CN115622413B - 一种clclc型谐振变换器及调制方法 - Google Patents
一种clclc型谐振变换器及调制方法 Download PDFInfo
- Publication number
- CN115622413B CN115622413B CN202211609593.2A CN202211609593A CN115622413B CN 115622413 B CN115622413 B CN 115622413B CN 202211609593 A CN202211609593 A CN 202211609593A CN 115622413 B CN115622413 B CN 115622413B
- Authority
- CN
- China
- Prior art keywords
- pulse width
- phase
- resonant
- secondary side
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 239000003990 capacitor Substances 0.000 claims abstract description 19
- 230000014509 gene expression Effects 0.000 claims description 14
- 101150096839 Fcmr gene Proteins 0.000 claims description 6
- 230000000295 complement effect Effects 0.000 claims description 6
- 230000001105 regulatory effect Effects 0.000 claims description 4
- 230000000903 blocking effect Effects 0.000 abstract description 4
- 229920006395 saturated elastomer Polymers 0.000 abstract description 4
- 238000010992 reflux Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 7
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010587 phase diagram Methods 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 101100379081 Emericella variicolor andC gene Proteins 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/01—Resonant DC/DC converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
- H02M1/0054—Transistor switching losses
- H02M1/0058—Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
- H02M1/083—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
- H02M1/088—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/12—Arrangements for reducing harmonics from ac input or output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33573—Full-bridge at primary side of an isolation transformer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
技术领域
本发明涉及谐振双有源桥变换器的调制技术领域,具体的涉及一种CLCLC型谐振变换器及调制方法。
背景技术
高频隔离DC-DC变换器被广泛运用在储能系统、车到电网(V2G)系统和固态变压器之中。其中,双有源桥(DAB)变换器是研究和应用最广泛的双向功率转换器拓扑结构之一。在其发展的早期阶段,由于功率器件的性能限制,DAB变换器受到高功率损耗的影响,导致较低的效率。随着新的功率器件和磁性材料的发展,DAB转换器的效率和功率密度已得到显著改善,使其在许多工业应用中具有吸引力。
目前,为了提高DAB变换器效率,学者们提出了不同调制策略。传统的单移相(single-phase-shift,SPS)控制会使得变换器运行过程中存在回流功率的问题,且开关管难以实现软开关;拓展移相控制(extended-phase-shift,EPS)可以减少无功环流和电流应力,增加开关的软开关范围;双移相控制(dual-phase-shift,DPS)也可以降低了变换器的无功环流和损耗;三移相控制(triple-phase-shift,TPS)使变换器在轻载条件下也可以实现软开关,有效减少了无功环流和电流应力,但是控制的复杂度也提高了。然而,不管是哪一种移相方法,都很难对回流功率和开关损耗同时进行优化,这极大地限制了DAB变换器性能的提升。
公开号CN110445392A公开了一种新型交错并联双管正激变换器及其调制策略,变换器包括第一双管正激变换器、第二双管正激变换器、无源辅助回路、滤波电路、负载电路和直流电源。本发明采用移相PWM调制策略,第一双管正激变换器与第二双管正激变换器相位互差180°电角度互补运行。该变换器可以消除整流二极管中的寄生振荡以及瞬时过电压,但是无法防止变压器饱和,无法衰减谐振槽电流中的高次谐波,影响了变换器的效率。
发明内容
本发明的目的在于提供一种CLCLC型谐振变换器及其非对称调制方法,当变换器运行在额定输出功率的25%到100%之间时,能够实现零循环电流、零回流功率和所有开关管的软开关运行,实现最小化的导通损耗和开关损耗,极大地提高了变换器的效率。
实现本发明目的的技术解决方案为:
一种CLCLC型谐振变换器,包括依次相连的一次侧全桥、谐振槽、高频变压器和二次侧全桥,所述一次侧全桥包括开关管S 1 ~S 4 ,所述开关管S 1 ~S 4 构成一次侧有源全桥电路;所述谐振槽包括设置在一次侧的依次连接的一次侧谐振电容C p 、谐振电感L p 和谐振电容C x ,及设置在二次侧的二次侧谐振电容C s 和谐振电感L s ,所述谐振电容C x 设置在高频变压器的原边的两端;所述高频变压器的匝数比为1:n;所述二次侧全桥包括开关管Q 1 ~Q 4 ,所述开关管Q 1 ~Q 4 构成二次侧有源全桥电路。
本发明还公开了一种CLCLC型谐振变换器的调制方法,采用上述的CLCLC型谐振变换器,调制方法包括以下步骤:
步骤S01:一个周期内,使得一次侧电压正半周脉冲宽度可调,负半周脉冲宽度固定为π,使得二次侧电压正半周脉冲宽度可调,负半周脉冲宽度固定为π;
优选的技术方案中,所述步骤S01中,调节开关管S 1 ~S 4 的脉冲宽度,使开关管S 1 和S 2 保持50%占空比,将开关管S 4 的脉冲宽度调整到δ,开关管S 3 的脉冲宽度与S 4 互补,产生一个具有三电平的非对称电压波形,其正脉宽调整到δ,负脉宽固定为π。
优选的技术方案中,调节开关管Q 1 ~Q 4 的脉冲宽度,使开关管Q 3 和Q 4 保持50%占空
比,开关管Q 1 的脉冲宽度调整到δ,开关管Q 2 的脉冲宽度与其互补,且开关管Q 4 滞后开关管S 1
角度,产生一个具有三电平的非对称电压波形,其负脉宽固定为π,正脉宽调整到δ。
优选的技术方案中,所述步骤S02之后还包括:
优选的技术方案中,一次侧谐振电流i p ,二次侧谐振电流i s 的计算方法包括:
得到变换器在相量域下的等效电路,根据KCL和KVL定律,得到:
其中,是一次侧中点交流电压v p 的相量表达形式,是二次侧中点交流电压v s
转换到一次侧的相量表达形式,是L s 转换到一次侧的变量,是C s 转换到一次侧的变
量;为一次侧谐振电流的相量形式,为二次侧谐振电流的相量形式,为开关角频率,L p 为一次侧谐振电感,L s 为二次侧谐振电感,C s 为二次侧谐振电容;
进一步得到:
Vin和Vout分别是输入电压和输出电压。
优选的技术方案中,还包括:
本发明又公开了一种CLCLC型谐振变换器的调制系统,采用上述的CLCLC型谐振变换器,调制系统包括:
一次侧波形调节模块,一个周期内,使得一次侧电压正半周脉冲宽度可调,负半周脉冲宽度固定为π;
二次侧波形调节模块,使得二次侧电压正半周脉冲宽度可调,负半周脉冲宽度固
定为π;调节二次侧电压滞后一次侧电压相位;通过调整谐振电流的相位与电压相位同
相,即一次侧谐振电流相位为0,二次侧谐振电流相位为。
优选的技术方案中,所述二次侧波形调节模块,调节开关管Q 1 ~Q 4 的脉冲宽度,使开
关管Q 3 和Q 4 保持50%占空比,开关管Q 1 的脉冲宽度调整到δ,开关管Q 2 的脉冲宽度与其互补,
且开关管Q 4 滞后开关管S 1 角度,产生一个具有三电平的非对称电压波形,其负脉宽固定为
π,正脉宽调整到δ。
优选的技术方案中,还包括相位调整模块,对谐振电流的相位进行调整;将一次侧
谐振电流i p 过零点调整在0处,二次侧谐振电流i s 过零点调整在处,从而使得谐振电流与
电压同相位,即满足以下条件:时,实现零循环电流、零回流功率。
本发明与现有技术相比,其显著优点为:
(1) 本发明拓扑结构具有固有的直流阻断能力,可以防止变压器饱和,并且能很好地衰减谐振槽电流中的高次谐波。
(2) 本发明可以实现零循环电流和零回流功率,即实现了最小的导通损耗。
(3) 本发明可以实现全部开关管的软开关运行,即实现了最小的开关损耗。从而极大地提高了变换器的效率。
附图说明
图1是CLCLC型谐振变换器原理图;
图2是在CLCLC型谐振变换器下采用非对称调制策略的稳态波形图;
图3是CLCLC型谐振变换器在相量域下的等效电路图;
图4是CLCLC型谐振变换器谐振电流和电压的相位图;
图5是Vin=150V,Vout=75V,M=1,P o =200W,v p 、v s 、i p 、i s 波形和各开关管电流图;
图6是Vin=150V,Vout=75V,M=1,P o =50W,v p 、v s 、i p 、i s 波形和各开关管电流图;
图7是Vin=212V,Vout=53V,M=0.5,P o =200W,v p 、v s 、i p 、i s 波形和各开关管电流图;
图8是Vin=212V,Vout=53V,M=0.5,P o =50W,v p 、v s 、i p 、i s 波形和各开关管电流图。
具体实施方式
本发明的原理是:CLCLC型谐振变换器在LCL型谐振变换器基础上仅添加两个额外
的电容,与其相比,该变换器拓扑具有固有的直流阻断能力,可以防止变压器饱和,并且能
更好地衰减谐振槽电流中的高次谐波。基于此谐振变换器,提出了一种非对称调制策略。所
述调制策略在一个周期内,一次侧电压正半周脉冲宽度可调,负半周脉冲宽度固定为π,二
次侧电压正半周脉冲宽度可调,负半周脉冲宽度固定为π。此外,二次侧电压滞后一次侧电
压相位。通过调整谐振电流的相位与电压相位同相,即一次侧谐振电流相位为0,二次侧
谐振电流相位为。
实施例1:
如图1所示,一种CLCLC型谐振变换器,在LCL型谐振变换器基础上仅添加两个额外的电容,与其相比,该变换器拓扑具有固有的直流阻断能力,可以防止变压器饱和,并且能更好地衰减谐振槽电流中的高次谐波。
具体的,该一种CLCLC型谐振变换器,如图1所示,包括依次相连的一次侧全桥、谐振槽、高频变压器和二次侧全桥,一次侧全桥包括开关管S 1 ~S 4 ,开关管S 1 ~S 4 构成一次侧有源全桥电路;谐振槽包括设置在一次侧的依次连接的一次侧谐振电容C p 、谐振电感L p 和谐振电容C x ,及设置在二次侧的二次侧谐振电容C s 和谐振电感L s ,谐振电容C x 设置在高频变压器的原边的两端;高频变压器的匝数比为1:n;二次侧全桥包括开关管Q 1 ~Q 4 ,开关管Q 1 ~Q 4 构成二次侧有源全桥电路。
另一实施例,一种CLCLC型谐振变换器的调制方法,采用上述的CLCLC型谐振变换器,调制方法包括以下步骤:
步骤S01:一个周期内,使得一次侧电压正半周脉冲宽度可调,负半周脉冲宽度固定为π,使得二次侧电压正半周脉冲宽度可调,负半周脉冲宽度固定为π;
具体的实现中,如图2所示,调节开关管S 1 ~S 4 的脉冲宽度,由此产生一次侧中点交流电压v p 的波形。使开关管S 1 和S 2 保持50%占空比,将开关管S 4 的脉冲宽度调整到δ,开关管S 3 的脉冲宽度与S 4 互补,产生一个具有三电平的非对称电压波形,其正脉宽调整到δ,负脉宽固定为π。其中,0<δ<π。
调节开关管Q 1 ~Q 4 的脉冲宽度,由此产生二次侧中点交流电压v s 的波形。具体方法
为:使开关管Q 3 和Q 4 保持50%占空比,开关管Q 1 的脉冲宽度调整到δ,开关管Q 2 的脉冲宽度与
其互补,且开关管Q 4 滞后开关管S 1 角度,产生一个具有三电平的非对称电压波形,其负脉
宽固定为π,正脉宽调整到δ。
一实施例中,对谐振电流的相位进行调整;将一次侧谐振电流i p 过零点调整在0
处,二次侧谐振电流i s 过零点调整在处,从而使得谐振电流与电压同相位,即满足以下条
件:时,实现零循环电流、零回流功率。
具体的实现,CLCLC型谐振变换器在相量域下的等效电路如图3所示:根据KCL和KVL定律,可得如下表达式:
为开关角频率:,L p 为一次侧谐振电感,C x 和C p 为一次侧谐振电容,L s
为二次侧谐振电感,C s 为二次侧谐振电容,Q为归一化质量因数:,R L 为负载电阻:,其中为额定功率,Z c 为基值阻抗:,其中,,
则谐振角频率。
当电路谐振运行时,令开关角频率等于谐振角频率,上述表达式可以化简为:
谐振电流和电压的相位图如图4所示:一次侧谐振电流i p 超前二次侧电压角度
90°,二次侧谐振电流i s 滞后一次侧电压v p 角度90°。一次侧基波电压v p 可分解成v p0 和v p1 ,其
中v p0 表示电压相位为0。同理,二次侧基波电压可分解成和,其中表示电压相
位为。
定义电压增益M的表达式如下:
则输出功率表达式可以化简为:
下一步将进行关键参数设计:
选择,。设计输入电压Vin为150V~212V,输出电压Vout为53V~
75V,额定功率P o 为200W。当电压增益M=1时,变换器为150V转75V,当M=0.5时,变换器为212V
转53V。
为了验证理论分析,将采用以上参数在PSIM软件里进行仿真。
接下来,将在额定功率下进行仿真验证本发明的实际效果,如图5~图8所示。可以看出在额定输出功率的25%到100%之间实现零循环电流、零回流功率、全部开关管的软开关运行,从而获得最小化的导通损耗和开关损耗,极大地提高了变换器的效率。
另一实施例中,一种CLCLC型谐振变换器的调制系统,采用上述的CLCLC型谐振变换器,调制系统包括:
一次侧波形调节模块,一个周期内,使得一次侧电压正半周脉冲宽度可调,负半周脉冲宽度固定为π;
二次侧波形调节模块,使得二次侧电压正半周脉冲宽度可调,负半周脉冲宽度固
定为π;调节二次侧电压滞后一次侧电压相位;通过调整谐振电流的相位与电压相位同
相,即一次侧谐振电流相位为0,二次侧谐振电流相位为。
一实施例中,还包括相位调整模块,对谐振电流的相位进行调整;将一次侧谐振电
流i p 过零点调整在0处,二次侧谐振电流i s 过零点调整在处,从而使得谐振电流与电压同
相位,即满足以下条件:时,实现零循环电流、零回流功率。
具体的实现同上,这里不再赘述。
上述实施例为本发明优选地实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (8)
1.一种CLCLC型谐振变换器的调制方法,其特征在于,所述CLCLC型谐振变换器包括依次相连的一次侧全桥、谐振槽、高频变压器和二次侧全桥,所述一次侧全桥包括开关管S 1 ~ S 4 ,所述开关管S 1 ~S 4 构成一次侧有源全桥电路;所述谐振槽包括设置在一次侧的依次连接的一次侧谐振电容C p 、谐振电感L p 和谐振电容C x ,及设置在二次侧的二次侧谐振电容C s 和谐振电感L s ,所述谐振电容C x 设置在高频变压器的原边的两端;所述高频变压器的匝数比为1:n;所述二次侧全桥包括开关管Q 1 ~Q 4 ,所述开关管Q 1 ~Q 4 构成二次侧有源全桥电路,调制方法包括以下步骤:
步骤S01:一个周期内,使得一次侧电压正半周脉冲宽度可调,负半周脉冲宽度固定为π,使得二次侧电压正半周脉冲宽度可调,负半周脉冲宽度固定为π;具体包括,调节开关管S 1 ~S 4 的脉冲宽度,使开关管S 1 和S 2 保持50%占空比,将开关管S 4 的脉冲宽度调整到δ,开关管S 3 的脉冲宽度与S 4 互补,产生一个具有三电平的非对称电压波形,其正脉宽调整到δ,负脉宽固定为π;
4.根据权利要求3所述的CLCLC型谐振变换器的调制方法,其特征在于,一次侧谐振电流i p ,二次侧谐振电流i s 的计算方法包括:
得到变换器在相量域下的等效电路,根据KCL和KVL定律,得到:
其中,是一次侧中点交流电压v p 的相量表达形式,是二次侧中点交流电压v s 转换到一次侧的相量表达形式,是L s 转换到一次侧的变量,是C s 转换到一次侧的变量;为一次侧谐振电流的相量形式,为二次侧谐振电流的相量形式,为开关角频率,L p 为一次侧谐振电感,L s 为二次侧谐振电感,C s 为二次侧谐振电容;
进一步得到:
Vin和Vout分别是输入电压和输出电压。
6.一种CLCLC型谐振变换器的调制系统,其特征在于,采用权利要求1所述的CLCLC型谐振变换器,调制系统包括:
一次侧波形调节模块,一个周期内,使得一次侧电压正半周脉冲宽度可调,负半周脉冲宽度固定为π;具体包括,调节开关管S 1 ~S 4 的脉冲宽度,使开关管S 1 和S 2 保持50%占空比,将开关管S 4 的脉冲宽度调整到δ,开关管S 3 的脉冲宽度与S 4 互补,产生一个具有三电平的非对称电压波形,其正脉宽调整到δ,负脉宽固定为π;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211609593.2A CN115622413B (zh) | 2022-12-15 | 2022-12-15 | 一种clclc型谐振变换器及调制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211609593.2A CN115622413B (zh) | 2022-12-15 | 2022-12-15 | 一种clclc型谐振变换器及调制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115622413A CN115622413A (zh) | 2023-01-17 |
CN115622413B true CN115622413B (zh) | 2023-03-28 |
Family
ID=84880117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211609593.2A Active CN115622413B (zh) | 2022-12-15 | 2022-12-15 | 一种clclc型谐振变换器及调制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115622413B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021127995A1 (en) * | 2019-12-24 | 2021-07-01 | Cree, Inc. | Circuits and methods for controlling bidirectional cllc converters |
CN117713563B (zh) * | 2024-02-06 | 2024-05-10 | 常熟理工学院 | Lcl型谐振变换器的扩展三自由度调制控制方法及系统 |
CN117792030B (zh) * | 2024-02-27 | 2024-05-14 | 常熟理工学院 | Clc型谐振变换器的增强型双重同相调制方法及系统 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113258778A (zh) * | 2021-02-03 | 2021-08-13 | 中国电力科学研究院有限公司 | 一种中高压直流配电系统的dc-dc变换器模型 |
CN113595087A (zh) * | 2021-07-08 | 2021-11-02 | 国网西藏电力有限公司 | 一种应用于高原地区具有潮流控制的末端电压治理装置 |
CN114465481A (zh) * | 2021-12-29 | 2022-05-10 | 宁波均胜新能源研究院有限公司 | 双向clllc谐振变换器控制方法、电子设备及变换器 |
-
2022
- 2022-12-15 CN CN202211609593.2A patent/CN115622413B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN115622413A (zh) | 2023-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111490683B (zh) | 双变压器串联谐振双有源桥dc-dc变换器拓扑的轨迹控制方法 | |
CN115622413B (zh) | 一种clclc型谐振变换器及调制方法 | |
Huang et al. | Comprehensive coordinated frequency control of symmetrical CLLC-DC transformer in hybrid AC/DC microgrids | |
Liu et al. | Hybrid frequency pacing for high-order transformed wireless power transfer | |
CN116470774B (zh) | 一种t型lcl谐振变换器及其全范围软开关调制方法 | |
Shakib et al. | Dual bridge LLC resonant converter with frequency adaptive phase-shift modulation control for wide voltage gain range | |
CN109004836B (zh) | 适用于模块化多电平直流变压器的变频优化控制方法 | |
Li et al. | Optimized Bidirectional DC-DC Converter Adapted to High Voltage Gain and Wide ZVS Range | |
Jin et al. | Hybrid Control for Three-Level LLC Resonant Converter of Dual-Bridge for Wide Output Range | |
Duan et al. | Modular multilevel resonant DC transformer with inherent balancing capability | |
CN112953245A (zh) | 双有源桥式变换器全负载范围软开关控制方法 | |
Reddy P et al. | Modular‐structured resonant converter for multilevel converters in micro grids | |
CN115955122B (zh) | 一种双桥串联谐振变换器的无回流调制方法及系统 | |
CN115833602B (zh) | 一种双变压器式谐振变换器及其调制方法 | |
CN116094329B (zh) | 一种混合桥谐振变换器、调制方法及系统 | |
Yuan et al. | A Linear-Resonant Hybrid Bridge DC–DC Converter | |
Liu et al. | A comprehensive modulation scheme of DAB with variable voltage gain | |
Jin et al. | Asymmetric trapezoidal wave modulation of modular multilevel resonant dc/dc converter for current stress optimization | |
CN109039082B (zh) | 适用于模块化多电平直流变压器的回流功率优化方法 | |
CN113726167A (zh) | 一种具有宽输出增益范围的混合定频调制方法 | |
Ma et al. | Secondary periodic energy control for LCC-S compensated wireless power transfer systems | |
Wen et al. | The Hybrid Control Strategy for The Wide Input of The LLC Converter | |
Yao et al. | A Quasi-Trapezoidal Modulation Method with Zero-Voltage Switching for Single-Phase Inverters | |
Cao et al. | Efficiency Optimization of the active auxiliary network in the phase-shifted full-bridge DC/DC converter | |
Shao et al. | A High-Efficiency Wireless Power Transfer Converter with Integrated Power Stages |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |