CN115612994A - A magnetron sputtering cathode - Google Patents
A magnetron sputtering cathode Download PDFInfo
- Publication number
- CN115612994A CN115612994A CN202210971525.4A CN202210971525A CN115612994A CN 115612994 A CN115612994 A CN 115612994A CN 202210971525 A CN202210971525 A CN 202210971525A CN 115612994 A CN115612994 A CN 115612994A
- Authority
- CN
- China
- Prior art keywords
- magnetron sputtering
- magnet
- magnetic
- sputtering cathode
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001755 magnetron sputter deposition Methods 0.000 title claims abstract description 95
- 238000001816 cooling Methods 0.000 claims abstract description 68
- 230000005291 magnetic effect Effects 0.000 claims abstract description 57
- 239000000110 cooling liquid Substances 0.000 claims abstract description 18
- 239000013077 target material Substances 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims description 28
- 229910052802 copper Inorganic materials 0.000 claims description 21
- 239000010949 copper Substances 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 14
- 239000000956 alloy Substances 0.000 claims description 12
- 229910052782 aluminium Inorganic materials 0.000 claims description 12
- 239000000696 magnetic material Substances 0.000 claims description 12
- 229910052709 silver Inorganic materials 0.000 claims description 11
- 229910052742 iron Inorganic materials 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- 229910052745 lead Inorganic materials 0.000 claims description 8
- 239000011133 lead Substances 0.000 claims description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 239000011651 chromium Substances 0.000 claims description 7
- 238000009434 installation Methods 0.000 claims description 7
- 239000011777 magnesium Substances 0.000 claims description 7
- 229910052749 magnesium Inorganic materials 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 229910052758 niobium Inorganic materials 0.000 claims description 7
- 239000010955 niobium Substances 0.000 claims description 7
- 239000004332 silver Substances 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 239000010936 titanium Substances 0.000 claims description 7
- 229910052721 tungsten Inorganic materials 0.000 claims description 7
- 229910052720 vanadium Inorganic materials 0.000 claims description 7
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- 239000011701 zinc Substances 0.000 claims description 7
- 229910052726 zirconium Inorganic materials 0.000 claims description 7
- 229910000831 Steel Inorganic materials 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- 239000010935 stainless steel Substances 0.000 claims description 6
- 229910001220 stainless steel Inorganic materials 0.000 claims description 6
- 239000010959 steel Substances 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 239000002826 coolant Substances 0.000 claims description 5
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- 229910021389 graphene Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 5
- 150000002910 rare earth metals Chemical class 0.000 claims description 5
- 229910052582 BN Inorganic materials 0.000 claims description 4
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 4
- 229910052768 actinide Inorganic materials 0.000 claims description 4
- 229910052787 antimony Inorganic materials 0.000 claims description 4
- 229910052785 arsenic Inorganic materials 0.000 claims description 4
- 229910052790 beryllium Inorganic materials 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 229910052794 bromium Inorganic materials 0.000 claims description 4
- 229910052793 cadmium Inorganic materials 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 239000003153 chemical reaction reagent Substances 0.000 claims description 4
- 229910052801 chlorine Inorganic materials 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 4
- 239000003302 ferromagnetic material Substances 0.000 claims description 4
- 229910052731 fluorine Inorganic materials 0.000 claims description 4
- 229910052733 gallium Inorganic materials 0.000 claims description 4
- 229910052732 germanium Inorganic materials 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- 229910052735 hafnium Inorganic materials 0.000 claims description 4
- 229910052738 indium Inorganic materials 0.000 claims description 4
- 230000006698 induction Effects 0.000 claims description 4
- 229910052740 iodine Inorganic materials 0.000 claims description 4
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 4
- 229910052744 lithium Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910052762 osmium Inorganic materials 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 4
- 229910052700 potassium Inorganic materials 0.000 claims description 4
- 229910052702 rhenium Inorganic materials 0.000 claims description 4
- 229910052703 rhodium Inorganic materials 0.000 claims description 4
- 229910052701 rubidium Inorganic materials 0.000 claims description 4
- 229910052707 ruthenium Inorganic materials 0.000 claims description 4
- 229910052711 selenium Inorganic materials 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 4
- 239000010944 silver (metal) Substances 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- 229910052712 strontium Inorganic materials 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- 239000008399 tap water Substances 0.000 claims description 4
- 235000020679 tap water Nutrition 0.000 claims description 4
- 229910052714 tellurium Inorganic materials 0.000 claims description 4
- 229910052716 thallium Inorganic materials 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 229910052727 yttrium Inorganic materials 0.000 claims description 4
- 229910000859 α-Fe Inorganic materials 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 3
- 230000005294 ferromagnetic effect Effects 0.000 claims description 3
- 230000017525 heat dissipation Effects 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims description 3
- 150000001255 actinides Chemical class 0.000 claims description 2
- 150000002602 lanthanoids Chemical class 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims 1
- 238000004544 sputter deposition Methods 0.000 abstract description 12
- 238000000151 deposition Methods 0.000 abstract description 11
- 230000008021 deposition Effects 0.000 abstract description 11
- 238000005516 engineering process Methods 0.000 abstract description 9
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 13
- 238000009826 distribution Methods 0.000 description 11
- 238000000576 coating method Methods 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- -1 lanthanide metals Chemical class 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229910001369 Brass Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910001172 neodymium magnet Inorganic materials 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- QJVKUMXDEUEQLH-UHFFFAOYSA-N [B].[Fe].[Nd] Chemical compound [B].[Fe].[Nd] QJVKUMXDEUEQLH-UHFFFAOYSA-N 0.000 description 1
- SFBMLGJOOALENT-UHFFFAOYSA-N [Co].[Ni].[Nd] Chemical compound [Co].[Ni].[Nd] SFBMLGJOOALENT-UHFFFAOYSA-N 0.000 description 1
- KPLQYGBQNPPQGA-UHFFFAOYSA-N cobalt samarium Chemical compound [Co].[Sm] KPLQYGBQNPPQGA-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明公开了一种磁控溅射阴极。磁控溅射阴极,包括:靶材、冷却系统、磁铁架、磁铁、导磁板及底座。本发明磁控溅射阴极的冷却系统内设置若干个栅格,通过格栅将冷却通道分隔成若干个分流道,从入口流入的冷却液分别向各分流道进行分流,最终汇聚到出口流出。由于分流道中冷却液以层流的形式流动,且具有高导热性的栅格增大了换热面积和换热效率,有效的提高了磁控溅射阴极的热循环效率,实现了快速均匀的冷却,因此能够大幅提高磁控溅射技术的功率密度,进而显著改善等离子体离化率和薄膜沉积速率。
The invention discloses a magnetron sputtering cathode. Magnetron sputtering cathode, including: target material, cooling system, magnet frame, magnet, magnetic guide plate and base. Several grids are arranged in the cooling system of the magnetron sputtering cathode of the present invention, and the cooling channel is divided into several sub-flow channels through the grids, and the cooling liquid flowing in from the inlet is respectively divided into each sub-flow channel, and finally converges to the outlet and flows out. Since the cooling liquid in the sub-channel flows in the form of laminar flow, and the grid with high thermal conductivity increases the heat transfer area and heat transfer efficiency, it effectively improves the thermal cycle efficiency of the magnetron sputtering cathode and realizes fast and uniform sputtering. Cooling, so the power density of magnetron sputtering technology can be greatly increased, which in turn can significantly improve the plasma ionization rate and film deposition rate.
Description
技术领域technical field
本发明涉及磁控溅射阴极技术领域,尤其涉及高离化、快速沉积的磁控溅射技术领域,具体涉及的是一种磁控溅射阴极。The invention relates to the technical field of magnetron sputtering cathodes, in particular to the technical field of magnetron sputtering with high ionization and fast deposition, and in particular to a magnetron sputtering cathode.
背景技术Background technique
磁控溅射技术因为具有低温沉积、膜厚容易控制、重复性好等优点,一直广泛的应用于功能涂层制备。然而,当前传统的磁控溅射技术面临着等离子体离化率低的问题,一方面导致沉积粒子能量低,严重影响涂层的致密度和结合力;另一方面导致沉积粒子束流小,严重影响涂层的沉积效率。Magnetron sputtering technology has been widely used in the preparation of functional coatings because of its low-temperature deposition, easy control of film thickness, and good repeatability. However, the current traditional magnetron sputtering technology is facing the problem of low plasma ionization rate. On the one hand, it leads to low energy of deposited particles, which seriously affects the density and bonding force of the coating; on the other hand, it leads to small beam current of deposited particles, Seriously affect the deposition efficiency of the coating.
为提高离化率,业内提出高功率脉冲磁控溅射技术(HiPIMS),该技术通过高强度脉冲放电使得沉积粒子大量离化,并通过离子能量控制大幅改善了涂层结构的可控性,优化了涂层力学性能。然而,脉冲的引入造成放电过程中频繁打火,影响放电的稳定性,同时极小的占空比和严重的离子回吸也导致涂层沉积速率大幅度降低,提高的成本无法满足工业化大规模生产的需求。鉴于此,将直流放电的高占空比与脉冲放电的高离化率相结合,提出了新一代磁控溅射技术——连续高功率磁控溅射技术(C-HPMS),不仅能够将离化率维持在HiPIMS技术的水平上,还能够大幅提高涂层的沉积效率,有望同时实现高离化与快速沉积。In order to improve the ionization rate, the high-power pulsed magnetron sputtering technology (HiPIMS) was proposed in the industry. This technology ionizes a large number of deposited particles through high-intensity pulsed discharge, and greatly improves the controllability of the coating structure through ion energy control. Optimized coating mechanical properties. However, the introduction of pulses causes frequent ignition during the discharge process, which affects the stability of the discharge. At the same time, the extremely small duty cycle and serious ion resorption also lead to a significant decrease in the deposition rate of the coating, and the increased cost cannot meet the large-scale industrialization. production needs. In view of this, combining the high duty cycle of DC discharge with the high ionization rate of pulse discharge, a new generation of magnetron sputtering technology - continuous high power magnetron sputtering (C-HPMS) is proposed, which can not only The ionization rate is maintained at the level of HiPIMS technology, which can also greatly improve the deposition efficiency of the coating, and is expected to achieve high ionization and rapid deposition at the same time.
然而,作为磁控溅射的核心设备,磁控溅射阴极无法承受如此大功率的放电,在正常工作的条件下,其功率密度一般只有10~20W/cm2,远低于C-HPMS的需求。一旦磁控溅射阴极的功率密度过高,放电产生的热量将造成靶材熔化、磁铁退磁、结构变形、密封失效等问题,引起漏水、漏气、短路等严重后果,难以满足高功率密度的磁控溅射放电需求。However, as the core equipment of magnetron sputtering, the magnetron sputtering cathode cannot withstand such a high-power discharge. Under normal working conditions, its power density is generally only 10-20W/cm 2 , which is much lower than that of C-HPMS need. Once the power density of the magnetron sputtering cathode is too high, the heat generated by the discharge will cause problems such as target melting, magnet demagnetization, structural deformation, and sealing failure, causing serious consequences such as water leakage, air leakage, and short circuit. It is difficult to meet the requirements of high power density. Magnetron sputtering discharge requirements.
因此,现有磁控溅射阴极还有待于改进和发展。Therefore, the existing magnetron sputtering cathodes still need to be improved and developed.
发明内容Contents of the invention
本发明要解决的技术问题在于,针对现有磁控溅射阴极的上述缺陷,提供一种新型磁控溅射阴极结构,旨在解决现有阴极无法连续高功率磁控溅射放电需求的问题。The technical problem to be solved by the present invention is to provide a novel magnetron sputtering cathode structure for the above-mentioned defects of the existing magnetron sputtering cathode, aiming at solving the problem that the existing cathode cannot continuously discharge high-power magnetron sputtering .
本发明解决技术问题所采用的技术方案如下:The technical solution adopted by the present invention to solve technical problems is as follows:
一种磁控溅射阴极,其中,包括:靶材、冷却系统、磁铁架、磁铁、导磁板和底座六个部分组成;A magnetron sputtering cathode, which includes six parts: a target, a cooling system, a magnet frame, a magnet, a magnetic guide plate and a base;
所述靶材设置于所述冷却系统的正上方;The target is arranged directly above the cooling system;
所述冷却系统设置于所述磁铁架的正上方,包括:壳体,所述壳体的中空部分构成冷却通道,所述冷却通道具有入口和出口;The cooling system is arranged directly above the magnet frame, and includes: a housing, the hollow part of which forms a cooling passage, and the cooling passage has an inlet and an outlet;
所述壳体内设置若干个具有导热性能的栅格,所述栅格将冷却通道分隔成若干个分流道;Several grids with thermal conductivity are arranged in the housing, and the grids divide the cooling channel into several flow channels;
所述分流道的两端分别与所述冷却通道的入口、出口连通;Both ends of the shunt channel communicate with the inlet and outlet of the cooling channel respectively;
所述分流道中的冷却液以层流的方式在所述分流道中流动;The cooling liquid in the sub-flow channel flows in the sub-flow channel in a laminar flow manner;
所述磁铁架设置于所述底座的正上方,所述磁铁架朝向所述底座的一侧设置有磁铁安装槽;The magnet holder is arranged directly above the base, and the magnet holder is provided with a magnet installation groove on one side facing the base;
所述磁铁设置在所述磁铁安装槽内;The magnet is arranged in the magnet installation groove;
所述导磁板设置在所述磁铁的外侧和底部。The magnetic conductive plate is arranged on the outer side and the bottom of the magnet.
所述的磁控溅射阴极,其中,单个所述栅格的高度为1~20mm,宽度为0.1~10mm,所述冷却液在所述入口的流量大于0.5L/s。The magnetron sputtering cathode, wherein the height of a single grid is 1-20 mm, the width is 0.1-10 mm, and the flow rate of the cooling liquid at the inlet is greater than 0.5 L/s.
所述的磁控溅射阴极,其中,所述入口有一个或多个,多个入口呈对称排布或不对称排布;和/或The magnetron sputtering cathode, wherein there are one or more inlets, and the plurality of inlets are arranged symmetrically or asymmetrically; and/or
所述出口有一个或多个,多个出口呈对称排布或不对称排布;和/或There are one or more outlets, and the plurality of outlets are arranged symmetrically or asymmetrically; and/or
单个入口的截面的宽度为2~20mm,所述入口的截面形状为基本图形之一或基本图形形成的组合图形,其中,所述基本图形包括:圆形、椭圆形、扇形、弓形或者多边形中至少一个,所述多边形为边数大于或等于3的图形;和/或The width of the cross-section of a single inlet is 2-20 mm, and the cross-sectional shape of the inlet is one of the basic figures or a combination of basic figures, wherein the basic figures include: circle, ellipse, sector, bow or polygon At least one, the polygon is a figure with sides greater than or equal to 3; and/or
单个出口的截面的宽度为2~20mm,所述出口的截面形状为基本图形之一或基本图形形成的组合图形,其中,所述基本图形包括:圆形、椭圆形、扇形、弓形或者多边形中至少一个,所述多边形为边数大于或等于3的图形;和/或The width of the cross-section of a single outlet is 2-20mm, and the cross-sectional shape of the outlet is one of the basic figures or a combination of basic figures, wherein the basic figures include: circle, ellipse, sector, bow or polygon. At least one, the polygon is a figure with sides greater than or equal to 3; and/or
所述分流道的横截面的形状为基本图形之一或基本图形形成的组合图形,其中,所述基本图形包括:圆形、椭圆形、扇形、弓形或者多边形或者中至少一个,所述多边形为边数大于或等于3的图形;和/或The shape of the cross section of the runner is one of the basic figures or a combined figure formed by the basic figures, wherein the basic figures include: a circle, an ellipse, a sector, an arc or a polygon or at least one of them, and the polygon is Figures with sides greater than or equal to 3; and/or
所述分流道的纵截面的形状为基本线条之一或基本线条形成的组合图形,其中,所述基本线条包括:直线、曲线、或者折线中的至少一个。The shape of the longitudinal section of the flow channel is one of the basic lines or a combined figure formed by the basic lines, wherein the basic lines include: at least one of a straight line, a curved line, or a folded line.
所述的磁控溅射阴极,其中,所述栅格的材料是具有导热性能和力学性能且不具备导磁性能的材料及其合金中的一种或几种;和/或The magnetron sputtering cathode, wherein, the material of the grid is one or more of materials and alloys thereof that have thermal conductivity and mechanical properties and do not have magnetic properties; and/or
所述栅格的表面沉积具有导热性的材料以加快散热;和/或A material with thermal conductivity is deposited on the surface of the grid to accelerate heat dissipation; and/or
所述磁铁架为非导磁材料;和/或The magnet frame is a non-magnetic material; and/or
所述磁铁为铁磁性材料;和/或The magnet is a ferromagnetic material; and/or
所述导磁板为软磁性材料。The magnetically conductive plate is made of soft magnetic material.
所述的磁控溅射阴极,其中,所述栅格的材料包括铜、铝、镁、钛、铬、钒、钨、锌、银、钼、铌、锆及其合金中的至少一种;The magnetron sputtering cathode, wherein the material of the grid includes at least one of copper, aluminum, magnesium, titanium, chromium, vanadium, tungsten, zinc, silver, molybdenum, niobium, zirconium and alloys thereof;
所述栅格的表面沉积石墨烯、银、铜、氮化硅、氮化硼或氮化铝中的至少一种;At least one of graphene, silver, copper, silicon nitride, boron nitride or aluminum nitride is deposited on the surface of the grid;
所述磁铁架为非导磁的铜、铝、不锈钢材料及其合金材料;和/或The magnet frame is non-magnetic copper, aluminum, stainless steel and alloy materials thereof; and/or
所述磁铁为铁磁性的稀土永磁铁或铁氧体永磁铁中的至少一种,所述磁铁的磁极表面磁感应强度为20~1000mT;和/或The magnet is at least one of a ferromagnetic rare earth permanent magnet or a ferrite permanent magnet, and the magnetic induction intensity of the magnetic pole surface of the magnet is 20-1000mT; and/or
所述导磁板为软磁性的纯铁导磁板、纯镍导磁板、纯钴导磁板、SU430钢导磁板中的至少一种;和/或The magnetic plate is at least one of soft magnetic pure iron magnetic plate, pure nickel magnetic plate, pure cobalt magnetic plate, SU430 steel magnetic plate; and/or
所述导磁板的厚度大于2mm;和/或The thickness of the magnetically conductive plate is greater than 2mm; and/or
所述底座为不导磁的结构材料;和/或The base is a non-magnetic structural material; and/or
所述底座的厚度为10~50mm。The thickness of the base is 10-50mm.
所述的磁控溅射阴极,其中,所述靶材为Li、Na、K、Rb、Be、Mg、Ca、Sr、Ba、Sc、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、Ru、Os、Co、Rh、Tr、Ni、Pb、Pt、Cu、Ag、Au、Zn、Cd、B、Al、Ga、In、Tl、C、Si、Ge、Sn、Pb、N、P、As、Sb、O、S、Se、Te、F、Cl、Br、I及所有镧系金属和锕系金属组成的金属单质或化合物;和/或The magnetron sputtering cathode, wherein the target is Li, Na, K, Rb, Be, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Tr, Ni, Pb, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, In, Tl, C, Si, Ge, Sn, Pb, N, P, As, Sb, O, S, Se, Te, F, Cl, Br, I and all lanthanide metals and actinide metals composed of metal elements or compounds; and/or
所述靶材为混合靶或者拼接靶。The target material is a mixed target or a spliced target.
所述的磁控溅射阴极,其中,所述磁控溅射阴极的供电方式包括高功率脉冲磁控溅射、直流磁控溅射、脉冲磁控溅射、射频磁控溅射、中频磁控溅射、复合脉冲磁控溅射中的至少一种,所述磁控溅射阴极的平均功率密度为50~400W/cm2;和/或The magnetron sputtering cathode, wherein, the power supply mode of the magnetron sputtering cathode includes high-power pulse magnetron sputtering, DC magnetron sputtering, pulse magnetron sputtering, radio frequency magnetron sputtering, intermediate frequency magnetron sputtering At least one of sputtering and composite pulse magnetron sputtering, the average power density of the magnetron sputtering cathode is 50-400W/cm 2 ; and/or
所述磁控溅射阴极为矩形阴极、柱状阴极、圆形阴极、筒型阴极中的至少一种;和/或The magnetron sputtering cathode is at least one of a rectangular cathode, a columnar cathode, a circular cathode, and a cylindrical cathode; and/or
所述磁控溅射阴极的长度为0.05~10m。The length of the magnetron sputtering cathode is 0.05-10m.
所述的磁控溅射阴极,其中,所述冷却系统有一个或多个,多个所述冷却系统并排或重叠设置;和/或The magnetron sputtering cathode, wherein there are one or more cooling systems, and multiple cooling systems are arranged side by side or overlapped; and/or
所述冷却液为自来水、去离子水、纯净水、矿泉水、含有功能试剂的冷却剂中的一种。The cooling liquid is one of tap water, deionized water, pure water, mineral water, and a coolant containing functional reagents.
有益效果:本发明磁控溅射阴极的冷却系统内设置若干个栅格,通过格栅将冷却通道分隔成若干个分流道,从入口流入的冷却液分别向各分流道进行分流,最终汇聚到出口流出。由于分流道中冷却液以层流的形式流动,且具有高导热性的栅格增大了换热面积和换热效率,有效的提高了磁控溅射阴极的热循环效率,实现了快速均匀的冷却,因此能够大幅提高磁控溅射技术的功率密度,进而显著改善等离子体离化率和薄膜沉积速率。Beneficial effects: Several grids are arranged in the cooling system of the magnetron sputtering cathode of the present invention, and the cooling channel is divided into several sub-channels through the grids, and the cooling liquid flowing in from the inlet is separately divided into each sub-channel, and finally converged to Outflow. Since the cooling liquid in the sub-channel flows in the form of laminar flow, and the grid with high thermal conductivity increases the heat transfer area and heat transfer efficiency, it effectively improves the thermal cycle efficiency of the magnetron sputtering cathode and realizes fast and uniform sputtering. Cooling, so the power density of magnetron sputtering technology can be greatly increased, which in turn can significantly improve the plasma ionization rate and film deposition rate.
附图说明Description of drawings
图1是现有技术中冷却系统的温度分布图。Fig. 1 is a temperature distribution diagram of a cooling system in the prior art.
图2是本发明中控溅射阴极的截面示意图。Fig. 2 is a schematic cross-sectional view of the centrally controlled sputtering cathode of the present invention.
图3是本发明中控溅射阴极的纵截面示意图。Fig. 3 is a schematic longitudinal sectional view of the centrally controlled sputtering cathode of the present invention.
图4是本发明中具体实施例一的控溅射阴极的模拟温度(K)分布图。Fig. 4 is a simulated temperature (K) distribution diagram of the controlled sputtering cathode in the first embodiment of the present invention.
图5是本发明中具体实施例一的控溅射阴极的截面温度(℃)分布图。Fig. 5 is a cross-sectional temperature (° C.) distribution diagram of the controlled sputtering cathode in
图6是本发明中具体实施例一的控溅射阴极的流量与压力的关系图。Fig. 6 is a graph showing the relationship between flow rate and pressure of the controlled sputtering cathode according to
图7是本发明中具体实施例一的控溅射阴极的流量与温差的关系图。Fig. 7 is a graph showing the relationship between the flow rate and the temperature difference of the controlled sputtering cathode in the first embodiment of the present invention.
图8是本发明中具体实施例二的控溅射阴极的模拟温度(K)分布图。Fig. 8 is a simulated temperature (K) distribution diagram of the controlled sputtering cathode in the second embodiment of the present invention.
图9是本发明中具体实施例三的控溅射阴极的模拟温度(K)分布图。Fig. 9 is a distribution diagram of simulated temperature (K) of the controlled sputtering cathode in the third embodiment of the present invention.
图10是本发明中具有两个冷却系统的控溅射阴极的模拟温度(K)分布图。Fig. 10 is a simulated temperature (K) distribution diagram of a controlled sputtering cathode with two cooling systems in the present invention.
附图标记说明:Explanation of reference signs:
1、靶材;2、冷却系统;21、栅格;22、分流道;3、磁铁架;4、磁铁;5、导磁板;6、底座。1. Target material; 2. Cooling system; 21. Grid; 22. Runner; 3. Magnet frame; 4. Magnet; 5. Magnetic plate; 6. Base.
具体实施方式detailed description
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention more clear and definite, the present invention will be further described in detail below with reference to the accompanying drawings and examples. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
请同时参阅图2-图10,本发明提供了一种磁控溅射阴极的一些实施例。Please refer to FIG. 2-FIG. 10 at the same time, the present invention provides some embodiments of a magnetron sputtering cathode.
如图2-图3所示,本发明的磁控溅射阴极,包括:靶材1、冷却系统2、磁铁架3、磁铁4、导磁板5和底座6六个部分组成;As shown in Fig. 2-Fig. 3, the magnetron sputtering cathode of the present invention comprises: a
所述靶材1设置于所述冷却系统2的正上方;The
所述冷却系统2设置于所述磁铁架3的正上方,包括:壳体,所述壳体的中空部分构成冷却通道,所述冷却通道具有入口和出口;The
所述壳体内设置若干个具有导热性能的栅格21,所述栅格21将冷却通道分隔成若干个分流道22;
所述分流道22的两端分别与所述冷却通道的入口、出口连通;The two ends of the
所述分流道22中的冷却液以层流的方式在所述分流道22中流动;The cooling liquid in the
所述磁铁架3设置于所述底座6的正上方,所述磁铁架3朝向所述底座6的一侧设置有磁铁安装槽;The
所述磁铁4设置在所述磁铁安装槽内;The
所述导磁板5设置在所述磁铁4的外侧和底部。The magnetically
具体地,本发明的冷却系统2应用于连续高功率磁控溅射设备,具体可以作为磁控溅射阴极的冷却系统,例如,气体离子源的冷却系统或电弧源连续的冷却系统。连续高功率磁控溅射兼具高等离子体离化率和高沉积速率,不仅可以提升涂层的性能,还能够提高制备效率,具有广泛的市场前景。然而常规的磁控溅射阴极无法承受如此大功率的放电。若将现有的磁控溅射阴极应用于连续高功率磁控溅射工况,如图1所示,现有的磁控溅射阴极的靶面最高温度超过550K,最低温度为400K,靶面的整体温度较大且温差较大。Specifically, the
底座6和磁铁架3连接形成容纳空间以容纳导磁板5和磁铁4,具体地在磁铁架3朝向底座6的一侧形成磁铁安装槽以安装磁铁4,磁铁4的外侧和底部设置导磁板5。磁铁架3背离底座6的一侧形成冷却系统安装槽以安装冷却系统,靶材1位于冷却系统背离底座6的一侧。The
本发明磁控溅射阴极的冷却系统2内设置若干个栅格21,通过格栅将冷却通道分隔成若干个分流道22,入口进入的冷却液分别向各分流道22进行分流,且分流道22中的冷却液以层流的方式流动,最终汇聚到出口流出。由于分流道22中冷却液采用层流的形式流动,且具有高导热性的栅格增大了换热面积和换热效率,有效的提高了磁控溅射阴极的热循环效率,实现了快速均匀的冷却,因此能够大幅提高磁控溅射技术的功率密度,进而显著改善等离子体离化率和薄膜沉积速率。本发明一方面可增大冷却面积;另一方面可基本消除湍流,并形成几乎完全层流的流动模式,实现快速均匀的换热,从而有效提高磁控溅射阴极可承受的最大放电功率密度,则能够使磁控溅射阴极突破放电功率低下的固有限制,对进一步提高涂层的综合性能以及加快涂层的沉积效率具有重要的推动作用和现实意义。
在本发明实施例的一个较佳实现方式中,如图2-图3所示,单个所述栅格21的高度为1~20mm,宽度为0.1~10mm,所述冷却液在所述入口的流量大于0.5L/s。具体地,当单个栅格21的高度为1~20mm,单个栅格21的宽度为0.1~10mm,冷却液在所述入口的流量大于1L/s时,有利于形成更佳的层流,确保冷却效率更快,冷却系统2的温度更均匀。In a preferred implementation of the embodiment of the present invention, as shown in Figures 2-3, the height of a
在本发明实施例的一个较佳实现方式中,如图4、图8-图10所示,所述入口有一个或多个,多个入口对称排布或不对称排布。In a preferred implementation of the embodiment of the present invention, as shown in Fig. 4, Fig. 8- Fig. 10, there are one or more inlets, and the plurality of inlets are arranged symmetrically or asymmetrically.
具体地,入口可以根据需要设置为一个或多个,采用多个入口时,部分分流道22可以与某一个入口连通,而不是与所有入口连通。采用多个入口时,多个入口可以对称排布在冷却系统2的两侧,当然也可以采用不对称排布,例如,采用两个入口,两个入口均位于冷却系统2的某一侧。Specifically, one or more inlets can be set as required. When multiple inlets are used, part of the
在本发明实施例的一个较佳实现方式中,如图4、图8-图10所示,所述出口有一个或多个,多个出口对称排布或不对称排布。In a preferred implementation of the embodiment of the present invention, as shown in Fig. 4, Fig. 8- Fig. 10, there are one or more outlets, and the plurality of outlets are arranged symmetrically or asymmetrically.
具体地,出口可以根据需要设置为一个或多个,采用多个出口时,部分分流道22可以与某一个出口连通,而不是与所有出口连通。采用多个出口时,多个出口可以对称排布在冷却系统2的两侧,当然也可以采用不对称排布,例如,采用两个出口,两个出口均位于冷却系统2的某一侧。Specifically, one or more outlets may be provided as required. When multiple outlets are used, part of the
在本发明实施例的一个较佳实现方式中,如图3、图4、图8-图10、所示,单个入口的截面的宽度为2~20mm,所述入口的截面形状为基本图形之一或基本图形形成的组合图形,其中,所述基本图形包括:圆形、椭圆形、扇形、弓形或者多边形中至少一个,所述多边形为边数大于或等于3的图形。In a preferred implementation of the embodiment of the present invention, as shown in Fig. 3, Fig. 4, Fig. 8-Fig. One or a combination of basic figures, wherein the basic figures include: at least one of a circle, an ellipse, a sector, an arc or a polygon, and the polygon is a figure with sides greater than or equal to three.
具体地,这里入口的截面的宽度是指入口的截面的轮廓上相距最远的两个点的距离,也就是说,不论入口的截面形状如何,入口的截面的宽度为2~20mm。入口的截面形状可以根据需要设置,可以采用圆形、椭圆形、矩形、或者三角形,当然也可以采用由这些图形合并组合形成的图形,例如,两个三角形靠拢形成的四边形,再如,矩形和三角形靠拢形成五边形。多边形可以是三边形、四边形、五边形、六边形、七边形、…、N边形,N表示多边形的边数。三边形具体可以是等边三角形,等腰三角形,直角三角形等。四边形可以是平行四边形、矩形、正方形、棱形等凸四边形,四边形还可以是凹四边形。同理,多边形可以是凹多边形或凸多边形,可以是规则的多边形或不规则多边形。Specifically, the cross-sectional width of the inlet here refers to the distance between the two furthest points on the contour of the cross-section of the inlet, that is, regardless of the cross-sectional shape of the inlet, the cross-sectional width of the inlet is 2-20 mm. The cross-sectional shape of the entrance can be set as required, and can be circular, elliptical, rectangular, or triangular. Of course, graphics formed by merging and combining these graphics can also be used, for example, a quadrilateral formed by two triangles close together. Triangles close together to form a pentagon. The polygon may be a triangle, a quadrangle, a pentagon, a hexagon, a heptagon, ..., an N-gon, and N represents the number of sides of the polygon. Specifically, the triangle may be an equilateral triangle, an isosceles triangle, a right triangle, and the like. The quadrilateral may be a convex quadrilateral such as a parallelogram, a rectangle, a square, or a prism, and the quadrilateral may also be a concave quadrilateral. Similarly, polygons can be concave or convex, regular or irregular.
在本发明实施例的一个较佳实现方式中,如图3、图4、图8-图10、所示,单个出口的截面的宽度为2~20mm,所述出口的截面形状为基本图形之一或基本图形形成的组合图形,其中,所述基本图形包括:圆形、椭圆形、扇形、弓形或者多边形中至少一个,所述多边形为边数大于或等于3的图形。In a preferred implementation of the embodiment of the present invention, as shown in Fig. 3, Fig. 4, Fig. 8-Fig. One or a combination of basic figures, wherein the basic figures include: at least one of a circle, an ellipse, a sector, an arc or a polygon, and the polygon is a figure with sides greater than or equal to three.
具体地,这里出口的截面的宽度是指出口的截面的轮廓上相距最远的两个点的距离,也就是说,不论出口的截面形状如何,出口的截面的宽度为2~20mm。出口的截面形状可以根据需要设置,可以采用圆形、椭圆形、矩形、或者三角形,当然也可以采用由这些图形合并组合形成的图形,例如,两个三角形靠拢形成的四边形,再如,矩形和三角形靠拢形成五边形。多边形可以是三边形、四边形、五边形、六边形、七边形、…、N边形,N表示多边形的边数。三边形具体可以是等边三角形,等腰三角形,直角三角形等。四边形可以是平行四边形、矩形、正方形、棱形等凸四边形,四边形还可以是凹四边形。同理,多边形可以是凹多边形或凸多边形,可以是规则的多边形或不规则多边形。Specifically, the cross-sectional width of the outlet here refers to the distance between the two furthest points on the contour of the cross-section of the outlet, that is, regardless of the cross-sectional shape of the outlet, the width of the cross-section of the outlet is 2-20 mm. The cross-sectional shape of the outlet can be set as required, and can be circular, elliptical, rectangular, or triangular. Of course, graphics formed by merging and combining these graphics can also be used, for example, a quadrilateral formed by two triangles close together. Triangles close together to form a pentagon. The polygon may be a triangle, a quadrangle, a pentagon, a hexagon, a heptagon, ..., an N-gon, and N represents the number of sides of the polygon. Specifically, the triangle may be an equilateral triangle, an isosceles triangle, a right triangle, and the like. The quadrilateral may be a convex quadrilateral such as a parallelogram, a rectangle, a square, or a prism, and the quadrilateral may also be a concave quadrilateral. Similarly, polygons can be concave or convex, regular or irregular.
在本发明实施例的一个较佳实现方式中,如图5所示,所述分流道22的横截面的形状为基本图形之一或基本图形形成的组合图形,其中,所述基本图形包括:圆形、椭圆形、扇形、弓形或者多边形中至少一个,所述多边形为边数大于或等于3的图形。In a preferred implementation of the embodiment of the present invention, as shown in FIG. 5 , the shape of the cross section of the
具体地,分流道22的横截面是指垂直于分流道22的流向的面,分流道22的横截面形状可以根据需要设置,可以采用圆形、椭圆形、矩形、或者三角形,当然也可以采用由这些图形合并组合形成的图形,例如,两个三角形靠拢形成的四边形,再如,矩形和三角形靠拢形成五边形。多边形可以是三边形、四边形、五边形、六边形、七边形、…、N边形,N表示多边形的边数。三边形具体可以是等边三角形,等腰三角形,直角三角形等。四边形可以是平行四边形、矩形、正方形、棱形等凸四边形,四边形还可以是凹四边形。同理,多边形可以是凹多边形或凸多边形,可以是规则的多边形或不规则多边形。Specifically, the cross section of the
需要强调的是,本发明中的基本图形可以是若干个直线和/或曲线依次连接而成封闭曲线。通过基本图形或基本图形形成的组合图形可以得到不同的入口的截面形状、出口的截面形状以及分流道的横截面的形状。It should be emphasized that the basic figure in the present invention may be a closed curve formed by sequentially connecting several straight lines and/or curves. Different cross-sectional shapes of the inlet, cross-sectional shape of the outlet and cross-sectional shape of the flow channel can be obtained through the basic figure or the combined figure formed by the basic figure.
在本发明实施例的一个较佳实现方式中,如图3所示,所述分流道22的纵截面的形状为基本线条之一或基本线条形成的组合图形,其中,所述基本线条包括:直线、曲线、或者折线中的至少一个。In a preferred implementation of the embodiment of the present invention, as shown in FIG. 3 , the shape of the longitudinal section of the
具体地,分流道22的纵截面是指垂直于分流道22的流向的面,分流道22的纵截面形状可以根据需要设置,可以采用直线、曲线、或者折线,当然也可以采用由这些图形合并组合形成的图形,例如,直线和直线连接形成的阶梯型,再如,直线、曲线连接形成的腰形。Specifically, the longitudinal section of the
在本发明实施例的一个较佳实现方式中,所述栅格21的材料是具有导热性能和力学性能且不具备导磁性能的材料及其合金中的一种或几种。格栅的材料为具有采用导热性能优异、力学性能良好、且不具备导磁性能的材料及其合金中的一种或几种。In a preferred implementation of the embodiment of the present invention, the material of the
在本发明实施例的一个较佳实现方式中,所述栅格21的材料包括紫铜、黄铜、铝或不锈钢中的至少一种。栅格21的材料可以采用铜、铝、镁、钛、铬、钒、钨、锌、银、钼、铌、锆等导热性能优异、力学性能良好、且不具备导磁性能的材料及其合金中的一种或几种。In a preferred implementation of the embodiment of the present invention, the material of the
在本发明实施例的一个较佳实现方式中,为了增加热量的传递,所述栅格21的表面沉积具有导热性的材料以加快散热。In a preferred implementation of the embodiment of the present invention, in order to increase heat transfer, a material with thermal conductivity is deposited on the surface of the
具体地,由于分流道22的内壁形成有具有导热性的材料,则壳体和栅格21上的热量很容易传递到冷却液中,提高热量传递的效率。Specifically, since the inner wall of the
在本发明实施例的一个较佳实现方式中,所述栅格21的表面沉积石墨烯、银、铜、氮化硅、氮化硼或氮化铝等高导热材料中的至少一种。In a preferred implementation of the embodiment of the present invention, at least one of high thermal conductivity materials such as graphene, silver, copper, silicon nitride, boron nitride or aluminum nitride is deposited on the surface of the
具体地,栅格21的表面沉积石墨烯、银、铜、氮化硅、氮化硼或氮化铝等高导热材料等。Specifically, high thermal conductivity materials such as graphene, silver, copper, silicon nitride, boron nitride, or aluminum nitride are deposited on the surface of the
在本发明实施例的一个较佳实现方式中,所述靶材1为不导磁元素组成的单质或化合物。导磁元素有Fe、Co以及Ni。不导磁元素是指除了Fe、Co以及Ni之外的元素。例如,所述靶材1为Li、Na、K、Rb、Be、Mg、Ca、Sr、Ba、Sc、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、Ru、Os、Co、Rh、Tr、Ni、Pb、Pt、Cu、Ag、Au、Zn、Cd、B、Al、Ga、In、Tl、C、Si、Ge、Sn、Pb、N、P、As、Sb、O、S、Se、Te、F、Cl、Br、I及所有镧系金属和锕系金属组成的金属单质或化合物。In a preferred implementation of the embodiment of the present invention, the
具体地,本发明的磁控溅射阴极的靶材1适用范围广,可以采用Li、Na、K、Rb、Be、Mg、Ca、Sr、Ba、Sc、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、Ru、Os、Co、Rh、Tr、Ni、Pb、Pt、Cu、Ag、Au、Zn、Cd、B、Al、Ga、In、Tl、C、Si、Ge、Sn、Pb、N、P、As、Sb、O、S、Se、Te、F、Cl、Br、I、镧系金属和锕系金属等元素所形成的单质或化合物。Specifically, the
在本发明实施例的一个较佳实现方式中,所述靶材1为混合靶或者拼接靶。In a preferred implementation of the embodiment of the present invention, the
具体地,混合靶是指靶材料包括至少两种单质或化合物的靶材,拼接靶是指由至少两个靶材拼接形成的整体靶材。可以根据需要采用单一靶材、混合靶材或者拼接靶材。Specifically, a mixed target refers to a target whose target material includes at least two simple substances or compounds, and a spliced target refers to an overall target formed by splicing at least two targets. Single targets, mixed targets or spliced targets can be used as required.
在本发明实施例的一个较佳实现方式中,所述磁铁架3为非导磁材料,具体采用非导磁材料制得磁铁架3。In a preferred implementation of the embodiment of the present invention, the
在本发明实施例的一个较佳实现方式中,所述磁铁架3为非导磁的铜、铝、不锈钢材料及其合金材料。In a preferred implementation of the embodiment of the present invention, the
具体地,磁铁架3采用导热性能优异、力学性能良好、且不具备导磁性能的材料及其合金制成,例如,可以采用铜、铝、不锈钢材料及其合金材料,铜可以是紫铜或黄铜。Specifically, the
在本发明实施例的一个较佳实现方式中,如图2所示,所述磁铁4为铁磁性材料,具体采用铁磁性材料制得磁铁。In a preferred implementation of the embodiment of the present invention, as shown in FIG. 2 , the
在本发明实施例的一个较佳实现方式中,如图2所示,所述磁铁4为铁磁性的稀土永磁铁或铁氧体永磁铁中的至少一种,所述磁铁4的磁极表面磁感应强度为20~1000mT。In a preferred implementation of the embodiment of the present invention, as shown in Figure 2, the
具体地,磁铁4可以采用永磁铁,永磁铁可以是稀土永磁铁或铁氧体永磁铁中的至少一种,稀土永磁铁可以为铷铁硼永磁铁、钐钴永磁铁、钕镍钴永磁铁等,磁铁4的磁极表面磁感应强度为20~1000mT。磁铁4可以由一块或者多块组成,其形状可以为立方体、柱状、梯形或者切角等简单的基本图形或复杂的组合图形,排布可以为规则的3排、5排、7排、9排等传统的奇数列排布,也可以为偶数列分布,或者是呈某些图案的特定分布。Specifically, the
在本发明实施例的一个较佳实现方式中,如图2所示,所述导磁板5为软磁性材料,具体采用软磁性材料制得导磁板5。In a preferred implementation of the embodiment of the present invention, as shown in FIG. 2 , the magnetically
在本发明实施例的一个较佳实现方式中,如图2所示,所述导磁板5为软磁性的纯铁导磁板、纯镍导磁板、纯钴导磁板、SU430钢导磁板等所有导磁材料中的至少一种。In a preferred implementation of the embodiment of the present invention, as shown in Figure 2, the
具体地,导磁板5是指采用具有软磁性材料制成的器件,例如,软磁性材料可以采用纯铁导磁板、纯镍导磁板、纯钴导磁板、SU430钢导磁板等所有导磁材料。Specifically, the
在本发明实施例的一个较佳实现方式中,如图2所示,所述导磁板5的厚度大于2mm。具体地,根据需要设置导磁板5的厚度,采用厚度大于2mm的导磁板5时,确保导磁板5的效果较佳。In a preferred implementation of the embodiment of the present invention, as shown in FIG. 2 , the thickness of the magnetically
在本发明实施例的一个较佳实现方式中,如图2所示,所述底座6为不导磁的结构材料。具体地,可以采用任何结构的不导磁材料,底座6采用不导磁的结构材料制成,例如,采用不导磁的不锈钢底座。In a preferred implementation of the embodiment of the present invention, as shown in FIG. 2 , the
在本发明实施例的一个较佳实现方式中,如图2所示,所述底座6的厚度为10~50mm。具体地,根据需要设置底座6的厚度,采用厚度大于10~50mm的底座6时,确保底座6的强度和重量较合适。In a preferred implementation of the embodiment of the present invention, as shown in FIG. 2 , the thickness of the
在本发明实施例的一个较佳实现方式中,所述磁控溅射阴极的供电方式包括高功率脉冲磁控溅射、直流磁控溅射、脉冲磁控溅射、射频磁控溅射、中频磁控溅射、复合脉冲磁控溅射中的至少一种,所述磁控溅射阴极的平均功率密度为50~400W/cm2。具体地,根据磁控溅射所需参数配置相应的电源。In a preferred implementation of the embodiment of the present invention, the power supply mode of the magnetron sputtering cathode includes high-power pulse magnetron sputtering, DC magnetron sputtering, pulse magnetron sputtering, radio frequency magnetron sputtering, At least one of intermediate frequency magnetron sputtering and composite pulse magnetron sputtering, the average power density of the magnetron sputtering cathode is 50-400W/cm 2 . Specifically, the corresponding power supply is configured according to the parameters required by the magnetron sputtering.
在本发明实施例的一个较佳实现方式中,所述磁控溅射阴极为矩形阴极、柱状阴极、圆形阴极、筒型阴极中的至少一种。In a preferred implementation of the embodiment of the present invention, the magnetron sputtering cathode is at least one of a rectangular cathode, a columnar cathode, a circular cathode, and a cylindrical cathode.
具体地,磁控溅射阴极的形状可以根据需要设置,当然采用不同形状的阴极时,冷却系统2的形状也需要对应调整,以适配阴极,以取得更好的冷却效果。Specifically, the shape of the magnetron sputtering cathode can be set as required. Of course, when cathodes of different shapes are used, the shape of the
在本发明实施例的一个较佳实现方式中,所述磁控溅射阴极的长度为0.05~10m。具体地,磁控溅射阴极的长度可以根据需要进行设置。In a preferred implementation manner of the embodiment of the present invention, the length of the magnetron sputtering cathode is 0.05-10 m. Specifically, the length of the magnetron sputtering cathode can be set as required.
在本发明实施例的一个较佳实现方式中,如图4、图8-图10所示,所述冷却系统2有一个或多个,多个所述冷却系统2依次并排或重叠设置。具体地,冷却系统2可以采用一个或多个,采用多个冷却系统2时,可以相互靠拢拼成一个尺寸更大的冷却系统,扩大冷却面积,也可以依次重叠设置,提高冷却效果。当然,这两者也可以相互结合。In a preferred implementation of the embodiment of the present invention, as shown in Fig. 4, Fig. 8- Fig. 10, there are one or
在本发明实施例的一个较佳实现方式中,所述冷却液为自来水、去离子水、纯净水、矿泉水、含有功能试剂的冷却剂中的一种。In a preferred implementation manner of the embodiment of the present invention, the cooling liquid is one of tap water, deionized water, purified water, mineral water, and a coolant containing functional reagents.
具体地,冷却液可以采用水,水具体可以是自来水、去离子水、纯净水、矿泉水、含有功能试剂的水中的一种,功能试剂包括除锈剂、防腐剂等。Specifically, the cooling liquid can be water, and the water can be one of tap water, deionized water, purified water, mineral water, and water containing functional reagents, including rust removers and preservatives.
具体实施例一Specific embodiment one
如图4所示,本实施例的磁控溅射阴极,具有一个入口及两个出口,入口位于冷却系统的中间,两个出口对称排布于冷却系统的两侧,入口和出口形状为圆形,直径为10mm;栅格21的高度为8mm,宽度为1mm,横截面为矩形,纵截面为直线,栅格21间各分流道22的宽度为6mm,栅格21表面沉积石墨烯;磁铁架3使用的材料为紫铜;靶材1的材料为铜;磁铁4是铷铁硼永磁铁,磁极表面的磁感应强度为420mT,形状为立方体,为传统的三排排布,共30块;磁短路材料为SU430钢,厚度为5mm;底座6材料为SU304钢,厚度为20mm;磁控溅射阴极的供电方式为高功率脉冲磁控溅射,靶面刻蚀区域的功率密度为200W/cm2;冷却液为去离子水,流量为2L/s;磁控溅射阴极设备为矩形阴极,长度为300mm,其冷却系统包含一组如图2所示的子冷却系统。此时,水路的温度分布如图4所示,整体水路的温差不超过20℃,且管路截面温度的分布也比较均匀(如图5所示)。改变入口的流量,会对温差(如图6所示)和入口压力(如图7所示)有一定的作用,在压力允许的范围内,流量越大,冷却效果越好。As shown in Figure 4, the magnetron sputtering cathode of this embodiment has an inlet and two outlets, the inlet is located in the middle of the cooling system, and the two outlets are symmetrically arranged on both sides of the cooling system, and the shape of the inlet and the outlet is a circle shape, a diameter of 10 mm; the height of the grid 21 is 8 mm, the width is 1 mm, the cross section is rectangular, and the longitudinal section is a straight line, the width of each flow channel 22 between the grid 21 is 6 mm, and the surface of the grid 21 is deposited with graphene; magnet The material used for frame 3 is red copper; the material of target 1 is copper; the magnet 4 is a NdFeB permanent magnet, the magnetic induction intensity on the surface of the magnetic pole is 420mT, the shape is a cube, and it is arranged in traditional three rows, a total of 30 pieces; The short-circuit material is SU430 steel with a thickness of 5mm; the material of the base 6 is SU304 steel with a thickness of 20mm; the power supply mode of the magnetron sputtering cathode is high-power pulse magnetron sputtering, and the power density of the target surface etching area is 200W/cm 2 ; the cooling liquid is deionized water, and the flow rate is 2L/s; the magnetron sputtering cathode equipment is a rectangular cathode with a length of 300mm, and its cooling system includes a set of sub-cooling systems as shown in Figure 2. At this time, the temperature distribution of the waterway is shown in Figure 4, the temperature difference of the overall waterway does not exceed 20°C, and the temperature distribution of the pipe section is relatively uniform (as shown in Figure 5). Changing the flow rate at the inlet will have a certain effect on the temperature difference (as shown in Figure 6) and the inlet pressure (as shown in Figure 7). Within the allowable range of pressure, the greater the flow rate, the better the cooling effect.
具体实施例二Specific embodiment two
如图8所示,与具体实施例一不同的是,磁控溅射阴极,具有一个入口及一个出口,入口和出口位于冷却系统的两侧。此时,水路的温度分布如图4所示,整体水路的温差不超过12℃。As shown in FIG. 8 , the difference from
具体实施例三Specific embodiment three
如图9所示,与具体实施例二不同的是,磁控溅射阴极,入口和出口位于冷却系统的中间位置。此时,水路的温度分布如图4所示,整体水路的温差不超过11℃。As shown in FIG. 9 , the difference from the second embodiment is that the magnetron sputtering cathode, the inlet and the outlet are located in the middle of the cooling system. At this time, the temperature distribution of the waterway is shown in Figure 4, and the temperature difference of the whole waterway does not exceed 11°C.
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。It should be understood that the application of the present invention is not limited to the above examples, and those skilled in the art can make improvements or transformations according to the above descriptions, and all these improvements and transformations should belong to the protection scope of the appended claims of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210971525.4A CN115612994B (en) | 2022-08-12 | 2022-08-12 | A magnetron sputtering cathode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210971525.4A CN115612994B (en) | 2022-08-12 | 2022-08-12 | A magnetron sputtering cathode |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115612994A true CN115612994A (en) | 2023-01-17 |
CN115612994B CN115612994B (en) | 2024-12-13 |
Family
ID=84857553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210971525.4A Active CN115612994B (en) | 2022-08-12 | 2022-08-12 | A magnetron sputtering cathode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115612994B (en) |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7087145B1 (en) * | 2005-03-10 | 2006-08-08 | Robert Choquette | Sputtering cathode assembly |
US20090139853A1 (en) * | 2007-11-30 | 2009-06-04 | Panasonic Corporation | Sputtering apparatus and sputtering method |
US8470141B1 (en) * | 2005-04-29 | 2013-06-25 | Angstrom Sciences, Inc. | High power cathode |
CN105408514A (en) * | 2013-08-14 | 2016-03-16 | 应用材料公司 | Sputtering target with backside cooling grooves |
CN107043915A (en) * | 2017-04-27 | 2017-08-15 | 柳州豪祥特科技有限公司 | The system that magnetron sputtering prepares ito thin film |
CN107083537A (en) * | 2017-05-02 | 2017-08-22 | 霍尔果斯迅奇信息科技有限公司 | New high target utilization ratio planar magnetic control sputtering cathode |
WO2018119600A1 (en) * | 2016-12-26 | 2018-07-05 | 深圳市柔宇科技有限公司 | Magnetron sputtering cathode system |
CN108431926A (en) * | 2015-11-12 | 2018-08-21 | 霍尼韦尔国际公司 | Sputtering target backer board assembly with cooling structure |
CN110344009A (en) * | 2018-04-04 | 2019-10-18 | 长鑫存储技术有限公司 | Magnetron sputtering system with magnetized cooling water device and magnetron sputtering equipment |
JP2020015961A (en) * | 2018-07-26 | 2020-01-30 | キヤノン株式会社 | Rotary cathode and film deposition apparatus having the same |
CN112176300A (en) * | 2019-07-02 | 2021-01-05 | Spts科技有限公司 | Deposition apparatus and associated methods |
CN112304344A (en) * | 2020-09-24 | 2021-02-02 | 东北电力大学 | A kind of miniature magnetic grid for magnetic encoder fabricated by magnetron sputtering method and fabrication method thereof |
CN213295493U (en) * | 2020-08-21 | 2021-05-28 | 梭莱镀膜工业(江阴)有限公司 | Cooling system of magnetron sputtering magnetic rod |
CN216039797U (en) * | 2021-07-29 | 2022-03-15 | 华映科技(集团)股份有限公司 | Magnetic control cathode structure for physical vapor deposition machine |
-
2022
- 2022-08-12 CN CN202210971525.4A patent/CN115612994B/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7087145B1 (en) * | 2005-03-10 | 2006-08-08 | Robert Choquette | Sputtering cathode assembly |
US8470141B1 (en) * | 2005-04-29 | 2013-06-25 | Angstrom Sciences, Inc. | High power cathode |
US20090139853A1 (en) * | 2007-11-30 | 2009-06-04 | Panasonic Corporation | Sputtering apparatus and sputtering method |
CN105408514A (en) * | 2013-08-14 | 2016-03-16 | 应用材料公司 | Sputtering target with backside cooling grooves |
CN108431926A (en) * | 2015-11-12 | 2018-08-21 | 霍尼韦尔国际公司 | Sputtering target backer board assembly with cooling structure |
WO2018119600A1 (en) * | 2016-12-26 | 2018-07-05 | 深圳市柔宇科技有限公司 | Magnetron sputtering cathode system |
CN107043915A (en) * | 2017-04-27 | 2017-08-15 | 柳州豪祥特科技有限公司 | The system that magnetron sputtering prepares ito thin film |
CN107083537A (en) * | 2017-05-02 | 2017-08-22 | 霍尔果斯迅奇信息科技有限公司 | New high target utilization ratio planar magnetic control sputtering cathode |
CN110344009A (en) * | 2018-04-04 | 2019-10-18 | 长鑫存储技术有限公司 | Magnetron sputtering system with magnetized cooling water device and magnetron sputtering equipment |
JP2020015961A (en) * | 2018-07-26 | 2020-01-30 | キヤノン株式会社 | Rotary cathode and film deposition apparatus having the same |
CN112176300A (en) * | 2019-07-02 | 2021-01-05 | Spts科技有限公司 | Deposition apparatus and associated methods |
CN213295493U (en) * | 2020-08-21 | 2021-05-28 | 梭莱镀膜工业(江阴)有限公司 | Cooling system of magnetron sputtering magnetic rod |
CN112304344A (en) * | 2020-09-24 | 2021-02-02 | 东北电力大学 | A kind of miniature magnetic grid for magnetic encoder fabricated by magnetron sputtering method and fabrication method thereof |
CN216039797U (en) * | 2021-07-29 | 2022-03-15 | 华映科技(集团)股份有限公司 | Magnetic control cathode structure for physical vapor deposition machine |
Also Published As
Publication number | Publication date |
---|---|
CN115612994B (en) | 2024-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101812667B (en) | Magnetron sputtering plating film cathode device | |
CN102420091B (en) | Composite magnetic control sputtering cathode | |
CN103775297B (en) | Multistage most advanced and sophisticated cusped magnetic field plasma thruster segmentation pottery passage | |
CN109899262B (en) | A tangential magnetic field plasma thruster | |
CN101719457B (en) | Superconducting coil-based high-intensity magnetic field magnetic control sputtering cathode | |
CN104747242A (en) | Straggling air film cooling hole | |
CN115011941B (en) | Permanent magnet selective coating method based on variable magnetic field magnetron sputtering coating device | |
CN107705823A (en) | A cooling structure suitable for the first wall of a magnetic confinement nuclear fusion device | |
CN206412920U (en) | Liquid metal electromagnetic pump | |
CN106685179A (en) | A permanent magnet type high temperature liquid metal electromagnetic pump | |
CN115612994A (en) | A magnetron sputtering cathode | |
EP0724652A1 (en) | Method and apparatus for sputtering magnetic target materials | |
CN105764225A (en) | Compact type high-power hollow cathode discharge device | |
CN105764227B (en) | A kind of high line direct current hollow-cathode plasma source | |
CN103290378B (en) | Magnetron sputtering plating cathode mechanism | |
CN110344009A (en) | Magnetron sputtering system with magnetized cooling water device and magnetron sputtering equipment | |
CN105887035A (en) | Circular target cathode vacuum arc source plasma magnetic filtration rectangular diversion device | |
CN207489479U (en) | A kind of cooling structure suitable for the first wall of magnetic confinement nuclear fusion device | |
CN218812044U (en) | Magnetron sputtering cathode with high target utilization rate | |
CN110335752A (en) | A kind of Sintered NdFeB magnet infiltration dysprosium technique | |
CN113079618A (en) | Spallation neutron target with mixed cooling flow channel | |
JPH0882688A (en) | Breeding blanket of fusion reactor | |
JPS63118067A (en) | Target for sputtering | |
CN204727942U (en) | A kind of hipims target | |
TWI325016B (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Country or region after: China Address after: 518108, Building A410, Fangzheng Science and Technology Industrial Park, North Side of Songbai Road, Longteng Community, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province Applicant after: Shenzhen Houlang Laboratory Technology Co.,Ltd. Address before: 4th Floor, A2, Peking University Science and Technology Park, Songbai Road, Shiyan, Baoan District, Shenzhen City, Guangdong Province, 518108 Applicant before: Shenzhen Yuandian Vacuum Equipment Co.,Ltd. Country or region before: China |
|
CB02 | Change of applicant information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |