009-03-18 广东风华高新科技股份有限公司 一种镍锌软磁铁氧体材料及其制备方法
CN105272194A (zh) * 2015-11-23 2016-01-27 杭州电子科技大学 一种镍锌系铁氧体吸波材料配方、粉末及其制造方法
CN105702411A (zh) * 2016-04-01 2016-06-22 常州市好利莱光电科技有限公司 一种铜渣回收制备铜锌铁氧体软磁材料的方法
CN110204325A (zh) * 2018-02-28 2019-09-06 北京瑞芯谷科技有限公司 铁氧体材料及其制备方法
CN113603472A (zh) * 2021-08-17 2021-11-05 杭州电子科技大学 一种基于LTCC技术的NiCuZn铁氧体制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE160764T1 (de) * 1991-09-19 1997-12-15 Daido Steel Co Ltd Verfahren zur herstellung von schmelzgegossenem magnetischem weichferrit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1115915A (en) * 1964-07-25 1968-06-06 Tdk Electronics Co Ltd Mgo-nio-cuo-zno series ferrite
JP2001284117A (ja) * 2000-03-30 2001-10-12 Tdk Corp コモンモードチョークコイル、コモンモードチョークコイル用フェライト焼結体
EP1231614A1 (en) * 2001-02-13 2002-08-14 TDK Corporation Oxide magnetic material and core using the same
CN101354941A (zh) * 2008-05-16 2009-01-28 广东风华高新科技股份有限公司 一种含镁、镍、锌元素的软磁铁氧体材料及其制造方法
CN101386530A (zh) * 2008-10-16 2009-03-18 广东风华高新科技股份有限公司 一种镍锌软磁铁氧体材料及其制备方法
CN105272194A (zh) * 2015-11-23 2016-01-27 杭州电子科技大学 一种镍锌系铁氧体吸波材料配方、粉末及其制造方法
CN105702411A (zh) * 2016-04-01 2016-06-22 常州市好利莱光电科技有限公司 一种铜渣回收制备铜锌铁氧体软磁材料的方法
CN110204325A (zh) * 2018-02-28 2019-09-06 北京瑞芯谷科技有限公司 铁氧体材料及其制备方法
CN113603472A (zh) * 2021-08-17 2021-11-05 杭州电子科技大学 一种基于LTCC技术的NiCuZn铁氧体制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
O. M. Hemeda等.Preparation and electrical properties of Ni Cu Zn system doped with the magnesium oxide.International Journal of Modern Physics B.2014,第28卷(第28期),1-21. *

Also Published As

Publication number Publication date
CN115626821A (zh) 2023-01-20

Similar Documents

Publication Publication Date Title
Wu et al. Iron-based soft magnetic composites with Mn–Zn ferrite nanoparticles coating obtained by sol–gel method
Zahi et al. Synthesis, magnetic properties and microstructure of Ni–Zn ferrite by sol–gel technique
Praveena et al. Development of nanocrystalline Mn–Zn ferrites for high frequency transformer applications
Sadhana et al. Effect of Sm 3+ on dielectric and magnetic properties of Y 3 Fe 5 O 12 nanoparticles
Mojahed et al. Structural, magnetic, and dielectric properties of Ni/Zn co-substituted CuFe2O4 nanoparticles
Malyshev et al. Electromagnetic properties of Li0. 4Fe2. 4Zn0. 2O4 ferrite sintered by continuous electron beam heating
Samikannu et al. Synthesis and magnetic properties of conventional and microwave calcined strontium hexaferrite powder
CN105884342A (zh) Bi代LiZnTiMn旋磁铁氧体基板材料的制备方法
Pei et al. Effect of Bi-Co co-doping on the microstructure and magnetic properties of NiMgCuZn ferrites
Xu et al. Preparation and characterization of Mn–Zn ferrites via nano-in-situ composite method
CN106904956A (zh) 一种高介高磁的镍掺杂钡铁氧体陶瓷材料及其制备方法
Xu et al. Influence of LZN nanoparticles on microstructure and magnetic properties of bi-substituted LiZnTi low-sintering temperature ferrites
Ramesh et al. Electromagnetic properties of nanocrystalline Al 3+ substituted MgCuMn ferrites synthesized by microwave hydrothermal method
Liu et al. Microstructure and magnetic properties of Ni0· 75Zn0· 25Fe2O4 ferrite prepared using an electric current-assisted sintering method
Rahman et al. Effect of Ca-substitution on the Magnetic and Dielectric Properties of Mn-Zn Ferrites.
Lwin et al. Study on the structural and electromagnetic properties of Tm-substituted Mg–Mn ferrites by a solution combustion method
Islam et al. Influence of Mg substitution on structural, magnetic and electrical properties of Zn-Cu ferrites
Wang et al. Enhanced properties of Li0. 42Zn0. 27Ti0. 11Mn0. 1Fe2. 1O4 ferrites co-fired with Bi2O3–B2O3 additive at low sintering temperatures
CN115626821B (zh) 一种用于肿瘤热疗的铁氧体材料及其制备方法
Si et al. Cold sintering assisted processing of Mn-Zn ferrites
Nasrin et al. Nanocrystalline Mn-doped Ni–Cu ferrites with a high cut-off frequency and initial permeability: Suitable for advanced electronic devices and biomedical applications
Hou et al. Structural and magnetic properties of Ni0. 15Mg0. 1Cu0. 3Zn0. 45Fe2O4 ferrite prepared by NaOH-precipitation method
Naidu et al. Synthesis and characterization of novel nanoceramic magnesium ferrite material doped with samarium and dysprosium for designing–microstrip patch antenna
Sadhana et al. Magnetic properties of xNi0. 53Cu0. 12Zn0. 35Fe1. 88O4+ (1− x) BaTiO3 nanocomposites
Kostishyn et al. Obtaining anisotropic hexaferrites for the base layers of microstrip SHF devices by the radiation-thermal sintering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant