CN115591584B - 一种对芬太尼具有快速响应的铁MOFs/纳米碳材料及其制备方法与应用 - Google Patents

一种对芬太尼具有快速响应的铁MOFs/纳米碳材料及其制备方法与应用 Download PDF

Info

Publication number
CN115591584B
CN115591584B CN202211288038.4A CN202211288038A CN115591584B CN 115591584 B CN115591584 B CN 115591584B CN 202211288038 A CN202211288038 A CN 202211288038A CN 115591584 B CN115591584 B CN 115591584B
Authority
CN
China
Prior art keywords
mofs
iron
fentanyl
nano
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211288038.4A
Other languages
English (en)
Other versions
CN115591584A (zh
Inventor
何缘
赵志东
靳焘
雷柯
何秀凯
叶世楷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongke Testing Technology Service Guangzhou Co ltd
Original Assignee
Zhongke Testing Technology Service Guangzhou Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongke Testing Technology Service Guangzhou Co ltd filed Critical Zhongke Testing Technology Service Guangzhou Co ltd
Priority to CN202211288038.4A priority Critical patent/CN115591584B/zh
Publication of CN115591584A publication Critical patent/CN115591584A/zh
Application granted granted Critical
Publication of CN115591584B publication Critical patent/CN115591584B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • B01J31/182Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine comprising aliphatic or saturated rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/2243At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
    • B01J35/33
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron

Abstract

本发明属于电化学快速检测技术领域,公开了一种对芬太尼具有快速响应的铁MOFs/纳米碳材料及其制备方法与应用。本发明通过将对芬太尼具有高效催化活性的纳米碳与铁MOFs复合,构筑超灵敏的电极材料。铁MOFs的吸附作用和类芬顿效应可促进这类电极材料对芬太尼检测的灵敏度和响应速率,使其在电化学快检技术中表现出优异的性能,实现了比现有技术低一个数量级的超级检测限,同时具备优异的检测重复性和电化学环境下、空气中的稳定性。本发明制备的这类全新的铁MOFs/纳米碳电极材料有望成为芬太尼快检技术中的潜在应用材料。

Description

一种对芬太尼具有快速响应的铁MOFs/纳米碳材料及其制备 方法与应用
技术领域
本发明属于电化学快速检测技术领域,特别涉及一类对芬太尼具有快速响应的铁MOFs/纳米碳材料及其制备方法与应用。
背景技术
芬太尼原本是一种强效的阿片类止痛剂,适用于各种疼痛及外科、妇科等手术后和手术过程中的镇痛,但过量摄入时会让人嗜睡、困惑和恶心,此后是上瘾、低血压,最后是因为呼吸抑制而死亡。适量使用时芬太尼是药物,滥用则是毒品。欧洲毒品和毒瘾监测中心指出,血液中芬太尼浓度超过60nM就有致死效应。除了毒性大,芬太尼还有数以亿计的可能化学变体,即所谓的类似物,如枸橼酸芬太尼、卡芬太尼、舒芬太尼等。作为一类新型合成毒品,由于其毒性强、品种多、变异快、查缉难,现场快速检测芬太尼已成为当前国际禁毒领域面临的一大难题。
电化学检测具有快速、小型化、灵敏度高、成本低等优势,是极具发展潜力的现场快速检测技术。通过两步失氢失电子和一步水加成的过程,芬太尼最终被氧化分解为两种物质。该过程产生的氧化峰则是定性定量检测的依据。纳米洋葱、多壁碳纳米管、TiO2/石墨烯、锌MOF修饰的丝网印刷碳糊电极(Mat. Sci.Eng.C-Mater.,2018,110,110684;J.Anal.Chem.,2020,75,.1209;Int.J. Electrochem.Sci.,2021,16;New J.Chem.,2020,44,9271)都是近年来用于电化学检测芬太尼的催化剂。因此,基于纳米碳的电化学检测是切实可行的芬太尼快检技术之一。然而,现有技术的检测限仍有待进一步降低。
发明内容
为了克服现有技术的缺点与不足,本发明的首要目的在于提供一种对芬太尼具有快速响应的铁MOFs/纳米碳材料的制备方法。
本发明的再一目的在于提供上述制备方法制备得到的对芬太尼具有快速响应的铁MOFs/纳米碳材料。
本发明的又一目的在于提供上述铁MOFs/纳米碳材料在芬太尼快速检测技术中的应用;本发明提出运用类芬顿技术提高芬太尼的电催化氧化效率,降低检测限。
本发明的首要目的通过下述方案实现:
一种对芬太尼具有快速响应的铁MOFs/纳米碳材料的制备方法,包括以下步骤:
(1)将铁盐和有机配体加入溶剂中,充分溶解后转移至反应釜中进行反应,反应完成后依次用甲醇、去离子水、乙醇、丙酮洗涤,80℃下真空干燥12h,得到铁MOFs;
(2)取10mg步骤(1)中得到的铁MOFs与1-100mg纳米碳置于溶剂中超声反应得到分散液,然后取分散液滴涂玻碳电极,自然晾干,在玻碳电极上面得到铁MOFs/纳米碳材料。
步骤(1)中所述铁盐为FeCl3·6H2O、Fe(NO3)3·9H2O、FeCl3、Fe(NO3)2中的一种,所述有机配体为苯甲酸、对苯二甲酸、均苯三甲酸、反丁烯二酸、六氨基苯、双(3,5-二羧基苯基)偶氮中的一种,所述溶剂为N,N-二甲基甲酰胺(DMF)、N,N-二乙基甲酰胺(DEF)、1-甲基-2-吡咯烷酮(NMP)、乙醇(EtOH)、水(H2O)、氢氟酸(HF)、盐酸(HCl)中的一种或多种混合。
步骤(1)中所述的铁盐与有机配体的摩尔比为1:1-1:20;所述铁盐和有机配体加入溶剂中形成的混合溶液中铁盐的浓度为1-100mg/mL。
步骤(1)中所述反应的温度为60-200℃,反应的时间为6-80h。
步骤(2)中所使用的铁MOFs是步骤(1)中所制备的铁MOFs中的一种或两种,并且两种铁MOFs的质量比1:1。
步骤(2)中所述的纳米碳为单壁碳纳米管、双壁碳纳米管、多壁碳纳米管、石墨烯和富勒烯中的一种或两种;当纳米碳为两种时,其质量比为1:1。
步骤(2)中所述的溶剂为DMF、THF、CH2Cl2、CHCl3、EtOH和H2O 中的至少一种,溶剂的用量为5-20mL。
步骤(2)中所述超声的功率为40W,超声的时间为10-120min。
一种由上述的制备方法制备得到的铁MOFs/纳米碳材料。
上述的制备方法制备得到的铁MOFs/纳米碳材料在芬太尼快检技术中的应用,其特征在于:所述铁MOFs/纳米碳材料对芬太尼具有10nM超低检测限。
本发明的原理:
本发明制备了一种对芬太尼具有快速响应的铁MOFs/纳米碳材料。已报道的研究中,都是依赖于碳材料本身的催化活性,掺杂其他物质只是调控碳材料的电子结构。而在本发明中,发明人通过实验的研究和改进合成的方法,提供了一条创新性的材料设计思路,属于新材料的开发与应用。发明人提出非均相类芬顿催化剂与纳米碳复合,利用Fe(III)/Fe(II)循环加快芬太尼的氧化分解,与纳米碳的催化氧化作用产生协同效应,大大降低纳米碳本身的检测限。该铁 MOFs/纳米碳材料的基本物化性质情况可通过红外光谱(FTIR)、X射线衍射仪 (XRD)、扫描电镜(SEM)、透射电镜(TEM)和X射线光电子能谱仪(XPS)的表征得以确认。最后通过三电极体系下的电化学测试评估该铁MOFs/纳米碳材料在芬太尼快检技术中的应用前景。
本发明相对于现有技术,具有如下的优点及有益效果:
本发明在对芬太尼具有催化氧化作用的纳米碳上复合非均相类芬顿催化剂,两者的协同作用使得这类铁MOFs/纳米碳材料在电化学快检技术中表现出优异的性能,实现了比现有技术更低的检测限,同时具备优异的检测重复性和电化学环境下、空气中的稳定性。本发明制备的这类全新的铁MOFs/纳米碳材料有望成为芬太尼快检技术中的潜在应用材料。
附图说明
图1为实施例1中铁MOFs-1的SEM图;
图2为实施例2中铁MOFs-2的SEM图;
图3为实施例3中铁MOFs-3的SEM图;
图4为实施例4中铁MOFs-4的SEM图;
图5为实施例5中铁MOFs-5的XPS图;
图6为实施例6中铁MOFs-6的XPS图;
图7为实施例3中铁MOFs-3/多壁碳纳米管的动力学测试图;
图8为实施例5中铁MOFs-5/富勒烯的动力学测试图;
图9为实施例7中铁MOFs-7/多壁碳纳米管的检测限测试图;
图10为实施例2中铁MOFs-2/单壁碳纳米管的检测限测试图;
图11为实施例4中铁MOFs-4/富勒烯的检测限测试图;
图12为实施例1,2,4,5,7中铁MOFs/纳米碳材料的实际样品检测统计图。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例中所用试剂如无特殊说明均可从市场常规购得。
实施例1
将20mg FeCl3·6H2O和30mg均苯三甲酸溶于50mL去离子水中,充分溶解后转移至反应釜中,在120℃下反应72h,离心收集固体,依次用甲醇、去离子水、乙醇、丙酮洗涤,80℃下真空干燥12h,得到铁MOFs-1。称取10 mg铁MOFs-1和10mg多壁碳纳米管于1mL乙醇中以40W超声功率超声分散30min得到分散液,取5μL所得分散液滴涂于玻碳电极中,自然晾干,在玻碳电极上面得到铁MOFs/纳米碳材料;该修饰了铁MOFs/纳米碳的玻碳电极可用于芬太尼检测的电极材料。
如图1所示为本实施例中铁MOFs-1的SEM图,该图表明铁MOFs-1具有八面体结构,属于立方晶系。
实施例2
将30mg Fe(NO3)2溶于100mL去离子水/DMF中,充分溶解得到溶液1;将30mg六氨基苯溶于100mL 1-甲基-2-吡咯烷酮中,充分溶解得到溶液2,将溶液1和溶液2混合后转移至反应釜中,在100℃下反应7h,离心收集固体,依次用甲醇、去离子水、乙醇、丙酮洗涤,80℃下真空干燥12h,得到铁 MOFs-2。称取10mg铁MOFs-2和20mg单壁碳纳米管于1mL乙醇中以40W 超声功率超声分散30min,取5μL悬浮液滴涂于玻碳电极中,自然晾干,在玻碳电极上面得到铁MOFs/纳米碳材料;该修饰了铁MOFs/纳米碳的玻碳电极可用于芬太尼检测的电极材料。
如图2所示为本实施例中铁MOFs-2的SEM图,该图表明铁MOFs-2具有菱形十二面体结构,属于立方晶系。如图10所示为本实施例中铁MOFs-2/ 单壁碳纳米管的检测限测试图,从图中可以看出该材料对芬太尼的检测限为 0.01μM,即10nM,线性范围为0.01-5μM,5-50μM。
实施例3
将30mg FeCl3·6H2O和50mg对苯二甲酸溶于80mL DMF中,充分溶解混合后转移至反应釜中,在150℃下反应12h,离心收集固体,依次用甲醇、去离子水、乙醇、丙酮洗涤,80℃下真空干燥12h,得到铁MOFs-3。称取10 mg铁MOFs-3和15mg多壁碳纳米管于1mL乙醇中以40W超声功率超声分散30min,取5μL悬浮液滴涂于玻碳电极中,自然晾干,在玻碳电极上面得到铁MOFs/纳米碳材料;该修饰了铁MOFs/纳米碳的玻碳电极可用于芬太尼检测的电极材料。
如图3所示为本实施例中铁MOFs-3的SEM图,该图表明铁MOFs-3呈现球形纳米颗粒形貌。如图7所示为本实施例中铁MOFs-3/多壁碳纳米管的动力学测试图,从图中可以看出氧化峰电流和还原峰电流均随着扫速的增大而增大,其中还原反应具有更大动力学速率。
实施例4
将10mg FeCl3·6H2O和20mg反丁烯二酸溶于60mL水中,充分溶解混合后转移至反应釜中,在65℃下反应12h,离心收集固体,依次用甲醇、去离子水、乙醇、丙酮洗涤,80℃下真空干燥12h,得到铁MOFs-4。称取10mg 铁MOFs-4和25mg富勒烯于1mL乙醇中以40W超声功率超声分散30min,取5μL悬浮液滴涂于玻碳电极中,自然晾干,在玻碳电极上面得到铁MOFs/ 纳米碳材料;该修饰了铁MOFs/纳米碳的玻碳电极可用于芬太尼检测的电极材料。
如图4所示为本实施例中铁MOFs-4的SEM图,该图表明铁MOFs-4呈现纳米棒状形貌。如图11所示为本实施例中铁MOFs-4/富勒烯的检测限测试图,从图中可以看出该材料对芬太尼的检测限为0.25μM,即250nM,线性范围为0.25-25μM。
实施例5
将10mg Fe(NO3)3·9H2O、40mg双(3,5-二羧基苯基)偶氮和8mL乙酸溶于 50mL DMF中,充分溶解混合后转移至反应釜中,在150℃下反应24h,离心收集固体,依次用甲醇、去离子水、乙醇、丙酮洗涤,80℃下真空干燥12h,得到铁MOFs-5。称取10mg铁MOFs-5和80mg富勒烯于10mL乙醇中以40W 超声功率超声分散30min,取5μL悬浮液滴涂于玻碳电极中,自然晾干,在玻碳电极上面得到铁MOFs/纳米碳材料;该修饰了铁MOFs/纳米碳的玻碳电极可用于芬太尼检测的电极材料。
如图5所示为本实施例中铁MOFs-5的XPS图,从图中可以看出铁MOFs-5 的Fe离子呈+3价,且两个卫星峰清晰可见。如图8所示为本实施例中铁 MOFs-5/富勒烯的动力学测试图,从图中可以看出氧化峰电流和还原峰电流均随着扫速的增大而增大,其中还原反应具有更大动力学速率。
实施例6
将13mg Fe(NO3)3·9H2O和40mg对苯二甲酸溶于50mL DMF中,充分溶解混合后转移至反应釜中,在120℃下反应20h,离心收集固体,依次用甲醇、去离子水、乙醇、丙酮洗涤,80℃下真空干燥12h,得到铁MOFs-6。称取10mg铁MOFs-6和90mg多壁碳纳米管于10mL乙醇中以40W超声功率超声分散30min,取5μL悬浮液滴涂于玻碳电极中,自然晾干,在玻碳电极上面得到铁MOFs/纳米碳材料;该修饰了铁MOFs/纳米碳的玻碳电极可用于芬太尼检测的电极材料。
如图6所示为本实施例中铁MOFs-6的XPS图,从图中可以看出铁MOFs-6 的Fe离子呈+3价,且两个卫星峰清晰可见。
实施例7
将28mg FeCl3·6H2O和70mg对苯二甲酸溶于50mL DMF中,缓慢滴加 10mL NaOH(aq),转移至反应釜中,在100℃下反应12h,离心收集固体,依次用甲醇、去离子水、乙醇、丙酮洗涤,80℃下真空干燥12h,得到铁MOFs-7。称取10mg铁MOFs-7和100mg多壁碳纳米管于10mL乙醇中以40W超声功率超声分散30min,取5μL悬浮液滴涂于玻碳电极中,自然晾干,在玻碳电极上面得到铁MOFs/纳米碳材料;该修饰了铁MOFs/纳米碳的玻碳电极可用于芬太尼检测的电极材料。
如图9所示为本实施例中铁MOFs-7/多壁碳纳米管的检测限测试图,从图中可以看出该材料对芬太尼的检测限为0.25μM,即250nM,线性范围为 0.25-25μM。
综上所述,本发明首次提出了用于电化学检测芬太尼的新型电催化剂的设计思路,并且通过该思路制备了一系列全新的铁MOFs/纳米碳材料,实现了超低的检测限。首先,纳米碳材料的高导电性和催化活性是电化学检测芬太尼的基础,系统研究多种纳米碳基催化剂有助于全面分析芬太尼电极材料的优缺点。其次,利用铁MOFs的吸附作用和类芬顿效应,促进电极材料对芬太尼的捕获,提高氧化还原反应的效率。最后,通过优化反应参数,可得到超低检测限、重复性稳定性优异的铁MOFs/纳米碳电极材料。实验证明,该思路制备的铁MOFs/纳米碳电极材料在芬太尼快检技术中具有一定潜在应用价值。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

1.一种铁MOFs/纳米碳材料在芬太尼快检技术中的应用,其特征在于:所述铁MOFs/纳米碳材料对芬太尼具有10nM超低检测限;
所述铁MOFs/纳米碳材料按照以下方法制备得到:
(1)将铁盐和有机配体加入溶剂中,充分溶解后转移至反应釜中进行反应,反应完成后依次用甲醇、去离子水、乙醇、丙酮洗涤,80℃下真空干燥12 h,得到铁MOFs;
(2)取10 mg步骤(1)中得到的铁MOFs与1-100 mg纳米碳置于溶剂中超声反应得到分散液,然后取分散液滴涂玻碳电极,自然晾干,在玻碳电极上面得到铁MOFs/纳米碳材料。
2.根据权利要求1所述的应用,其特征在于:步骤(1)中所述铁盐为FeCl3·6H2O、Fe(NO3)3·9H2O、FeCl3、Fe(NO3)2中的一种,所述有机配体为苯甲酸、对苯二甲酸、均苯三甲酸、反丁烯二酸、六氨基苯、双(3,5-二羧基苯基)偶氮中的一种,所述溶剂为N,N-二甲基甲酰胺、N,N-二乙基甲酰胺、1-甲基-2-吡咯烷酮、乙醇、水中的一种或多种混合。
3. 根据权利要求1所述的应用,其特征在于:步骤(1)中所述的铁盐与有机配体的摩尔比为1:1-1:20;所述铁盐和有机配体加入溶剂中形成的混合溶液中铁盐的浓度为1-100mg/mL。
4. 根据权利要求1所述的应用,其特征在于:步骤(1)中所述反应的温度为60-200℃,反应的时间为6-80 h。
5.根据权利要求1所述的应用,其特征在于:步骤(2)中所使用的铁MOFs是步骤(1)中所制备的铁MOFs中的一种或两种,并且两种铁MOFs的质量比1:1。
6.根据权利要求1所述的应用,其特征在于:步骤(2)中所述的纳米碳为单壁碳纳米管、双壁碳纳米管、多壁碳纳米管、石墨烯和富勒烯中的一种或两种;当纳米碳为两种时,其质量比为1:1。
7. 根据权利要求1所述的应用,其特征在于:步骤(2)中所述的溶剂为DMF、THF、CH2Cl2、CHCl3、EtOH和H2O中的至少一种,溶剂的用量为5-20 mL。
8. 根据权利要求1所述的应用,其特征在于:步骤(2)中所述超声的功率为40W,超声的时间为10-120 min。
CN202211288038.4A 2022-10-20 2022-10-20 一种对芬太尼具有快速响应的铁MOFs/纳米碳材料及其制备方法与应用 Active CN115591584B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211288038.4A CN115591584B (zh) 2022-10-20 2022-10-20 一种对芬太尼具有快速响应的铁MOFs/纳米碳材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211288038.4A CN115591584B (zh) 2022-10-20 2022-10-20 一种对芬太尼具有快速响应的铁MOFs/纳米碳材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN115591584A CN115591584A (zh) 2023-01-13
CN115591584B true CN115591584B (zh) 2023-10-31

Family

ID=84848396

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211288038.4A Active CN115591584B (zh) 2022-10-20 2022-10-20 一种对芬太尼具有快速响应的铁MOFs/纳米碳材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN115591584B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105776183A (zh) * 2016-05-16 2016-07-20 安徽工业大学 一种二茂铁基碳纳米管复合材料的制备方法及其应用
CN109364995A (zh) * 2018-11-01 2019-02-22 安阳师范学院 高分散石墨烯/Fe基金属有机骨架复合材料电化学传感器的制备方法及应用
CN110186966A (zh) * 2019-05-05 2019-08-30 浙江大学 一种检测乳酸浓度的复合材料修饰电极的制备方法及应用
CN112517076A (zh) * 2020-12-09 2021-03-19 扬州大学 Fe-MOFs@CNTs复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105776183A (zh) * 2016-05-16 2016-07-20 安徽工业大学 一种二茂铁基碳纳米管复合材料的制备方法及其应用
CN109364995A (zh) * 2018-11-01 2019-02-22 安阳师范学院 高分散石墨烯/Fe基金属有机骨架复合材料电化学传感器的制备方法及应用
CN110186966A (zh) * 2019-05-05 2019-08-30 浙江大学 一种检测乳酸浓度的复合材料修饰电极的制备方法及应用
CN112517076A (zh) * 2020-12-09 2021-03-19 扬州大学 Fe-MOFs@CNTs复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"A Hybrid Supercapacitor based on Porous Carbon and the Metal-Organic Framework MIL-100(Fe)";Nicol Campagnol,et al;《ChemElectroChem》;1182-1188 *

Also Published As

Publication number Publication date
CN115591584A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
Duan et al. Electrochemical sensor using NH2-MIL-88 (Fe)-rGO composite for trace Cd2+, Pb2+, and Cu2+ detection
Zhang et al. Biomass chitosan derived cobalt/nitrogen doped carbon nanotubes for the electrocatalytic oxygen reduction reaction
Wu et al. Synthesis of nitrogen-doped onion-like carbon and its use in carbon-based CoFe binary non-precious-metal catalysts for oxygen-reduction
CN107393725B (zh) 一种多孔导电的碳材料负载NiCo2O4复合材料及其制法和应用
Krawczyk Effect of ozone treatment on properties of expanded graphite
Zhao et al. Heteroatoms doped yolk-shell hierarchically porous carbon derived from ZIF-8 for electrochemical sensing
Li et al. Cutting of multi walled carbon nanotubes
Ning et al. N-doped porous carbon supported Ni catalysts derived from modified Ni-MOF-74 for highly effective and selective catalytic hydrodechlorination of 1, 2-dichloroethane to ethylene
Komeily-Nia et al. Progress in the understanding and applications of the intrinsic reactivity of graphene‐based materials
Torad et al. Nanoarchitectured porous carbons derived from ZIFs toward highly sensitive and selective QCM sensor for hazardous aromatic vapors
Bo et al. Simple synthesis of macroporous carbon–graphene composites and their use as a support for Pt electrocatalysts
CN113061441B (zh) 用于氧化修复土壤水体有机污染的生物炭负载铁材料及其制备方法、应用
Mo et al. Vesicular nitrogen doped carbon material derived from Fe2O3 templated polyaniline as improved non-platinum fuel cell cathode catalyst
Chakraborty et al. Surface area measurement of functionalized single-walled carbon nanotubes
Kvande et al. Importance of oxygen-free edge and defect sites for the immobilization of colloidal Pt oxide particles with implications for the preparation of CNF-supported catalysts
Guo et al. In situ fabrication of nitrogen doped graphitic carbon networks coating for high-performance extraction of pyrethroid pesticides
Eblagon et al. Relationships between texture, surface chemistry and performance of N-doped carbon xerogels in the oxygen reduction reaction
Ramesh et al. Effect of ruthenium oxide on the capacitance and gas‐sensing performances of cobalt oxide@ nitrogen‐doped graphene oxide composites
Liu et al. N-rich MOFs derived N-doped carbon nanotubes encapsulating cobalt nanoparticles as efficient and magnetic recoverable catalysts for nitro aromatics reduction
Wang et al. Biomass derived the V-doped carbon/Bi2O3 composite for efficient photocatalysts
Xu et al. Effect of rare earth doping on electronic and gas-sensing properties of SnO2 nanostructures
Nie et al. Simultaneous formation of nitrogen and sulfur-doped carbon nanotubes-mesoporous carbon and its electrocatalytic activity for oxygen reduction reaction
Wan et al. Nano-netlike carbon fibers decorated with highly dispersed CoSe2 nanoparticles as efficient hydrogen evolution electrocatalysts
Gan et al. Highly dispersed Pt nanoparticles by pentagon defects introduced in bamboo-shaped carbon nanotube support and their enhanced catalytic activity on methanol oxidation
CN115591584B (zh) 一种对芬太尼具有快速响应的铁MOFs/纳米碳材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant