CN115572908B - 一种高延伸率的复相高强钢及其生产方法 - Google Patents

一种高延伸率的复相高强钢及其生产方法 Download PDF

Info

Publication number
CN115572908B
CN115572908B CN202211313454.5A CN202211313454A CN115572908B CN 115572908 B CN115572908 B CN 115572908B CN 202211313454 A CN202211313454 A CN 202211313454A CN 115572908 B CN115572908 B CN 115572908B
Authority
CN
China
Prior art keywords
rolling
percent
steel
temperature
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211313454.5A
Other languages
English (en)
Other versions
CN115572908A (zh
Inventor
孟庆刚
康海军
李毅伟
苏崇涛
于立伟
崔宏涛
王梦桃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bengang Steel Plates Co Ltd
Original Assignee
Bengang Steel Plates Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bengang Steel Plates Co Ltd filed Critical Bengang Steel Plates Co Ltd
Priority to CN202211313454.5A priority Critical patent/CN115572908B/zh
Publication of CN115572908A publication Critical patent/CN115572908A/zh
Application granted granted Critical
Publication of CN115572908B publication Critical patent/CN115572908B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

本发明属于高强钢制造技术领域,尤其涉及一种高延伸率的复相高强钢及其生产方法。以重量百分含量计,其化学成分包括C:0.09~0.12%,Si:0.52~0.6%,Mn:1.7~2.0%,Cr:0.55~0.87%,Mo:0.23~0.28%,Nb:0.03~0.05%,V:0.07~0.12%,Ti:0.14~0.18%,P:≤0.02%,S≤0.02%,余量为铁和不可避免的杂质。本发明在钢中引入弥散细小的Cr3C析出相,起到阻碍奥氏体晶粒长大,提高钢板表面硬度的作用;通过合金元素,起到协调钢板内部变形和提高均匀延伸率的作用。本发明钢种与现有的相同强度级别的钢种相比,延伸率更高。

Description

一种高延伸率的复相高强钢及其生产方法
技术领域
本发明属于高强钢制造技术领域,尤其涉及一种高延伸率的复相高强钢及其生产方法。
背景技术
随着国内汽车市场竞争的日益激烈,各大汽车生产厂的正在加大高强钢在汽车车身上的使用量,这种做法的优势有:
(1)在汽车发生碰撞时,高强钢能够有效阻碍车身变形,提高车内人员的安全性。
(2)与普通钢板相比,较薄的高强钢即可实现同样的车身强度,因此能够有助于车身轻量化。
(3)较轻的车身重量又能够有效降低油耗,不仅能够减少汽车的使用成本,还有利于减少汽车尾气的排放,具有极高的环保意义。
(4)虽然高强钢的单位价格略高于普通钢,但是由于高强钢能够降低零件重量,将重量与单价相乘后,计算结果表明,对于同一零件,使用高强钢的成本又低于普通钢,因此,高强钢又能有效降低车身的制造成本。
尽管高强钢具有这些优势,但由于现有高强钢在常温下均含有大量马氏体,导致室温条件下,冷成型能力较差,阻碍了高强钢广泛应用。例如,表1中的三个钢种,随着屈服强度和抗拉强度的逐渐增大,衡量成型能力的参数(断后伸长率、均匀延伸率、应变硬化指数和塑形应变比),均在逐渐减小。
表1不同强度钢种的力学性能数据
发明内容
本发明的目的是提供一种高延伸率的复相高强钢及其生产方法,该钢种在高强度的前提下,仍具有较高的塑形变形能力,从而降低室温下冲压、弯折以及扩孔等加工工艺的难度。
为实现上述目的,本发明的技术方案如下:
本发明一方面提供一种复相高强钢,以重量百分含量计,其化学成分包括C:0.09~0.12%,Si:0.52~0.6%,Mn:1.7~2.0%,Cr:0.55~0.87%,Mo:0.23~0.28%,Nb:0.03~0.05%,V:0.07~0.12%,Ti:0.14~0.18%,P:≤0.02%,S≤0.02%,余量为铁和不可避免的杂质。
本发明上述元素在钢中的作用如下:
(1)C、Mn、Cr和Ni四种元素会降低钢的马氏体开始转变点Ms和结束转变点Mf,提高钢中残余奥氏体含量。
(2)C、Mn、Cr、Ni和Mo,能够增加钢的淬透性。
(3)Nb、V和Ti,三种元素有强烈阻碍奥氏体晶粒长大的作用,较小的奥氏体晶粒在相变后,也会得到细晶组织。
(4)在钢的生产过程中,不可避免地会混入氢元素,氢元素会形成氢气分子,在钢中形成巨大的压力,降低钢的力学性能。本发明在钢中加入的Ti元素,不仅能阻碍奥氏体晶粒长大,而且Ti的碳氮化物,还能有效吸附钢中游离的氢原子,防止其结合成为氢气分子,从而降低钢的氢致裂纹风险。
(5)保持钢中的Cr与C元素含量比值在6.0~7.3之间,有利于形成Cr3C,这种碳化物不仅硬度高,而且与基体结合紧密,能够在冷变形时,保护钢板表面。
上述技术方案中,进一步地,所述高强钢的屈服强度为722~830MPa,抗拉强度为804~940MPa,延伸率为15~22%。
本发明另一方面提供一种上述高强钢的生产方法,所述方法包括以下步骤:
(1)按照化学成分要求,采用铁水预处理、转炉冶炼、炉外精炼、连铸,制成钢坯;
(2)加热工序:将钢坯加热至1200℃,均热40min出炉;
(3)粗轧工序:粗轧开轧温度高于1140℃,终轧温度高于970℃;
(4)精轧工序:粗轧后进行精轧,精轧开轧温度950℃,终轧温度为850~880℃;
(5)空冷待温:精轧结束后,进行空冷,冷却温度为760℃;
(6)层流冷却:在层流冷却工序中,以10~13℃/s的冷却速度降温;
(7)卷取工序:卷取温度为470~490℃,卷取后,空冷保存至室温,钢板最终组织为铁素体/下贝氏体/马氏体/残余奥氏体。
上述技术方案中,进一步地,所述粗轧工序中,总计进行6道次轧制,各道次压下率均大于20%,且粗轧总压下率大于85%。
上述技术方案中,进一步地,所述粗轧工序中,粗轧开轧温度为1146~1149℃,终轧温度为977~980℃。
上述技术方案中,进一步地,所述精轧工序中,总计进行7道次轧制,总压下率大于90%。
上述技术方案中,进一步地,所述卷取工序中,卷取温度为476~481℃。
步骤(2)中,加热工序将钢坯加热至1200℃,该温度下,不仅能够保证钢板内部为均匀的奥氏体组织,还能最大程度地防止奥氏体晶粒长大。均匀的奥氏体的滑移系较多,且临界分切应力小,因此能够大幅降低钢板的在热轧过程中的变形抗力。细小的奥氏体晶粒能够为相变提供更多的形核位置,有利于得到细小均匀的相变组织,提高材料的力学性能。
步骤(3)中,较大的道次变形量能够利用奥氏体的动态再结晶过程,充分破碎奥氏体晶粒,降低最终产品的晶粒尺寸。
步骤(4)中,精轧累计变形量较大,目的是在较低的温度下,在奥氏体晶粒内部积累畸变能,为下一步的相变提供更多的形核位置,进一步细化晶粒,提高钢的强度和塑性。
步骤(5)中,空冷待温的目是不仅能能够增加钢板中的铁素体含量,而且该温度有利于碳氮化钛的弥散析出,吸附钢中游离的氢原子。
本发明钢种最终组织为铁素体/下贝氏体/马氏体/残余奥氏体,马氏体起到提高钢板强度,铁素体能够在变形过程中提供塑形。钢板中引入了下贝氏体,这种组织的强度略低于马氏体,塑形却优于马氏体,因此也能在一定程度上提高钢板的塑形变形能力。钢板中的残余奥氏体有两个作用:①奥氏体的塑形变形能力高,能够起到协调马氏体和贝氏体组织晶粒变形的能力,降低塑形变形过程中发生开裂的风险;②残余奥氏体在发生塑形变形后,会出现形变诱导相变现象,部分转换为马氏体,在此过程中,钢板的加工硬化指数会升高,有利于钢板的均匀塑形变形。
本发明的有益效果为:
1、本发明在钢中引入弥散细小的Cr3C析出相,起到阻碍奥氏体晶粒长大,提高钢板表面硬度的作用;通过合金元素,保证钢中残余奥氏体含量,起到协调钢板内部变形和提高均匀延伸率的作用;加入Ti元素,形成碳氮化钛,吸附钢中游离氢原子,降低氢的危害。
2、本发明使用先空冷、再快冷的冷却工艺,获得铁素体,细小的下贝氏体,取代部分马氏体的强化作用;利用轧制变形量和随后的层流冷却工艺,细化钢的微观组织,提高强度和塑形。
3、本发明钢种与现有的相同强度级别的钢种相比,延伸率更高。国内市场上的常见三个钢种及新钢种的屈服强度、抗拉强度和延伸率,如表2所示。经对比后可知,本发明钢种的延伸率明显高于现有钢种。
表2本发明与现有钢种的力学性能对比
钢种 屈服强度/MPa 抗拉强度/MPa 延伸率/%
DP780 420~780 ≥780 ≥11
CP780 420~780 ≥780 ≥11
HC800LA ≥800 850~930 ≥8
本发明 722~830 804~942 18~22
附图说明
图1为实施例1的钢种500倍金相照片图;
图2为实施例2的钢种500倍金相照片图;
图3为实施例3的钢种500倍金相照片图。
具体实施方式
以下实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
实施例1
本实施例中,按重量百分比计,厚度为2.0mm的钢板,化学成分为:C:0.09%,Si:0.52%,Mn:1.7%,Cr:0.55%,Mo:0.23%,Nb:0.03%,V:0.07,Ti:0.14%,P:0.015%,S:0.01%,余量为铁和不可避免的杂质。
本实施例的生产方法包括以下步骤:
(1)按照化学成分要求,采用铁水预处理、转炉冶炼、炉外精炼、连铸,制成钢坯;
(2)将钢钢坯加热至1200℃,均热40min出炉;
(3)粗轧开轧温度1149℃,终轧温度980℃,进行6道次粗轧,各道次压下率20.8~33.3%,总压下率86.4%;
(4)精轧工序,开轧温度950℃,终轧温度872℃,总计7道次,各道次压下率13~56%,总压下率90.9%;
(5)空冷待温至760℃;
(6)层流冷却,降温速率10℃/s;
(7)卷取温度476℃,卷取后空冷保存至室温。
实施例2
本实施例中,按重量百分比计,厚度为2.0mm的钢板,化学成分为:C:0.12%,Si:0.6%,Mn:2.0%,Cr:0.87%,Mo:0.28%,Nb:0.05%,V:0.12,Ti:0.18%,P:0.02%,S:0.02%,余量为铁和不可避免的杂质。
本实施例的关键生产要点如下:
(1)按化学成分要求,进行炼钢工序,并连铸成钢坯;
(2)将钢钢坯加热至1200℃,均热40min出炉;
(3)粗轧开轧温度1146℃,终轧温度977℃,进行6道次粗轧,各道次压下率20.8~33.3%,总压下率86.4%;
(4)精轧工序,开轧温度950℃,终轧温度861℃,总计7道次,各道次压下率13~56%,总压下率90.9%;;
(5)空冷待温至760℃;
(6)层流冷却,降温速率13℃/s;
(7)卷取温度481℃。
实施例3
本实施例中,按重量百分比计,厚度为2.0mm的钢板,化学成分为:C:0.11%,Si:0.8%,Mn:1.8%,Cr:0.71%,Mo:0.26%,Nb:0.05%,V:0.1,Ti:0.14%,P:0.02%,S:0.02%,余量为铁和不可避免的杂质。
本实施例的关键生产要点如下:
(1)按化学成分要求,进行炼钢工序,并连铸成钢坯;
(2)将钢钢坯加热至1200℃,均热40min出炉;
(3)粗轧开轧温度1148℃,终轧温度978℃,进行6道次粗轧,各道次压下率20.8~33.3%,总压下率86.4%;
(4)精轧工序,开轧温度950℃,终轧温度857℃,总计7道次,各道次压下率13~56%,总压下率90.9%;
(5)空冷待温至760℃;
(6)层流冷却,降温速率13℃/s;
(7)卷取温度472℃。
实施例1-3的产品的力学性能如表3所示。
表3实施例1~3的力学性能测试结果
组别 屈服强度/MPa 抗拉强度/MPa 延伸率/%
实施例1 722 804 22
实施例2 830 942 18
实施例3 774 879 19
实施例1~3最终获得钢板的500倍金相组织照片如图1~3,从图中可以看出,本发明钢中的组织为铁素体/马氏体/贝氏体/残余奥氏体。
以上实施例仅仅是本发明的优选施例,并非对于实施方式的限定。本发明的保护范围应当以权利要求所限定的范围为准。在上述说明的基础上还可以做出其它不同形式的变化或变动。由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (6)

1.一种复相高强钢的生产方法,其特征在于,以重量百分含量计,所述方法包括以下步骤:
(1)按照化学成分要求,采用铁水预处理、转炉冶炼、炉外精炼、连铸,制成钢坯;所述复相高强钢化学成分包括C:0.09~0.12%,Si:0.52~0.6%,Mn:1.7~2.0%,Cr:0.55~0.87%,Mo:0.23~0.28%,Nb:0.03~0.05%,V:0.07~0.12%,Ti:0.14~0.18%,P:≤0.02%,S≤0.02%,余量为铁和不可避免的杂质;
(2)加热工序:将钢坯加热至1200℃,均热40min出炉;
(3)粗轧工序:粗轧开轧温度高于1140℃,终轧温度高于970℃;
(4)精轧工序:粗轧后进行精轧,精轧开轧温度950℃,终轧温度为850~880℃;
(5)空冷待温:精轧结束后,进行空冷,冷却至760℃;
(6)层流冷却:在层流冷却工序中,以10~13℃/s的冷却速度降温;
(7)卷取工序:卷取温度为470~490℃,卷取后,空冷保存至室温,钢板最终组织为铁素体/下贝氏体/马氏体/残余奥氏体。
2.根据权利要求1所述的生产方法,其特征在于,所述高强钢的屈服强度为722~830MPa,抗拉强度为804~940MPa,延伸率为15~22%。
3.根据权利要求1所述的生产方法,其特征在于,所述粗轧工序中,总计进行6道次轧制,各道次压下率均大于20%,且粗轧总压下率大于85%。
4.根据权利要求1所述的生产方法,其特征在于,所述粗轧工序中,粗轧开轧温度为1146~1149℃,终轧温度为977~980℃。
5.根据权利要求1所述的生产方法,其特征在于,所述精轧工序中,总计进行7道次轧制,总压下率大于90%。
6.根据权利要求1所述的生产方法,其特征在于,所述卷取工序中,卷取温度为476~481℃。
CN202211313454.5A 2022-10-25 2022-10-25 一种高延伸率的复相高强钢及其生产方法 Active CN115572908B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211313454.5A CN115572908B (zh) 2022-10-25 2022-10-25 一种高延伸率的复相高强钢及其生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211313454.5A CN115572908B (zh) 2022-10-25 2022-10-25 一种高延伸率的复相高强钢及其生产方法

Publications (2)

Publication Number Publication Date
CN115572908A CN115572908A (zh) 2023-01-06
CN115572908B true CN115572908B (zh) 2024-03-15

Family

ID=84586900

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211313454.5A Active CN115572908B (zh) 2022-10-25 2022-10-25 一种高延伸率的复相高强钢及其生产方法

Country Status (1)

Country Link
CN (1) CN115572908B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101555574A (zh) * 2008-04-11 2009-10-14 宝山钢铁股份有限公司 一种高回火抗力耐磨钢及其制造方法
CN104513930A (zh) * 2014-12-19 2015-04-15 宝山钢铁股份有限公司 弯曲和扩孔性能良好的超高强热轧复相钢板和钢带及其制造方法
CN106536780A (zh) * 2014-07-11 2017-03-22 安赛乐米塔尔公司 热轧钢板及相关制造方法
CN110724877A (zh) * 2019-10-30 2020-01-24 鞍钢股份有限公司 一种汽车用1180MPa级高塑性贝氏体复相钢板及其制备方法
CN111101063A (zh) * 2020-01-07 2020-05-05 北京科技大学 一种690MPa级抗震耐蚀耐火中板钢及其制造方法
CN111411295A (zh) * 2020-03-24 2020-07-14 首钢集团有限公司 一种多相钢构件及其制备方法、应用
CN112739834A (zh) * 2018-09-28 2021-04-30 安赛乐米塔尔公司 经热轧的钢板及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101555574A (zh) * 2008-04-11 2009-10-14 宝山钢铁股份有限公司 一种高回火抗力耐磨钢及其制造方法
CN106536780A (zh) * 2014-07-11 2017-03-22 安赛乐米塔尔公司 热轧钢板及相关制造方法
CN104513930A (zh) * 2014-12-19 2015-04-15 宝山钢铁股份有限公司 弯曲和扩孔性能良好的超高强热轧复相钢板和钢带及其制造方法
CN112739834A (zh) * 2018-09-28 2021-04-30 安赛乐米塔尔公司 经热轧的钢板及其制造方法
CN110724877A (zh) * 2019-10-30 2020-01-24 鞍钢股份有限公司 一种汽车用1180MPa级高塑性贝氏体复相钢板及其制备方法
CN111101063A (zh) * 2020-01-07 2020-05-05 北京科技大学 一种690MPa级抗震耐蚀耐火中板钢及其制造方法
CN111411295A (zh) * 2020-03-24 2020-07-14 首钢集团有限公司 一种多相钢构件及其制备方法、应用

Also Published As

Publication number Publication date
CN115572908A (zh) 2023-01-06

Similar Documents

Publication Publication Date Title
CN110066964B (zh) 一种超高强度中锰钢及其温轧制备方法
CN113106338B (zh) 一种超高强度高塑性热冲压成形钢的制备方法
CN104593674A (zh) 热镀锌超低碳烘烤硬化钢及其生产方法
CN112430787B (zh) 一种低屈强比高强度冷轧热镀锌钢板及其制造方法
CN113106339A (zh) 一种超高强高塑性抗高温氧化热冲压成形钢的制备方法
CN109898016A (zh) 500MPa级以上高扩孔热轧酸洗钢板及其制造方法
CN101353757A (zh) 抗拉强度为440MPa级热轧高扩孔钢板及其制造方法
CN109136759B (zh) 轮辐用厚规格1300MPa级热成形钢及制备方法
CN113215484B (zh) 一种相变诱发塑性钢及其制备方法和应用
CN114214563A (zh) 用薄板坯轧制Rm≥1500MPa高韧性热冲压钢及生产方法
CN109735768A (zh) 一种650MPa级低合金高强钢及其生产方法
CN115323252B (zh) 一种超高强高塑中锰钢及其制备方法
CN108588568B (zh) 抗拉强度780MPa级极薄规格热轧双相钢及制造方法
CN108411200B (zh) 一种高加工硬化率热轧q&p钢板及其制备方法
CN115572908B (zh) 一种高延伸率的复相高强钢及其生产方法
CN114231853B (zh) 一种强塑积大于98GPa%的TWIP钢及制备方法
CN112442635B (zh) 高性能800MPa级以上低合金高强钢板及其制备方法
CN112410668A (zh) 一种780MPa级汽车结构用钢及生产方法
CN106282818B (zh) 抗拉强度980MPa级的冷轧卷用捆带钢及其制造方法
CN113502439B (zh) 一种易加工高强钢及其生产方法
CN114934228B (zh) 一种热成形钢板及其生产方法
CN112760562B (zh) 一种耐延迟断裂2000MPa级钢板及其制备方法
CN114574760B (zh) 一种1500MPa级高成形性合金化热镀锌双相钢及其制备方法
CN113528933B (zh) 一种热连轧复相高强钢及其生产方法
CN116377334B (zh) 超高塑各向同性的980MPa级冷轧高强钢板及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant