CN115608419A - 一种功能改性埃洛石纳米管载金核壳催化剂及其制备方法和应用 - Google Patents

一种功能改性埃洛石纳米管载金核壳催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN115608419A
CN115608419A CN202211301631.8A CN202211301631A CN115608419A CN 115608419 A CN115608419 A CN 115608419A CN 202211301631 A CN202211301631 A CN 202211301631A CN 115608419 A CN115608419 A CN 115608419A
Authority
CN
China
Prior art keywords
halloysite nanotube
modified halloysite
mhnts
catalyst
ibip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211301631.8A
Other languages
English (en)
Other versions
CN115608419B (zh
Inventor
方嘉声
陈铭
刁琪琪
卫昆
黄振庭
张国斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Xinchuang Huake Environmental Protection Co ltd
Dongguan University of Technology
Original Assignee
Guangdong Xinchuang Huake Environmental Protection Co ltd
Dongguan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Xinchuang Huake Environmental Protection Co ltd, Dongguan University of Technology filed Critical Guangdong Xinchuang Huake Environmental Protection Co ltd
Priority to CN202211301631.8A priority Critical patent/CN115608419B/zh
Publication of CN115608419A publication Critical patent/CN115608419A/zh
Application granted granted Critical
Publication of CN115608419B publication Critical patent/CN115608419B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/325Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups reduction by other means than indicated in C07C209/34 or C07C209/36
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • C07C45/38Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups being a primary hydroxyl group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种功能改性埃洛石纳米管载金核壳催化剂及其制备方法和应用,涉及纳米催化剂制备技术领域。所述催化剂包括改性埃洛石纳米管,所述改性埃洛石纳米管预先通过深共融溶剂对其表面结构进行选择性刻蚀;咪唑鎓基离子聚合物,所述咪唑鎓基离子聚合物通过季铵化反应与界面键合方式修饰于改性埃洛石纳米管表面;Au纳米颗粒,所述Au纳米颗粒通过阴离子交换和配位静电吸附分散锚定在所述咪唑鎓基离子聚合物主体网状结构中;以及双金属介孔氧化物,所述双金属介孔氧化物作为壳层结构封装固化Au纳米颗粒及聚合物主体网状结构,形成核壳复合物。本发明提供的催化剂具有较高的催化反应活性、选择性与热稳定性,在纳米催化领域显示良好的应用前景。

Description

一种功能改性埃洛石纳米管载金核壳催化剂及其制备方法和 应用
技术领域
本发明涉及纳米催化剂制备技术领域,具体涉及一种功能改性埃洛石纳米管载金核壳催化剂及其制备方法和应用。
背景技术
纳米金属催化剂的结构设计与其催化活性和选择性具有较强的关联影响。埃洛石纳米管呈现高长径比和中空结构特征,外层为硅氧四面体,内层为铝氧八面体,具有天然原料来源广、稳定性较高、易于加工改性和重复使用及优良吸附性能等优点,可作为设计优良纳米金属催化剂的理想载体。然而,埃洛石纳米管表面缺少足够的固载金属有效位点、比表面积不够大等,容易导致金属负载出现团聚和流失现象,因此需要对这种材料进行表面功能改性以增强固载金属的稳定性和分布位置锚定效果。作为备受广泛关注的高分子材料,咪唑鎓基离子聚合物由咪唑鎓基团阳离子和卤素阴离子组成,阳离子形成高度交联的网状结构,而阴离子均匀分布于空腔或者网状通道中,因此该聚合同时具有离子液体和多孔有机聚合物的独特物化性质,能够通过调控官能团类型、侧链长度等参数改变其主体网状结构。由于主体网状结构与阴离子间作用力较弱,可采用阴离子交换方法,将金属离子前体均匀分布于主体网状结构,利用咪唑鎓阳离子配位吸附作用稳定固载金属离子,从而实现金属纳米颗粒在催化剂整体结构表面分布位置的有效锚定。
Au纳米颗粒由于具有较高的反应活性与选择性,分散于催化剂整体结构中可以发挥其经济高效的催化作用和最大的原子效率,但较高的表面能使其在催化剂制备或应用中容易发生烧结、团聚和变形,从而导致其催化性能的急剧降低和使用寿命的缩短。当前,通过载体结构的封装构筑改善其分散性和热稳定性,主要分为两种模式:1)通过构建物理屏障提高纳米金属粒子的抗烧结性能,抑制其在热处理及反应阶段中的迁移性团聚;2)根据界面化学效应将贵金属颗粒沉积在化学活性介质表面,或通过构筑合金结构来提高贵金属粒子的热稳定性。
专利CN110102326A公开了一种Au@PC/g-C3N4复合催化剂的制备方法,该催化剂先利用酵母菌还原金离子并负载纳米金,经惰性气氛煅烧和高温共沉积方式与g-C3N4进行复合得到。但该催化剂存在纳米金颗粒易团聚、变形,且形貌、尺寸难以控制等缺点。专利CN111215152A提供了一种Au@Fe3O4/导电聚合物核壳催化剂的制备方法,该催化剂先通过原位聚合法制备Fe3O4/导电聚合物核壳微球,采用特定溶剂对其预处理后,利用导电聚合物氧化还原作用固载纳米金颗粒。虽然该催化剂可以实现纳米表面金物种电子的精微调控,但固载的金属粒子并不具有良好的分散性、活性位点少。专利CN112007637B公开了一种PtAu合金@埃洛石复合催化剂的制备方法,该催化剂将氨基改性后的管状埃洛石浸渍于Pt和Au金属前体混合溶液中,通过硼氢化钠还原法使管状埃洛石内外负载PtAu合金纳米颗粒,但存在合金颗粒制备尺寸和位置分布不均匀,活性位点容易脱落等缺点。专利CN110560089B公开了一种ZnCdS/Bi-HNT复合光催化剂的制备方法,该催化剂采用溶剂热法制得铋掺杂埃洛石,与锌镉硫前体进行超声混合反应形成复合光催化剂。尽管该催化剂活性位点较多,但活性层厚度尺寸较大,部分出现脱离,且存在制备过程繁琐复杂、制备成本高、产生二次污染等缺点。
发明内容
本发明的目的是提供一种功能改性埃洛石纳米管载金核壳催化剂及其制备方法,该催化剂以埃洛石纳米管作为载体,首先用由氢键接受体和氢键给体构成的深共融溶剂对其管壁结构进行选择性刻蚀,获得更多Si-OH接触位点,增大比表面积和丰富孔隙结构,然后通过季铵化反应与界面键合方式将咪唑鎓基离子聚合物修饰于改性埃洛石纳米管表面,利用聚合物咪唑鎓阳离子主体网状结构与卤素阴离子间作用力较弱的结构特点,通过阴离子交换方法和配位静电吸附作用将Au金属阴离子前体均匀固载于聚合物网状结构中,经过还原气氛热处理,原位制备较好分散性的Au纳米颗粒,通过咪唑鎓阳离子主体网状结构有效控制Au纳米颗粒分布形态和形貌尺寸,最后表面沉积双金属介孔氧化物进行封装固化,形成核壳结构,提高纳米Au催化剂的催化反应活性、选择性与热稳定性。
第一方面,本发明提供一种功能改性埃洛石纳米管载金核壳催化剂,包括:
改性埃洛石纳米管,所述改性埃洛石纳米管预先通过深共融溶剂对其表面结构进行选择性刻蚀;能获得更多Si-OH接触位点,并能增大比表面积;
咪唑鎓基离子聚合物,所述咪唑鎓基离子聚合物通过季铵化反应与界面键合方式修饰于所述改性埃洛石纳米管表面;
Au纳米颗粒,所述Au纳米颗粒通过阴离子交换和配位静电吸附分散锚定于所述咪唑鎓基离子聚合物主体网状结构中;
以及双金属介孔氧化物,所述双金属介孔氧化物作为壳层结构封装固化Au纳米颗粒及聚合物主体网状结构,形成核壳复合物。
在一些实施例中,所述深共融溶剂包括氢键接受体和氢键给体;所述咪唑鎓基离子聚合物为利用咪唑衍生物和卤代甲基苯间的季铵化反应得到的物质。
进一步的,所述氢键接受体选自四甲基氯化铵、四乙基氯化铵、四丁基氯化铵、氯化胆碱和溴化胆碱的任一种;所述氢键给体选自六氟磷酸、六氟硅酸、氢氟酸、三氟乙酸和三氟甲磺酸的任一种;所述双金属介孔氧化物选自CeO2-Co3O4、CeO2-La2O3、CeO2-CuO和CeO2-ZrO2中的任一种。
在一些实施例中,所述改性埃洛石纳米管质量百分含量为所述催化剂整体质量的20~55%;所述咪唑鎓基离子聚合物质量百分含量为所述催化剂整体质量的10~35%;所述Au纳米颗粒质量百分含量为所述催化剂整体质量的0.5~10%;所述双金属介孔氧化物质量百分含量为所述催化剂整体质量的15~45%。
第二方面,本申请提供了一种第一方面所述的功能改性埃洛石纳米管载金核壳催化剂的制备方法,包括以下步骤:
步骤a):将埃洛石纳米管和深共融溶剂置于30~80℃搅拌混合1~12h,冷却至室温,离心回收固体,用去离子水洗涤至pH值为5~7,40~60℃干燥8~16h,得到改性埃洛石纳米管mHNTs;
步骤b):将改性埃洛石纳米管mHNTs固体、二(1H-咪唑-1-基)甲烷、1,2,4,5-四(溴甲基)苯分散混合于乙腈和N,N-二甲基甲酰胺混合溶剂中,置于60~100℃回流搅拌反应6~18h,自然冷却至室温,经离心、洗涤、干燥后,得到咪唑鎓基离子聚合物修饰改性埃洛石纳米管mHNTs@IBIP复合材料;
步骤c):将所述咪唑鎓基离子聚合物修饰改性埃洛石纳米管mHNTs@IBIP复合材料分散于Au金属阴离子前体溶液,室温搅拌8~24h,随后进行离心、淋洗、干燥,经过还原气氛热处理,得到mHNTs@IBIP-Au复合材料;
步骤d):将所述mHNTs@IBIP-Au复合材料、六亚甲基四胺按分散于乙醇中,加入双金属盐溶液,室温搅拌混合,加热60~95℃进行回流搅拌反应4~12h,冷却至室温,经过离心、洗涤、干燥操作,通入惰性气氛进行焙烧热处理,得到功能改性埃洛石纳米管载金核壳催化剂。
在一些实施例中,步骤a)中,所述埃洛石纳米管和深共融溶剂质量比为1:40~200;所述深共融溶剂包括氢键接受体和氢键给体,所述氢键接受体与氢键给体的摩尔比为1:1~6。
所述氢键接受体选自四甲基氯化铵、四乙基氯化铵、四丁基氯化铵、氯化胆碱和溴化胆碱中的任一种;所述氢键给体选自六氟磷酸、六氟硅酸、氢氟酸、三氟乙酸和三氟甲磺酸中的任一种。
在一些实施例中,步骤b)中,所述改性埃洛石纳米管mHNTs固体、二(1H-咪唑-1-基)甲烷、1,2,4,5-四(溴甲基)苯、乙腈和N,N-二甲基甲酰胺质量比为1:0.13~0.53:0.2~0.8:20~60:6~20;所述二(1H-咪唑-1-基)甲烷和1,2,4,5-四(溴甲基)苯的摩尔比为1:0.2~0.5。
在一些实施例中,步骤c)中,所述咪唑鎓基离子聚合物修饰改性埃洛石纳米管mHNTs@IBIP复合材料与Au金属阴离子前体的质量比为1:0.015~0.5;所述Au金属阴离子前体溶液中蒸馏水和Au元素质量百分比为1:0.001~0.01;所述Au金属阴离子前体选自四氯金酸、四氯金酸铵、四氯金酸钠和四氯金酸钾中的任一种;所述还原气氛热处理的条件为:以体积比为1:9的氢气和氩气的混合气体作为还原气氛,以5~10℃/min为升温速率,升温至300~500℃恒温处理1~3h。
在一些实施例中,步骤d)中,所述mHNTs@IBIP-Au复合材料、六亚甲基四胺和双金属盐的质量比为1:2~8:0.5~5;所述双金属盐为铈盐-钴盐、铈盐-镧盐、铈盐-铜盐和铈盐-锆盐的任一种组合;所述铈盐占双金属盐的质量比为0.65~0.95;所述惰性气氛焙烧热处理的条件为:以5~10℃/min为升温速率,升温至200~400℃恒温保持2~5h;所述惰性气氛选自高纯氮气、高纯氩气和高纯氦气中的任一种。
进一步的,所述双金属介孔氧化物选自CeO2-Co3O4、CeO2-La2O3、CeO2-CuO和CeO2-ZrO2中的任一种;所述双金属介孔氧化物质量百分含量为所述催化剂整体质量的15~45%。
优选的,所述铈盐选自硝酸铈、硝酸铈铵、硫酸铈、硫酸铈铵、氯化铈和醋酸铈中的任一种;所述钴盐选自硝酸钴、硫酸钴、氯化钴和乙酸钴中的任一种;所述镧盐选自硝酸镧、硫酸镧、氯化镧和醋酸镧中的任一种;所述铜盐选自硝酸铜、硫酸铜、氯化铜和醋酸铜中的任一种;所述锆盐选自硝酸锆、硫酸锆、氯化锆和乙酸锆中的任一种。
第三方面,本申请提供了一种第一方面所述的功能改性埃洛石纳米管载金核壳催化剂或由第二方面所述的制备方法制得的功能改性埃洛石纳米管载金核壳催化剂在催化氧化苯甲醇制备苯甲醛或催化还原硝基苯类物质制备胺类物质中的应用。
与现有技术相比,本发明至少具有如下有益效果:
本发明提供的功能改性埃洛石纳米管载金核壳催化剂,选用埃洛石纳米管作为载体,先用深共融溶剂对其管壁结构进行选择性刻蚀以获得更多Si-OH接触位点且增大比表面积,然后通过季铵化反应与界面键合方式将咪唑鎓基离子聚合物修饰于埃洛石纳米管表面,利用聚合物主体网状结构与阴离子间作用力较弱的结构特点,通过阴离子交换和配位静电吸附将Au金属阴离子前体均匀固载于聚合物网状结构中,经过还原气氛热处理,原位制备较好分散性的Au纳米颗粒,随后表面沉积双金属介孔氧化物壳层进行封装固化,形成核壳结构,得到具有较好的催化反应活性、选择性与热稳定性的催化剂,具体体现在以下几点:
(1)本发明利用深共融溶剂对埃洛石纳米管壁面结构进行选择性刻蚀,能够获得更多Si-OH接触位点,增大比表面积,丰富孔隙结构,改善载体界面微反应环境,改善界面零点电位,去除界面杂质,有利于后面离子聚合物的季铵化反应的界面沉积合成,促进咪唑鎓基主体网状结构的嫁接以及金属活性位的锚定和分散,使催化剂呈现较优的载体效应;
(2)咪唑鎓阳离子主体网状结构与卤素阴离子间作用力较弱,特定条件下采用阴离子交换方法,将Au金属阴离子前体均匀分布于主体网状结构,利用咪唑鎓基阳离子氮活性位点配位静电吸附作用稳定固载Au金属离子,从而实现Au纳米颗粒在催化剂整体结构表面分布位置的有效锚定;
(3)以双金属介孔氧化物作为Au纳米颗粒封装固化的壳层构筑核壳结构,不仅增强mHNTs@IBIP-Au主体网状结构与双金属介孔壳层间协同效应,促使形成体系特殊层间交联孔道结构,增强活性金属与层间复合载体相互作用,进一步固化、重构金属活性位点,同时能发挥双金属介孔氧化物对金属活性位的结构限域作用,最终提高纳米催化剂的催化反应性能。
本发明的催化剂在纳米催化领域显示具有良好的应用前景。
具体实施方式
下面结合具体实例,进一步阐明本发明,应理解这些实例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
实施例1:
室温下,称取22.8g氯化胆碱和52.3g六氟磷酸于混合反应6h,形成深共融溶剂;取1.0g埃洛石纳米管超声分散于上述深共融溶剂中,置于55℃回流搅拌反应8h,自然冷却至室温,离心,用去离子水洗涤至上清液pH值为6,50℃干燥10h,制得改性埃洛石纳米管mHNTs;
室温下,称取0.5g mHNTs固体、0.21g二(1H-咪唑-1-基)甲烷和0.3g 1,2,4,5-四(溴甲基)苯分散混合于30mL乙腈和8mL N,N-二甲基甲酰胺的混合溶剂中,置于80℃回流搅拌反应10h,自然冷却至室温,离心,用乙腈洗涤3次,50℃真空干燥12h,得到咪唑鎓基离子聚合物修饰改性埃洛石纳米管mHNTs@IBIP复合材料;
室温下,称取0.2g mHNTs@IBIP复合材料分散于15mL四氯金酸溶液(3mg Au/mL)中,磁力搅拌12h,离心,用去离子水淋洗2次,50℃真空干燥12h;随后通入体积比为1:9的氢气和氩气的混合气体进行还原热处理,以5℃/min为升温速率,升温至350℃恒温焙烧2h,得到mHNTs@IBIP-Au复合材料;
室温下,取上述mHNTs@IBIP-Au复合材料和0.8g六亚甲基四胺超声分散于80mL乙醇中,随后加进含0.3g六水合硝酸铈和0.1g六水合硝酸钴的50mL去离子水溶液,搅拌混合0.5h,置于75℃油浴加热进行回流搅拌反应8h,冷却至室温,离心,去离子水洗涤2次,乙醇洗涤1次,50℃干燥12h;通入高纯氮气进行焙烧处理,以5℃/min为升温速率,升温至300℃恒温保持3h,制得mHNTs@IBIP-Au@CeO2-Co3O4复合催化剂。
催化性能评价:用25mL反应器配置含有0.3g碳酸钾的6mL苯甲醇反应溶液,称取20mg制得的催化剂分散于上述反应介质中,调整氧气流量为35mL/min,反应温度为155℃,反应时间为6h;反应结束后,取微量样品进入气相色谱仪进行定量分析,计算苯甲醇转化率和苯甲醛选择性;结果显示,该催化剂催化氧化苯甲醇转化率为96%,苯甲醛选择性为98%。
实施例2:
室温下,称取26.3g溴化胆碱和64.5g三氟乙酸于混合反应6h,形成深共融溶剂;取1.2g埃洛石纳米管超声分散于上述深共融溶剂中,置于70℃回流搅拌反应4h,自然冷却至室温,离心,用去离子水洗涤至上清液pH值为7,40℃干燥15h,制得改性埃洛石纳米管mHNTs;
室温下,称取0.6g mHNTs固体、0.25g二(1H-咪唑-1-基)甲烷和0.35g 1,2,4,5-四(溴甲基)苯分散混合于30mL乙腈和10mL N,N-二甲基甲酰胺的混合溶剂中,置于90℃回流搅拌反应8h,自然冷却至室温,离心,用乙腈洗涤3次,45℃真空干燥12h,得到咪唑鎓基离子聚合物修饰改性埃洛石纳米管mHNTs@IBIP复合材料;
室温下,称取0.35g mHNTs@IBIP复合材料分散于15mL四氯金酸溶液(5mg Au/mL)中,搅拌15h,离心,用去离子水淋洗2次,50℃真空干燥10h;随后通入体积比为1:9的氢气和氩气的混合气体进行还原热处理,以5℃/min为升温速率,升温至350℃恒温焙烧2h,得到mHNTs@IBIP-Au复合材料;
室温下,取上述mHNTs@IBIP-Au复合材料和1.5g六亚甲基四胺超声分散于90mL乙醇中,随后加进含0.6g六水合硝酸铈和0.18g七水合硫酸钴的65mL去离子水溶液,搅拌混合1h,置于85℃油浴加热进行回流搅拌反应5h,冷却至室温,离心,去离子水洗涤2次,乙醇洗涤1次,45℃干燥12h,通入高纯氮气进行焙烧处理,以5℃/min为升温速率,升温至350℃恒温保持2h,制得mHNTs@IBIP-Au@CeO2-Co3O4复合催化剂。
催化性能评价:首先配置50mL含15mg/L对硝基苯酚和0.2mol/L硼氢化钠的混合溶液,保持磁力搅拌,随后加进2mL制得的催化剂分散液(5g/L),并对该催化反应进行计时;在不同反应时间取少量反应溶液经滤头过滤和稀释后,利用高效液相色谱仪分析对硝基苯酚转化率和选择性;结果显示,在8min内,该催化剂催化还原对硝基苯酚转化率为95%,对氨基苯酚选择性为100%。
实施例3:
室温下,称取36.3g四甲基氯化铵和88g三氟甲磺酸混合反应4h,形成深共融溶剂;取1.5g埃洛石纳米管超声分散于上述深共融溶剂中,置于65℃回流搅拌反应5h,自然冷却至室温,离心,用去离子水洗涤至上清液pH值为7,45℃干燥12h,制得改性埃洛石纳米管mHNTs;
室温下,称取0.4g mHNTs固体、0.18g二(1H-咪唑-1-基)甲烷和0.26g 1,2,4,5-四(溴甲基)苯分散混合于25mL乙腈和6mL N,N-二甲基甲酰胺的混合溶剂中,置于75℃回流搅拌反应12h,自然冷却至室温,离心,用乙腈洗涤3次,40℃真空干燥15h,制得咪唑鎓基离子聚合物修饰改性埃洛石纳米管mHNTs@IBIP复合材料;
室温下,取上述mHNTs@IBIP复合材料分散于20mL四氯金酸钠溶液(6mg Au/mL)中,搅拌16h,离心,用去离子水淋洗2次,45℃真空干燥12h;随后通入体积比为1:9的氢气和氩气的混合气体进行还原热处理,以5℃/min为升温速率,升温至300℃恒温焙烧3h,制得mHNTs@IBIP-Au复合材料;
室温下,取上述mHNTs@IBIP-Au复合材料和1.6g六亚甲基四胺超声分散于95mL乙醇中,随后加进含0.53g硝酸铈铵和0.21g六水合硝酸镧的65mL去离子水溶液,搅拌混合0.5h,置于75℃油浴加热进行回流搅拌反应6h,冷却至室温,离心,去离子水洗涤2次,乙醇洗涤1次,45℃干燥13h,通入高纯氮气进行焙烧处理,以5℃/min为升温速率,升温至350℃恒温保持2h,制得mHNTs@IBIP-Au@CeO2-La2O3复合催化剂。
催化性能评价:用25ml反应器配置含有0.3g碳酸钾的6mL苯甲醇反应溶液,称取20mg制得的催化剂分散于上述反应介质中,调整氧气流量为35mL/min,反应温度为160℃,反应时间为6h;反应结束后,取微量样品进入气相色谱仪中进行定量分析,计算苯甲醇转化率和苯甲醛选择性;结果显示,该催化剂催化氧化苯甲醇转化率为93%,苯甲醛选择性为95%。
实施例4:
室温下,称取38.8g四乙基氯化铵和99.5g三氟乙酸混合反应7h,形成深共融溶剂;取2.0g埃洛石纳米管超声分散于上述深共融溶剂中,置于55℃回流搅拌反应6h,自然冷却至室温,离心,用去离子水洗涤至上清液pH值为7,40℃干燥15h,制得改性埃洛石纳米管mHNTs;
室温下,称取1.0g mHNTs固体、0.45g二(1H-咪唑-1-基)甲烷和0.6g 1,2,4,5-四(溴甲基)苯分散混合于50mL乙腈和15mL N,N-二甲基甲酰胺的混合溶剂中,置于85℃回流反应10h,自然冷却至室温,离心,用乙腈洗涤3次,45℃真空干燥12h,制得咪唑鎓基离子聚合物修饰改性埃洛石纳米管mHNTs@IBIP复合材料;
室温下,称取0.5g mHNTs@IBIP复合材料分散于20ml四氯金酸钾溶液(6mg Au/mL)中,搅拌15h,离心,用去离子水淋洗2次,40℃真空干燥13h;随后通入体积比为1:9的氢气和氩气的混合气体进行还原热处理,以5℃/min为升温速率,升温至300℃恒温焙烧3h,制得mHNTs@IBIP-Au复合材料;
室温下,取上述mHNTs@IBIP-Au复合材料和2.5g六亚甲基四胺超声分散于100mL乙醇中,随后加进含0.82g四水合硫酸铈和0.23g六水合醋酸镧的80mL去离子水溶液,搅拌混合1h,置于85℃油浴加热进行回流搅拌反应4h,冷却至室温,离心,去离子水洗涤2次,乙醇洗涤1次,45℃干燥12h,通入高纯氩气进行焙烧处理,以5℃/min为升温速率,升温至400℃恒温保持2h,制得mHNTs@IBIP-Au@CeO2-La2O3复合催化剂。
催化性能评价:首先配置50mL含12mg/L邻硝基苯酚和0.25mol/L硼氢化钠的混合溶液,保持磁力搅拌,随后加进2mL制得的催化剂分散液(5g/L),并对该催化反应进行计时;在不同反应时间取少量反应溶液经滤头过滤和稀释后,利用高效液相色谱仪分析邻硝基苯酚转化率和选择性;结果显示,在12min内,该催化剂催化还原邻硝基苯酚转化率为93%,邻氨基苯酚选择性为100%。
实施例5:
室温下,称取17g四甲基氯化铵和59g六氟硅酸混合反应5h,形成深共融溶剂;取0.8g埃洛石纳米管超声分散于上述深共融溶剂中,置于45℃回流搅拌反应7h,自然冷却至室温,离心,用去离子水洗涤至上清液pH值为6,45℃干燥12h,制得改性埃洛石纳米管mHNTs;
室温下,称取0.4g mHNTs固体、0.2g二(1H-咪唑-1-基)甲烷和0.26g 1,2,4,5-四(溴甲基)苯分散混合于25mL乙腈和5mL N,N-二甲基甲酰胺的混合溶剂中,置于85℃回流反应9h,自然冷却至室温,离心,用乙腈洗涤3次,45℃真空干燥13h,制得咪唑鎓基离子聚合物修饰改性埃洛石纳米管mHNTs@IBIP复合材料;
室温下,取上述mHNTs@IBIP复合材料分散于21mL四氯金酸铵溶液(5mg Au/mL)中,搅拌15h,离心,用去离子水淋洗2次,45℃真空干燥12h;随后通入体积比为1:9的氢气和氩气的混合气体进行还原热处理,以5℃/min为升温速率,升温至350℃恒温焙烧2h,制得mHNTs@IBIP-Au复合材料;
室温下,称取0.25g mHNTs@IBIP-Au复合材料和1g六亚甲基四胺超声分散于80mL乙醇中,随后加进含0.4g醋酸铈和0.17g硝酸铜的60mL去离子水溶液,搅拌混合0.5h,置于80℃油浴加热进行回流搅拌反应5h,冷却至室温,离心,去离子水洗涤2次,乙醇洗涤1次,45℃干燥12h,通入高纯氮气进行焙烧处理,以5℃/min为升温速率,升温至300℃恒温保持3h,制得mHNTs@IBIP-Au@CeO2-CuO复合催化剂。
催化性能评价:用25ml反应器配置含有0.3g碳酸钾的6mL苯甲醇反应溶液,称取20mg制得的催化剂分散于上述混合物中,调整氧气流量为40mL/min,反应温度为160℃,反应时间为5h;反应结束后,取微量样品进入气相色谱仪中进行定量分析,计算苯甲醇转化率和苯甲醛选择性;结果显示,该催化剂催化氧化苯甲醇转化率为91%,苯甲醛选择性为93%。
实施例6:
室温下,称取31.5g四丁基氯化铵和61.3g六氟硅酸混合反应5h,形成深共融溶剂;取1.3g埃洛石纳米管超声分散于上述深共融溶剂中,置于65℃回流搅拌反应6h,自然冷却至室温,离心,用去离子水洗涤至上清液pH值为7,50℃干燥10h,制得改性埃洛石纳米管mHNTs;
室温下,称取0.5g mHNTs固体、0.22g二(1H-咪唑-1-基)甲烷和0.3g 1,2,4,5-四(溴甲基)苯分散混合于30mL乙腈和8mL N,N-二甲基甲酰胺的混合溶剂中,置于90℃回流反应8h,自然冷却至室温,离心,用乙腈洗涤3次,50℃真空干燥12h,制得咪唑鎓基离子聚合物修饰改性埃洛石纳米管mHNTs@IBIP复合材料;
室温下,取上述mHNTs@IBIP复合材料分散于25ml四氯金酸铵溶液(5mg Au/mL)中,搅拌16h,离心,用去离子水淋洗2次,50℃真空干燥12h;随后通入体积比为1:9的氢气和氩气的混合气体进行还原热处理,以5℃/min为升温速率,升温至300℃恒温焙烧3h,制得mHNTs@IBIP-Au复合材料;
室温下,取上述mHNTs@IBIP-Au复合材料和2.5g六亚甲基四胺超声分散于95ml乙醇中,随后加进含0.75g硝酸铈铵和0.24g二水合氯化铜的65mL去离子水溶液,搅拌混合0.5h,置于75℃油浴加热进行回流搅拌反应6h,冷却至室温,离心,去离子水洗涤2次,乙醇洗涤1次,45℃干燥12h,通入高纯氦气进行焙烧处理,以5℃/min为升温速率,升温至350℃恒温保持2.5h,制得mHNTs@IBIP-Au@CeO2-CuO复合催化剂。
催化性能评价:首先配置50mL含15mg/L间硝基苯酚和0.25mol/L硼氢化钠的混合溶液,保持磁力搅拌,随后加进2.5mL制得的催化剂分散液(5g/L),并对该催化反应进行计时;在不同反应时间取少量反应溶液经滤头过滤和稀释后,利用高效液相色谱仪分析间硝基苯酚转化率和选择性;结果显示,在9min内,该催化剂催化还原间硝基苯酚转化率为92%,间氨基苯酚选择性为100%。
实施例7:
室温下,称取61.3g氯化胆碱和34.5g氢氟酸混合反应8h,形成深共融溶剂;取1.5g埃洛石纳米管超声分散于上述深共融溶剂中,置于70℃回流搅拌反应4h,自然冷却至室温,离心,用去离子水洗涤至上清液pH值为6,50℃干燥10h,制得改性埃洛石纳米管mHNTs;
室温下,称取0.7g mHNTs固体、0.32g二(1H-咪唑-1-基)甲烷和0.45g 1,2,4,5-四(溴甲基)苯分散混合于35mL乙腈和10mL N,N-二甲基甲酰胺的混合溶剂中,置于95℃回流反应6h,自然冷却至室温,离心,用乙腈洗涤3次,50℃真空干燥12h,制得咪唑鎓基离子聚合物修饰改性埃洛石纳米管mHNTs@IBIP复合材料;
室温下,称取0.45g mHNTs@IBIP复合材料分散于18mL四氯金酸溶液(6mg Au/mL)中,搅拌12h,离心,用去离子水淋洗2次,50℃真空干燥10h;随后通入体积比为1:9的氢气和氩气的混合气体进行还原热处理,以5℃/min为升温速率,升温至350℃恒温焙烧2.5h,制得mHNTs@IBIP-Au复合材料;
室温下,取上述mHNTs@IBIP-Au复合材料和2.3g六亚甲基四胺超声分散于100mL乙醇中,随后加进含0.72g六水合氯化铈和0.25g五水合硝酸锆的70mL去离子水溶液,搅拌混合1h,置于75℃油浴加热进行回流搅拌反应6h,冷却至室温,离心,去离子水洗涤2次,乙醇洗涤1次,50℃干燥10h,通入高纯氮气进行焙烧处理,以5℃/min为升温速率,升温至350℃恒温保持2h,制得mHNTs@IBIP-Au@CeO2-ZrO2复合催化剂。
催化性能评价:用25ml反应器配置含有0.3g碳酸钾的6mL苯甲醇反应溶液,称取20mg制得的催化剂分散于上述混合物中,调整氧气流量为40mL/min,反应温度为155℃,反应时间为8h;反应结束后,取微量样品进入气相色谱仪中进行定量分析,计算苯甲醇转化率和苯甲醛选择性;结果显示,该催化剂催化氧化苯甲醇转化率为93%,苯甲醛选择性为95%。
实施例8:
室温下,称取46.3g溴化胆碱和91.5g三氟乙酸混合反应8h,形成深共融溶剂;取2g埃洛石纳米管超声分散于上述深共融溶剂中,置于50℃回流搅拌反应8h,自然冷却至室温,离心,用去离子水洗涤至上清液pH值为7,45℃干燥14h,制得改性埃洛石纳米管mHNTs;
室温下,称取0.6g mHNTs固体、0.28g二(1H-咪唑-1-基)甲烷和0.38g 1,2,4,5-四(溴甲基)苯分散混合于32mL乙腈和8mL N,N-二甲基甲酰胺的混合溶剂中,置于90℃回流反应8h,自然冷却至室温,离心,用乙腈洗涤3次,40℃真空干燥15h,制得咪唑鎓基离子聚合物修饰改性埃洛石纳米管mHNTs@IBIP复合材料;
室温下,取上述mHNTs@IBIP复合材料分散于22mL四氯金酸铵溶液(7mg Au/mL)中,搅拌18h,离心,用去离子水淋洗2次,45℃真空干燥12h;随后通入体积比为1:9的氢气和氩气的混合气体进行还原热处理,以5℃/min为升温速率,升温至400℃恒温焙烧1.5h,制得mHNTs@IBIP-Au复合材料;
室温下,取上述mHNTs@IBIP-Au复合材料和3.6g六亚甲基四胺超声分散于110mL乙醇中,随后加进含0.85g硝酸铈铵和0.31g四水合硫酸锆的75mL去离子水溶液,搅拌混合0.5h,置于80℃油浴加热进行回流反应5.5h,冷却至室温,离心,去离子水洗涤2次,乙醇洗涤1次,45℃干燥12h,通入高纯氩气进行焙烧处理,以5℃/min为升温速率,升温至350℃恒温保持3h,制得mHNTs@IBIP-Au@CeO2-ZrO2复合材料。
催化性能评价:首先配置50mL含15mg/L对硝基苯胺和0.3mol/L硼氢化钠的混合溶液,保持磁力搅拌,随后加进2.5mL制得的催化剂分散液(6g/L),并对该催化反应进行计时;在不同反应时间取少量反应溶液经滤头过滤和稀释后,利用高效液相色谱仪分析对硝基苯胺转化率和选择性;结果显示,在15min内,该催化剂催化还原对硝基苯胺转化率为90%,对氨基苯胺选择性为100%。
以上所述仅为本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员而言,在不脱离本发明方法的前提下,还可以做出若干改进和润饰,这些改进和润饰也应该视为本发明的保护范围内。

Claims (10)

1.一种功能改性埃洛石纳米管载金核壳催化剂,其特征在于,包括:
改性埃洛石纳米管,所述改性埃洛石纳米管预先通过深共融溶剂对其表面结构进行选择性刻蚀;
咪唑鎓基离子聚合物,所述咪唑鎓基离子聚合物通过季铵化反应与界面键合方式修饰于所述改性埃洛石纳米管表面;
Au纳米颗粒,所述Au纳米颗粒通过阴离子交换和配位静电吸附分散锚定在所述咪唑鎓基离子聚合物主体网状结构中;
以及双金属介孔氧化物,所述双金属介孔氧化物作为壳层结构封装固化Au纳米颗粒及聚合物主体网状结构,形成核壳复合物。
2.根据权利要求1所述的功能改性埃洛石纳米管载金核壳催化剂,其特征在于,所述深共融溶剂包括氢键接受体和氢键给体;所述咪唑鎓基离子聚合物为利用咪唑衍生物和卤代甲基苯间的季铵化反应得到的物质;所述双金属介孔氧化物选自CeO2-Co3O4、CeO2-La2O3、CeO2-CuO和CeO2-ZrO2中的任一种。
3.根据权利要求2所述的功能改性埃洛石纳米管载金核壳催化剂,其特征在于,所述氢键接受体选自四甲基氯化铵、四乙基氯化铵、四丁基氯化铵、氯化胆碱和溴化胆碱中的任一种;所述氢键给体选自六氟磷酸、六氟硅酸、氢氟酸、三氟乙酸和三氟甲磺酸中的任一种。
4.根据权利要求1所述的功能改性埃洛石纳米管载金核壳催化剂,其特征在于,所述改性埃洛石纳米管质量百分含量为所述催化剂整体质量的20~55%;所述咪唑鎓基离子聚合物质量百分含量为所述催化剂整体质量的10~35%;所述Au纳米颗粒质量百分含量为所述催化剂整体质量的0.5~10%;所述双金属介孔氧化物质量百分含量为所述催化剂整体质量的15~45%。
5.一种权利要求1-4任一项所述的功能改性埃洛石纳米管载金核壳催化剂的制备方法,其特征在于,所述方法包括以下步骤:
步骤a):将埃洛石纳米管和深共融溶剂置于30~80℃搅拌混合1~12h,冷却至室温,离心回收固体,用去离子水洗涤至pH值为5~7,40~60℃干燥8~16h,得到改性埃洛石纳米管mHNTs;
步骤b):将改性埃洛石纳米管mHNTs固体、二(1H-咪唑-1-基)甲烷、1,2,4,5-四(溴甲基)苯分散混合于乙腈和N,N-二甲基甲酰胺混合溶剂中,置于60~100℃回流搅拌反应6~18h,自然冷却至室温,经离心、洗涤、干燥后,得到咪唑鎓基离子聚合物修饰改性埃洛石纳米管mHNTs@IBIP复合材料;
步骤c):将所述咪唑鎓基离子聚合物修饰改性埃洛石纳米管mHNTs@IBIP复合材料分散于Au金属阴离子前体溶液,室温搅拌8~24h,随后进行离心、淋洗、干燥,经过还原气氛热处理,得到mHNTs@IBIP-Au复合材料;
步骤d):将所述mHNTs@IBIP-Au复合材料、六亚甲基四胺分散于乙醇中,加入双金属盐溶液,室温搅拌混合,加热60~95℃进行回流搅拌反应4~12h,冷却至室温,经过离心、洗涤、干燥操作,通入惰性气氛进行焙烧热处理,得到功能改性埃洛石纳米管载金核壳催化剂。
6.根据权利要求5所述的功能改性埃洛石纳米管载金核壳催化剂的制备方法,其特征在于,步骤a)中,所述埃洛石纳米管和深共融溶剂质量比为1:40~200;所述氢键接受体与氢键给体的摩尔比为1:1~6。
7.根据权利要求5所述的功能改性埃洛石纳米管载金核壳催化剂的制备方法,其特征在于,步骤b)中,所述改性埃洛石纳米管mHNTs固体、二(1H-咪唑-1-基)甲烷、1,2,4,5-四(溴甲基)苯、乙腈和N,N-二甲基甲酰胺质量比为1:0.13~0.53:0.2~0.8:20~60:6~20。
8.根据权利要求5所述的功能改性埃洛石纳米管载金核壳催化剂的制备方法,其特征在于,步骤c)中,所述咪唑鎓基离子聚合物修饰改性埃洛石纳米管mHNTs@IBIP复合材料与Au金属阴离子前体的质量比为1:0.015~0.5;所述Au金属阴离子前体溶液中蒸馏水和Au元素质量百分比为1:0.001~0.01;所述Au金属阴离子前体选自四氯金酸、四氯金酸铵、四氯金酸钠和四氯金酸钾中的任一种;所述还原气氛热处理的条件为:以体积比为1:9的氢气和氩气的混合气体作为还原气氛,以5~10℃/min为升温速率,升温至300~500℃恒温处理1~3h。
9.根据权利要求5所述的功能改性埃洛石纳米管载金核壳催化剂的制备方法,其特征在于,步骤d)中,所述mHNTs@IBIP-Au复合材料、六亚甲基四胺和双金属盐的质量比为1:2~8:0.5~5;所述双金属盐为铈盐-钴盐、铈盐-镧盐、铈盐-铜盐和铈盐-锆盐中的任一种组合;所述铈盐占双金属盐的质量比为0.65~0.95;所述惰性气氛焙烧热处理的条件为:以5~10℃/min为升温速率,升温至200~400℃恒温保持2~5h;所述惰性气氛选自高纯氮气、高纯氩气和高纯氦气中的任一种。
10.一种如权利要求1-4任一项所述的功能改性埃洛石纳米管载金核壳催化剂或由权利要求5-9任一项所述的制备方法制得的功能改性埃洛石纳米管载金核壳催化剂在催化氧化苯甲醇制备苯甲醛或催化还原硝基苯类物质制备胺类物质中的应用。
CN202211301631.8A 2022-10-24 2022-10-24 一种功能改性埃洛石纳米管载金核壳催化剂及其制备方法和应用 Active CN115608419B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211301631.8A CN115608419B (zh) 2022-10-24 2022-10-24 一种功能改性埃洛石纳米管载金核壳催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211301631.8A CN115608419B (zh) 2022-10-24 2022-10-24 一种功能改性埃洛石纳米管载金核壳催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115608419A true CN115608419A (zh) 2023-01-17
CN115608419B CN115608419B (zh) 2023-11-10

Family

ID=84865575

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211301631.8A Active CN115608419B (zh) 2022-10-24 2022-10-24 一种功能改性埃洛石纳米管载金核壳催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115608419B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116493046A (zh) * 2023-04-14 2023-07-28 东莞理工学院 一种埃洛石复合物担载SnO2-Au核壳催化剂、制备方法和用途
CN117138837A (zh) * 2023-08-30 2023-12-01 淮安中顺环保科技有限公司 改性埃洛石复合材料、埃洛石基三相界面催化膜及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100780483B1 (ko) * 2006-10-24 2007-11-29 한국과학기술연구원 이미다졸륨계 고분자에 지지된 산촉매를 이용한함불소알콕시트리알킬실란의 제조방법
CN101829567A (zh) * 2010-05-14 2010-09-15 浙江大学 一种负载型纳米金催化剂的制备方法及用途
CN108212155A (zh) * 2018-02-11 2018-06-29 中国科学院广州地球化学研究所 一种粘土矿物负载均匀分散金属离子/原子催化剂及其制备方法
CN111450824A (zh) * 2020-05-14 2020-07-28 河北大学 具有温度响应催化性能的金纳米催化剂的制备方法及应用
CN113751076A (zh) * 2020-06-04 2021-12-07 南京工业大学 双咪唑鎓盐钯负载多孔有机聚合物催化剂及其制法与应用
CN114870840A (zh) * 2022-06-15 2022-08-09 东莞理工学院 一种功能改性天然黏土纳米管催化剂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100780483B1 (ko) * 2006-10-24 2007-11-29 한국과학기술연구원 이미다졸륨계 고분자에 지지된 산촉매를 이용한함불소알콕시트리알킬실란의 제조방법
CN101829567A (zh) * 2010-05-14 2010-09-15 浙江大学 一种负载型纳米金催化剂的制备方法及用途
CN108212155A (zh) * 2018-02-11 2018-06-29 中国科学院广州地球化学研究所 一种粘土矿物负载均匀分散金属离子/原子催化剂及其制备方法
CN111450824A (zh) * 2020-05-14 2020-07-28 河北大学 具有温度响应催化性能的金纳米催化剂的制备方法及应用
CN113751076A (zh) * 2020-06-04 2021-12-07 南京工业大学 双咪唑鎓盐钯负载多孔有机聚合物催化剂及其制法与应用
CN114870840A (zh) * 2022-06-15 2022-08-09 东莞理工学院 一种功能改性天然黏土纳米管催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张学云等: "埃洛石负载的纳米金可控制备及对环己烷选择性氧化的催化性能", 化工进展, vol. 39, no. 5, pages 1756 - 1764 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116493046A (zh) * 2023-04-14 2023-07-28 东莞理工学院 一种埃洛石复合物担载SnO2-Au核壳催化剂、制备方法和用途
CN117138837A (zh) * 2023-08-30 2023-12-01 淮安中顺环保科技有限公司 改性埃洛石复合材料、埃洛石基三相界面催化膜及其制备方法和应用
CN117138837B (zh) * 2023-08-30 2024-05-28 淮安中顺环保科技有限公司 改性埃洛石复合材料、埃洛石基三相界面催化膜及其制备方法和应用

Also Published As

Publication number Publication date
CN115608419B (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
CN115608419B (zh) 一种功能改性埃洛石纳米管载金核壳催化剂及其制备方法和应用
Evangelista et al. Highly active Au-CeO2@ ZrO2 yolk–shell nanoreactors for the reduction of 4-nitrophenol to 4-aminophenol
Liu et al. Hollow mesoporous ceria nanoreactors with enhanced activity and stability for catalytic application
Seo et al. Direct synthesis of hydrogen peroxide from hydrogen and oxygen over mesoporous silica-shell-coated, palladium-nanocrystal-grafted SiO2 nanobeads
CN109433205B (zh) 一种草酸二甲酯加氢的铜基催化剂及其制备方法与应用
CN109482185B (zh) 一种高分散稳定型铜基催化剂及其制备方法
US9415442B2 (en) Stable oxide encapsulated metal clusters and nanoparticles
JP7306750B2 (ja) 低温下でも高い活性を有する、多孔性酸化物担体に捕集された金属性ナノ粒子触媒
CN104971759A (zh) 一种负载型钯碳催化剂的制备方法
CN102688760A (zh) Fe3O4/CuO/pSiO2催化剂及其制备方法
CN109078642B (zh) 一种花型纳米金复合金属氧化物催化剂及其制备方法和应用
CN109420515B (zh) 一种高分散负载型金属催化剂的制备方法
Wang et al. Assembling nanostructures for effective catalysis: supported palladium nanoparticle multicores coated by a hollow and nanoporous zirconia shell
Yin et al. Ag/Ag2O confined visible-light driven catalyst for highly efficient selective hydrogenation of nitroarenes in pure water medium at room temperature
CN103551196A (zh) 一种具有介孔结构磁性金属有机骨架材料、制备及催化反应
Qi et al. Solvent-free aerobic oxidation of alcohols over palladium supported on MCM-41
Fang et al. Fabrication of ellipsoidal silica yolk–shell magnetic structures with extremely stable Au nanoparticles as highly reactive and recoverable catalysts
Acosta et al. The decoration of gold core in au@ zro 2 nanoreactors with trace amounts of pd for the effective reduction of 4-nitrophenol to 4-aminophenol
Zhang et al. Recent advances in the marriage of catalyst nanoparticles and mesoporous supports
CN1483514A (zh) 液相法制备活性组分小于5纳米的金属原子簇均匀分布在多孔氧化物载体上的方法
CN109174092B (zh) 一种氧化锌/铂复合材料微球及其制备方法和应用
CN105749908A (zh) 一种AuTiO2空心核壳结构光催化剂及其制备方法
CN111389398B (zh) 分级中空二氧化硅限域氧化亚铜可见光催化剂的制备方法
WO2007142148A1 (ja) 多孔質炭素層に内包された触媒及びその製造方法
Li et al. “Ship-in-a-bottle” approach to synthesize Ag@ hm-SiO2 yolk/shell nanospheres

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant