CN115584507B - 一种防锈金属清洗剂及其制备方法和使用方法 - Google Patents

一种防锈金属清洗剂及其制备方法和使用方法 Download PDF

Info

Publication number
CN115584507B
CN115584507B CN202211572569.6A CN202211572569A CN115584507B CN 115584507 B CN115584507 B CN 115584507B CN 202211572569 A CN202211572569 A CN 202211572569A CN 115584507 B CN115584507 B CN 115584507B
Authority
CN
China
Prior art keywords
parts
metal
cleaning agent
cyclodextrin
abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211572569.6A
Other languages
English (en)
Other versions
CN115584507A (zh
Inventor
吴晓强
傅士超
王凯华
吴桂勤
杨华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong Kexing Chemical Co ltd
Original Assignee
Nantong Kexing Chemical Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong Kexing Chemical Co ltd filed Critical Nantong Kexing Chemical Co ltd
Priority to CN202211572569.6A priority Critical patent/CN115584507B/zh
Publication of CN115584507A publication Critical patent/CN115584507A/zh
Application granted granted Critical
Publication of CN115584507B publication Critical patent/CN115584507B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/04Cleaning or pickling metallic material with solutions or molten salts with acid solutions using inhibitors
    • C23G1/06Cleaning or pickling metallic material with solutions or molten salts with acid solutions using inhibitors organic inhibitors
    • C23G1/061Cleaning or pickling metallic material with solutions or molten salts with acid solutions using inhibitors organic inhibitors nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/04Cleaning or pickling metallic material with solutions or molten salts with acid solutions using inhibitors
    • C23G1/06Cleaning or pickling metallic material with solutions or molten salts with acid solutions using inhibitors organic inhibitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

本发明属于金属清洗技术领域,具体涉及一种防锈金属清洗剂及其制备方法和使用方法。其技术要点如下,按照重量份数计算,包括如下组分:有机溶剂20~30份,除锈剂10~15份,缓蚀剂6~8份,表面活性剂6~10份和水30~60份;其中,除锈剂由纳米磁性混合磨料、环糊精和水组成,其质量比为(1.5~5):(5~15):30;纳米磁性混合磨料是SiC磨料、Al2O3磨料或CBN磨料与磁性Fe3O4纳米粒子的混合物;其质量比为(3~8):1;缓蚀剂是聚乙烯亚胺或聚醚醚酮中的任意一种。本发明能够大幅提高除锈剂的导热性能,在清洗过程中,能够快速降低金属表面的温度,达到保护金属的目的。

Description

一种防锈金属清洗剂及其制备方法和使用方法
技术领域
本发明属于金属清洗技术领域,具体涉及一种防锈金属清洗剂及其制备方法和使用方法。
背景技术
在机械及汽车等行业,经常需要用到柴油、煤油等清洗液来清洗金属零部件,因而在金属零部件的表面为经常残留油污,同时金属零部件的表面会随着使用时间的增加而逐渐生锈,最终影响机械零部件的运转性能,因为经常需要使用金属清洗剂对金属零部件的表面进行清洗,而现有的大多数金属清洗剂在清理金属零部件表面油污的同时无法做到同时对生锈的表面进行除锈,同时在清洗完毕后无法再次防止其生锈,导致金属零部件的清洗效率低下。
为了提高除锈效率,通常在清洗剂中加入适量的磨料,通过摩擦作用,达到高效除锈的目的。但是摩擦会导致金属表面划伤,磨擦生热也会导致金属表面受热膨胀发生形变,影响金属工件的使用以及后续的寿命。
有鉴于上述现有技术存在的缺陷,本发明人基于从事此类材料多年丰富经验及专业知识,配合理论分析,加以研究创新,开发一种防锈金属清洗剂及其制备方法和使用方法。
发明内容
本发明的第一个目的是提供一种防锈金属清洗剂。通过纳米磁性混合磨料的加入,使除锈剂形成纳米磁性流体,大幅提高除锈剂的导热性能,在清洗过程中,能够快速降低金属表面的温度,达到保护金属的目的。
本发明的上述技术目的是通过以下技术方案得以实现的:
本发明提供的一种防锈金属清洗剂,按照重量份数计算,包括如下组分:有机溶剂20~30份,除锈剂10~15份,缓蚀剂6~8份,乳化剂5~9份,表面活性剂6~10份和水30~60份;
其中,除锈剂由纳米磁性混合磨料、环糊精和水组成,其质量比为(1.5~5):(5~15):30。
由于本发明中,采用纳米磁性混合磨料的意义在于,通过纳米磁性粒子分散于水和有机溶剂中获得纳米磁性流体,利用纳米磁性流体的导热和快速散热性能,但是环糊精的存在会削弱纳米磁性流体的导热性能。若环糊精的含量过高,则会影响导热效果,若环糊精的含量过低,则无法形成缓冲作用,容易使磨料划伤金属表面。
而纳米磁性混合磨料的含量过高或过低均会降低纳米磁性流体的导热性能,因此本发明中采用上述配比,以保证纳米磁性流体的导热性能和除锈效率。
进一步的,纳米磁性混合磨料是SiC磁性磨料、Al2O3磁性磨料或CBN磁性磨料中的任意一种或几种的混合物,其粒径为3~50nm。
进一步的,纳米磁性混合磨料是SiC磨料、Al2O3磨料或CBN磨料与磁性Fe3O4纳米粒子的混合物;其质量比为(3~8):1。
本发明提供的纳米磁性混合磨料,能够在清洗过程中,使纳米磁性粒子通过磁性吸附在具有磁性的金属工件表面,对工件进行包覆,之后再通过磨料的摩擦作用,将金属工件表面的锈和纳米磁性粒子共同从金属工件表面去除,在这个过程中,纳米磁性粒子发挥纳米磁性流体的超导热作用,迅速将摩擦产生的热量从金属工件表面转移扩散到清洗剂中,起到快速降温的作用。同时通过纳米磁性粒子对金属的包覆,起到对摩擦进行缓冲的作用,避免磨料划伤金属工件,并通过纳米磁性粒子对锈的吸附作用,使纳米磁性粒子能够对锈的疏松孔道进行填充,通过磁性作用瓦解锈的骨架,使除锈更加彻底且高效。
本发明提供的纳米磁性混合磨料的采用的配比,能够保证除锈效率的情况下,提高纳米磁性粒子能够形成纳米磁性流体。
其中,环糊精的作用一是避免纳米磁性粒子团聚;二是同样对磨料进行缓冲,保护金属工件;三是对洗脱下来的锈进行粘附,提高清洁力。
进一步的,缓蚀剂是聚乙烯亚胺或聚醚醚酮中的任意一种。本发明中采用聚乙烯亚胺或聚醚醚酮作为缓蚀剂,是由于上述两种聚合物中含有酰胺键,能够吸附于金属表面,当纳米磁性粒子和锈从金属工件表面脱落后,裸露出的金属表面容易与清洗剂中的其他化合物反应,也容易被腐蚀或氧化,而聚乙烯亚胺和聚醚醚酮能够在三乙胺的作用下,迅速吸附在金属工件表面并形成薄薄的MOFs膜,从而避免金属工件的二次腐蚀和氧化,达到防锈的目的。
进一步的,含有酰胺基团的聚合物是聚乙烯亚胺。
进一步的,有机溶剂是三乙醇胺、乙烯乙二醇醚或二乙二醇单丁醚中的任意一种。
进一步的,表面活性剂是十二烷基苯磺酸钠、十二烷基硫酸钠或脂肪醇聚氧乙烯醚中的任意一种。
本发明的第二个目的是提供一种防锈金属清洗剂的制备方法,具有同样的技术效果。
本发明的上述技术目的是由以下技术方案实现的:
本发明提供的一种防锈金属清洗剂的制备方法,将纳米磁性混合磨料、环糊精与水混合,超声搅拌均匀得到除锈剂;将除锈剂加入到有机溶剂超声分散均匀;将乳化剂、表面活性剂、缓蚀剂和水加入到有机溶剂中超声分散均匀。
作为上述技术方案的优选,还可以将纳米磁性粒子、环糊精和水先超声混合,制备成纳米磁性流体后,再加入磨料。采用这种制备方法,能够使纳米磁性粒子在基液中分散的更加均匀,提高导热效率。
作为上述技术方案的优选,还可以先将环糊精和水混合均匀,制备成基液,再在超声的条件下依次加入纳米磁性粒子和磨料,避免纳米磁性粒子与磨料发生团聚。
作为上述技术方案的优选,还可以先将磨料与环糊精、水共同搅拌均匀后,加入纳米磁性粒子,这样做的方式可以在加入纳米磁性粒子前,采用环糊精对磨料进行一个预裹附,在后续使用中,提高环糊精的缓冲作用。
本发明的第三个目的是提供一种防锈金属清洗剂的使用方法,能够进一步提高除锈剂的导热性能,避免金属受热产生形变,影响金属工件的使用寿命;同时通过附加的场强使磁性磨料产生定向移动,避免无规律的摩擦使磨料擦伤金属工件表面。
本发明的上述技术目的是通过以下技术方法实现的:
本发明提供的一种防锈金属清洗剂的使用方法,在清洗金属过程中,对金属清洗剂附加磁场。
在外加磁场的作用下,纳米磁性流体的导热性能进一步提高,提高了散热效率;同时,由于外加磁场的作用,纳米磁性粒子吸附在金属工件表面时,定向排列于金属工件表面且形成链状结构,使磨料的清洗作用达到定向清洗的效果,一方面提高了清洗效率,另一方面,避免磨料以及纳米磁性粒子的无序移动,使摩擦力分布不均匀,影响清洗效果的同时,提高划伤金属工件表面的风险。
作为上述技术方案的优选,附加磁场的方向应与金属工件上最大平面的延展方向一致。
采用上述附加磁场的方向,能够使纳米磁性粒子的定向排列方向与金属工件上最大平面的延展方向一致,在纳米磁性粒子定向排列的过程中,形成长程有序的排列方式,在磨料的作用下,纳米磁性粒子之间也会形成长程有序的相互挤压,从而提高瓦解锈的骨架的同时,使锈与金属工件之间的结合力变弱,有序的将锈从金属工件表面剥离开来。
若金属工件为圆形或类似于圆柱形的立方体,则可采用旋转磁场,旋转方向为逆时针旋转,旋转角度为5~10°/s。
然而,当磁场强度过大时,纳米磁性粒子与金属工件表面之间的吸附力过大,增大了除锈的难度,同时提高了磨料与金属工件表面的摩擦力,提高划伤金属工件表面的风险;同时磁场强度过大会导致纳米磁性流体的导热性能下降,且当磁场撤走时,纳米磁性粒子中残存的磁性会导致磁性纳米粒子的团聚。
若磁场强度过小,则无法提高纳米磁性流体的导热系数,也无法使所有的纳米磁性粒子形成长程有序的定向排列。因此本发明中采用磁场强度为50~80mT。
作为上述技术方案的优选,为了提高纳米磁性流体的导热性能,本发明中还可以采用梯度场强的附加磁场。
作为上述技术方案的优选,本发明还提供了梯度磁场场强的计算模型,使纳米磁性粒子能够长程有序排列的同时,保证了纳米磁性流体的导热性能,具体如下:
Figure 94799DEST_PATH_IMAGE001
;其中BT为第T次所加的附加磁场的场强,T为≥ 1的整数;x为环糊精在除锈剂的质量百分比;D50和D90是纳米磁性粒子的粒径分布,该粒径 分布是通过激光粒度分析仪测试得到的;B0为初始场强,取值为5~15mT。由于本发明提供的 纳米磁性流体在场强的作用下会自组装为链状结构,而这种链状结构是提高纳米磁性流体 的导热性能的根本因素。因此如何有序快速的组成链状结构是附加磁场的最终目的。体系 内环糊精的存在,链状结构的自组装过程会受到环糊精的阻碍,因此当环糊精的含量越高 时,体系粘度越大,则阻力越大,需要更高的场强使纳米磁性粒子突破阻碍完成自组装,因 此梯度场强下,场强的升高速率应该更快;若纳米磁性粒子的粒径分布均匀度差,则由于粒 径大小的差异,导致自组装过程更加难以实现,因此当粒度分布中,D90和D50的比值越大, 则说明粒度分布越不均匀,则应提高场强升高速率以满足链状结构自组装所需的场强。
作为另一种优选方案,在清洗金属的过程中,对金属清洗剂附加电场。
作为上述技术方案的优选,附加电场的方向应与金属工件上最大平面的延展方向一致。
采用上述附加电场的方向,能够使纳米磁性粒子的定向排列方向与金属工件上最大平面的延展方向一致,在纳米磁性粒子定向排列的过程中,形成长程有序的排列方式,在磨料的作用下,纳米磁性粒子之间也会形成长程有序的相互挤压,从而提高瓦解锈的骨架的同时,使锈与金属工件之间的结合力变弱,有序的将锈从金属工件表面剥离开来。
若金属工件为圆形或类似于圆柱形的立方体,则可采用旋转磁场,旋转方向为逆时针旋转,旋转角度为5~10°/s。
作为上述技术方案的优选,所附加的电场的场强为500~800Oe。
综上所述,本发明具有以下有益效果:
本发明提供的防锈金属清洗剂及其制备方法和应用方法,通过纳米磁性混合磨料的加入,使除锈剂形成纳米磁性流体,大幅提高除锈剂的导热性能,在清洗过程中,能够快速降低金属表面的温度,达到保护金属的目的。
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,对依据本发明提出的一种防锈金属清洗剂及其制备方法和使用方法,其具体实施方式、特征及其功效,详细说明如后。
本具体实施方式中采用的原材料来源如下:
磁性Fe3O4纳米粒子:苏州凯发新材料科技有限公司。
实施例1
本实施例提供的一种防锈金属清洗剂,按照重量份数计算,包括如下组分:三乙醇胺30份,除锈剂15份,聚乙烯亚胺8份,十二烷基苯磺酸钠10份和水60份;
其中,除锈剂包括SiC磨料4份,磁性Fe3O4纳米粒子1份,环糊精6份和水20份。
本实施例提供的防锈金属清洗剂的制备方法如下:
S1、制备除锈剂:常温常压下,将SiC磨料、磁性Fe3O4纳米粒子、环糊精和水混合超声,分散均匀备用;
S2、将步骤S1制备的除锈剂与剩余水、三乙醇胺、聚乙烯亚胺和十二烷基苯磺酸钠共同混合,超声分散均匀得到清洗剂。
本实施例提供的防锈金属清洗剂的使用方法如下:
将金属工件浸没于本实施例提供的防锈金属清洗剂中,外加场强为75mT的磁场,清洗10min,清洗过程中采用常规温度测量仪器测试金属工件表面的平均温度,测试值为30℃。
实施例2
本实施例提供的一种防锈金属清洗剂,按照重量份数计算,包括如下组分:三乙醇胺30份,除锈剂15份,聚乙烯亚胺8份,十二烷基苯磺酸钠10份和水60份;
其中,除锈剂包括SiC磨料4份,磁性Fe3O4纳米粒子1份,环糊精6份和水20份。
本实施例提供的防锈金属清洗剂的制备方法如下:
S1、制备除锈剂:常温常压下,先将环糊精和水混合均匀,制备成基液,再在超声的条件下依次加入磁性Fe3O4纳米粒子和SiC磨料分散均匀;
S2、将步骤S1制备的除锈剂与剩余水、三乙醇胺、聚乙烯亚胺和十二烷基苯磺酸钠共同混合,超声分散均匀得到清洗剂。
本实施例提供的防锈金属清洗剂的使用方法如下:
将金属工件浸没于本实施例提供的防锈金属清洗剂中,外加场强为80mT的磁场,清洗10min,清洗过程中采用常规温度测量仪器测试金属工件表面的平均温度,测试值为29.2℃。
实施例3
本实施例提供的一种防锈金属清洗剂,按照重量份数计算,包括如下组分:三乙醇胺30份,除锈剂15份,聚乙烯亚胺8份,十二烷基苯磺酸钠10份和水60份;
其中,除锈剂包括SiC磨料4份,磁性Fe3O4纳米粒子1份,环糊精6份和水20份。
本实施例提供的防锈金属清洗剂的制备方法如下:
S1、制备除锈剂:常温常压下,先将SiC磨料与环糊精、水共同搅拌均匀后,加入磁性Fe3O4纳米粒子;
S2、将步骤S1制备的除锈剂与剩余水、三乙醇胺、聚乙烯亚胺和十二烷基苯磺酸钠共同混合,超声分散均匀得到清洗剂。
本实施例提供的防锈金属清洗剂的使用方法如下:
将金属工件浸没于本实施例提供的防锈金属清洗剂中,外加场强为65mT的磁场,清洗10min,清洗过程中采用常规温度测量仪器测试金属工件表面的平均温度,测试值为30.6℃。
实施例4
本实施例提供的一种防锈金属清洗剂,按照重量份数计算,包括如下组分:三乙醇胺30份,除锈剂15份,聚乙烯亚胺8份,十二烷基苯磺酸钠10份和水60份;
其中,除锈剂包括SiC磨料5份,磁性Fe3O4纳米粒子1份,环糊精6份和水20份。
本实施例提供的防锈金属清洗剂的制备方法如下:
S1、制备除锈剂:常温常压下,将SiC磨料、磁性Fe3O4纳米粒子、环糊精和水混合超声,分散均匀备用;
S2、将步骤S1制备的除锈剂与剩余水、三乙醇胺、聚乙烯亚胺和十二烷基苯磺酸钠共同混合,超声分散均匀得到清洗剂。
本实施例提供的防锈金属清洗剂的使用方法如下:
将金属工件浸没于本实施例提供的防锈金属清洗剂中,外加场强为80mT的磁场,磁场方向与金属工件最大平面的延展方向一致,清洗10min,清洗过程中采用常规温度测量仪器测试金属工件表面的平均温度,测试值为29.6℃。
实施例5
本实施例提供的一种防锈金属清洗剂,按照重量份数计算,包括如下组分:三乙醇胺30份,除锈剂15份,聚乙烯亚胺8份,十二烷基苯磺酸钠10份和水60份;
其中,除锈剂包括SiC磨料4份,磁性Fe3O4纳米粒子1份,环糊精6份和水20份。
本实施例提供的防锈金属清洗剂的制备方法如下:
S1、制备除锈剂:常温常压下,将SiC磨料、磁性Fe3O4纳米粒子、环糊精和水混合超声,分散均匀备用;
S2、将步骤S1制备的除锈剂与剩余水、三乙醇胺、聚乙烯亚胺和十二烷基苯磺酸钠共同混合,超声分散均匀得到清洗剂。
本实施例提供的防锈金属清洗剂的使用方法如下:
将金属工件浸没于本实施例提供的防锈金属清洗剂中,外加场强为梯度的磁场,增加到一定场强后,不再增加,磁场方向与金属工件最大平面的延展方向一致,清洗10min,清洗过程中采用常规温度测量仪器测试金属工件表面的平均温度,测试值为28.4℃。
其中,磁场场强的计算模型如下:
Figure 949623DEST_PATH_IMAGE002
;其中BT为第T次所加的附加磁场的场强,梯度选 择为8组,既T=1~8;x为环糊精在除锈剂的质量百分比;D50和D90是纳米磁性粒子的粒径分 布,该粒径分布是通过激光粒度分析仪测试得到的,测试可知,D50=4.2nm;D90=6.8nm,初始 场强B0为10mT。
计算可知,梯度磁场的施加方式如下表:
表1.梯度磁场场强
Figure 667043DEST_PATH_IMAGE004
实施例6
本实施例提供的一种防锈金属清洗剂,按照重量份数计算,包括如下组分:三乙醇胺30份,除锈剂15份,聚乙烯亚胺8份,十二烷基苯磺酸钠10份和水60份;
其中,除锈剂包括SiC磨料4份,磁性Fe3O4纳米粒子1份,环糊精6份和水20份。
本实施例提供的防锈金属清洗剂的制备方法如下:
S1、制备除锈剂:常温常压下,将SiC磨料、磁性Fe3O4纳米粒子、环糊精和水混合超声,分散均匀备用;
S2、将步骤S1制备的除锈剂与剩余水、三乙醇胺、聚乙烯亚胺和十二烷基苯磺酸钠共同混合,超声分散均匀得到清洗剂。
本实施例提供的防锈金属清洗剂的使用方法如下:
将金属工件浸没于本实施例提供的防锈金属清洗剂中,外加场强为68Oe的电场,电场方向与金属工件最大平面的延展方向一致,清洗10min,清洗过程中采用常规温度测量仪器测试金属工件表面的平均温度,测试值为29.8℃。
对比实施例1
本实施例提供的一种防锈金属清洗剂,按照重量份数计算,包括如下组分:三乙醇胺30份,除锈剂15份,聚乙烯亚胺8份,十二烷基苯磺酸钠10份和水60份;
其中,除锈剂包括SiC磨料4份,环糊精6份和水20份。
本实施例提供的防锈金属清洗剂的制备方法如下:
S1、制备除锈剂:常温常压下,将SiC磨料、环糊精和水混合超声,分散均匀备用;
S2、将步骤S1制备的除锈剂与剩余水、三乙醇胺、聚乙烯亚胺和十二烷基苯磺酸钠共同混合,超声分散均匀得到清洗剂。
本实施例提供的防锈金属清洗剂的使用方法如下:
将金属工件浸没于本实施例提供的防锈金属清洗剂中,外加场强为75mT的磁场,清洗10min,清洗过程中采用常规温度测量仪器测试金属工件表面的平均温度,测试值为38℃。
对比实施例2
本实施例提供的一种防锈金属清洗剂,按照重量份数计算,包括如下组分:三乙醇胺30份,除锈剂15份,聚乙烯亚胺8份,十二烷基苯磺酸钠10份和水60份;
其中,除锈剂包括SiC磨料4份,磁性Fe3O4纳米粒子1份,环糊精6份和水20份。
本实施例提供的防锈金属清洗剂的制备方法如下:
S1、制备除锈剂:常温常压下,将SiC磨料、磁性Fe3O4纳米粒子、环糊精和水混合超声,分散均匀备用;
S2、将步骤S1制备的除锈剂与剩余水、三乙醇胺、聚乙烯亚胺和十二烷基苯磺酸钠共同混合,超声分散均匀得到清洗剂。
本实施例提供的防锈金属清洗剂的使用方法如下:
将金属工件浸没于本实施例提供的防锈金属清洗剂中,清洗10min,清洗过程中采用常规温度测量仪器测试金属工件表面的平均温度,测试值为34℃。
性能测试
将实施例1~6和对比实施例1~2清洗后的金属工件进行表面测试,测试结果如下表。
其中测试方法:取8块尺寸相同,锈蚀程度相同,厚度为80mm的热轧钢板,将其依次编号为1~8,分别采用实施例1~6以及对比实施例1~2的清洗剂和清洗方法对编号1~8的钢板进行清洗,根据国家标准GB/T14977-94标准,对编号1~8钢板的缺陷度进行测试;根据HG/T 2387-2016《化工设备化学清洗质量标准》对钢板样品进行腐蚀率、除垢率测试。
表2.测试结果
Figure DEST_PATH_IMAGE006
由实施例2和实施例1对比可知,采用更高的场强后,清洗温度进一步降低,且不影响腐蚀率以及除垢率和金属表面的平整度;根据实施例5与实施例1对比可知,采用梯度场强后,清洗温度降低的同时,清洗效果有所提升,且能够有效降低金属表面的划伤程度;根据对比实施例1与实施例1对比可知,当不采用本发明提供的磁性粒子时,碳化硅与磁性粒子的协同作用消失,清洗温度提高,清洗效果下降,且金属表面划痕深度提高;根据对比实施例2与实施例1对比可知,不外加磁场的情况下,清洗温度提高,清洗效果下降,金属表面有明显划痕。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例展示如上,但并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (8)

1.一种防锈金属清洗剂的使用方法,其特征在于,按照重量份数计算,所述防锈金属清洗剂包括如下组分:有机溶剂20~30份,乳化剂5~9份,除锈剂10~15份,缓蚀剂6~8份,表面活性剂6~10份和水30~60份;
其中,所述除锈剂由纳米磁性混合磨料、环糊精和水组成,其质量比为(1.5~5):(5~15):30;
纳米磁性混合磨料是SiC磨料、Al2O3磨料或CBN磨料与磁性Fe3O4纳米粒子的混合物;其质量比为(3~8):1;
所述缓蚀剂是聚乙烯亚胺或聚醚醚酮中的任意一种;
所述防锈金属清洗剂的使用方法,包括如下操作步骤:在清洗金属过程中,对金属清洗剂附加磁场;所述附加磁场的方向与金属工件上最大平面的延展方向一致,所述附加磁场为梯度磁场;所述梯度磁场场强的计算模型,具体如下:
Figure QLYQS_1
;其中BT为第T次所加的附加磁场的场强,T为≥1的整数;x为环糊精在除锈剂的质量百分比;D50和D90是磁性Fe3O4纳米粒子的粒径分布,该粒径分布是通过激光粒度分析仪测试得到的;B0为初始场强,取值为5~15mT。
2.根据权利要求1所述的一种防锈金属清洗剂的使用方法,其特征在于,所述表面活性剂是脂肪醇聚氧乙烯醚或十二烷基苯磺酸钠。
3.根据权利要求1所述的一种防锈金属清洗剂的使用方法,其特征在于,所述环糊精为α环糊精或β环糊精中的任意一种。
4.根据权利要求1所述的一种防锈金属清洗剂的使用方法,其特征在于,将纳米磁性混合磨料、环糊精与水混合,超声搅拌均匀得到除锈剂;将除锈剂加入到有机溶剂超声分散均匀;将乳化剂、表面活性剂、缓蚀剂和水加入到有机溶剂中超声分散均匀。
5.根据权利要求4所述的一种防锈金属清洗剂的使用方法,其特征在于,将纳米磁性粒子、环糊精和水先超声混合,制备成纳米磁性流体后,再加入磨料。
6.根据权利要求4所述的一种防锈金属清洗剂的使用方法,其特征在于,先将环糊精和水混合均匀,制备成基液,再在超声的条件下依次加入磁性Fe3O4纳米粒子和磨料。
7.根据权利要求1所述的一种防锈金属清洗剂的使用方法,其特征在于,当金属工件为圆形或类似于圆柱形的立方体,采用旋转磁场,旋转方向为逆时针旋转,旋转角度为5~10°/s。
8.如权利要求1所述的一种防锈金属清洗剂的使用方法,其特征在于,在清洗金属的过程中,对金属清洗剂附加电场。
CN202211572569.6A 2022-12-08 2022-12-08 一种防锈金属清洗剂及其制备方法和使用方法 Active CN115584507B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211572569.6A CN115584507B (zh) 2022-12-08 2022-12-08 一种防锈金属清洗剂及其制备方法和使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211572569.6A CN115584507B (zh) 2022-12-08 2022-12-08 一种防锈金属清洗剂及其制备方法和使用方法

Publications (2)

Publication Number Publication Date
CN115584507A CN115584507A (zh) 2023-01-10
CN115584507B true CN115584507B (zh) 2023-03-21

Family

ID=84783110

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211572569.6A Active CN115584507B (zh) 2022-12-08 2022-12-08 一种防锈金属清洗剂及其制备方法和使用方法

Country Status (1)

Country Link
CN (1) CN115584507B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116285916A (zh) * 2023-03-21 2023-06-23 西南石油大学 一种钻磨桥塞作业用金属减阻剂及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH574279A5 (en) * 1972-10-27 1976-04-15 Minnesota Mining & Mfg Magnetic cleaning compsn - activated by alternating magnetic field
US5971835A (en) * 1998-03-25 1999-10-26 Qed Technologies, Inc. System for abrasive jet shaping and polishing of a surface using magnetorheological fluid
JP2001259539A (ja) * 2000-03-24 2001-09-25 Ricoh Co Ltd 洗浄システムおよび洗浄方法
CN101579316B (zh) * 2008-05-14 2012-02-29 陕西北美基因股份有限公司 超顺磁性环糊精复合微粒的制备方法
CN104923175A (zh) * 2014-03-21 2015-09-23 兰州大学 一种Fe3O4磁纳米颗粒及其制备方法和应用
JP7176916B2 (ja) * 2017-09-29 2022-11-22 ソマール株式会社 磁気粘性流体
CN112058239B (zh) * 2020-09-08 2021-05-07 中国农业科学院农业质量标准与检测技术研究所 环糊精磁性纳米复合材料、其制备方法、应用和吸附剂

Also Published As

Publication number Publication date
CN115584507A (zh) 2023-01-10

Similar Documents

Publication Publication Date Title
Lagudu et al. Role of ionic strength in chemical mechanical polishing of silicon carbide using silica slurries
Sidpara et al. Effect of fluid composition on nanofinishing of single-crystal silicon by magnetic field-assisted finishing process
CN115584507B (zh) 一种防锈金属清洗剂及其制备方法和使用方法
Lei et al. Chemical mechanical polishing of hard disk substrate with α-alumina-g-polystyrene sulfonic acid composite abrasive
CN106147616A (zh) 溶剂型表面改性氧化铝抛光液的制备方法
JPH08503009A (ja) 表面改質粒子使用の磁気レオロジー材料
Li et al. High-performance chemical mechanical polishing slurry for aluminum alloy using hybrid abrasives of zirconium phosphate and alumina
Liang et al. Lubricating behavior in chemical–mechanical polishing of copper
Zhang et al. Effect of the carboxyl group number of the complexing agent on polishing performance of alumina slurry in sapphire CMP
WO2011158718A1 (ja) 半導体基板用研磨液及び半導体ウエハの製造方法
Liu et al. Novel green chemical mechanical polishing of fused silica through designing synergistic CeO2/h-BN abrasives with lubricity
Wang et al. Synergistic roles of mixed inhibitors and the application of mixed complexing ligands in copper chemical mechanical polishing
CN110055538B (zh) 一种氧化铝浆料及其制备方法
Cheng et al. Study on particle removal during the Co post-CMP cleaning process
Armini et al. Composite polymer core–silica shell abrasives: the effect of the shape of the silica particles on oxide CMP
CN108753175A (zh) 适用于不锈钢抛光的化学机械抛光液及其用途
CN102010661B (zh) Ulsi铜表面高精密加工过程中化学机械抛光液的制备方法
CN102010663B (zh) 二氧化硅介质化学机械抛光液的制备方法
Zefang et al. Chemical mechanical polishing of aluminum alloys using alumina-based slurry
CN102010662B (zh) 微晶玻璃抛光液的制备方法
JP2013177617A (ja) 研磨用シリカゾルおよび研磨用組成物
KR20160032680A (ko) 연마 슬러리의 재생 방법, 기판의 제조 방법
JP4255824B2 (ja) ラッピングオイル組成物及び複合材の仕上げ研磨方法
JP5795843B2 (ja) ハードディスク基板の製造方法
JPH05112775A (ja) 金属材料の研磨用組成物

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant