CN114574760B - 一种1500MPa级高成形性合金化热镀锌双相钢及其制备方法 - Google Patents
一种1500MPa级高成形性合金化热镀锌双相钢及其制备方法 Download PDFInfo
- Publication number
- CN114574760B CN114574760B CN202210169805.3A CN202210169805A CN114574760B CN 114574760 B CN114574760 B CN 114574760B CN 202210169805 A CN202210169805 A CN 202210169805A CN 114574760 B CN114574760 B CN 114574760B
- Authority
- CN
- China
- Prior art keywords
- dual
- steel
- equal
- phase
- formability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/74—Temperature control, e.g. by cooling or heating the rolls or the product
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D11/00—Process control or regulation for heat treatments
- C21D11/005—Process control or regulation for heat treatments for cooling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/02—Hardening by precipitation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
一种1500MPa级高成形性合金化热镀锌双相钢及其制备方法,属于热镀锌高强度汽车用钢技术领域。成分质量百分比为C:0.21%~0.24%,Si:0.71%~0.80%,Mn:2.66%~2.85%,Alt:0.91%~1.10%,Cr:0.71%~1.10%,Mo:0.21%~0.35%,Nb:0.041%~0.085%,Ti:0.051%~0.095%,B:0.003~0.005%,P:0.035~0.070%,S≤0.004%,N≤0.0025%,且Si+Al:1.62%~1.90%,Cr+Mo:0.92%~1.45%,其余为Fe和不可避免的杂质。通过添加Cr、Mo、Nb、Ti、B和P等元素及控制工艺参数可显著细化晶粒,通过细晶强化、固溶强化和析出强化提高双相钢的强度,通过C、Mn、Si、Al元素的加入引入残余奥氏体提高成形性,通过铁素体和马氏体晶粒超细化并且分布均匀,形成大量细小弥散分布的纳米尺度的第二相粒子,改善双相钢的氢脆敏感性。本发明生产的高成形性合金化热镀锌双相钢抗拉强度≥1510MPa,屈服强度≥805MPa,断后伸长率≥8.0%。
Description
技术领域
本发明属于热镀锌高强度汽车用钢技术领域,具体涉及一种1500MPa级高成形性合金化热镀锌双相钢及其制备方法。
背景技术
随着汽车工业的发展,对超高强度汽车用钢的要求越来越高,双相钢具有低屈强比、加工硬化率高和焊接性能好等优点而被广泛应用于汽车防撞、结构或加强部位。
双相钢的微观组织主要为铁素体基体上分布着马氏体。随着双相钢强度的提高,铁素体比例降低,马氏体比例提高,导致塑性明显下降。随着减重节能的趋势不断发展,双相钢的强度级别越来越高,通常导致成形性能下降,在冲压一些形状复杂的汽车零部件时变得困难,经常出现成形开裂问题,极大地限制了1200MPa以上强度级别的超高强双相钢的应用。
当强度升高到1500MPa级时,超高强双相钢中马氏体组织的比例大幅升高,材料的成形性能和延展性能均明显下降,难以达到工厂对超高强钢高成形性和高塑性的指标要求。所以超高强度级别汽车用钢的成形性能差和延展性能不足等问题急需得到解决。热镀锌工艺因其工艺布置和设备能力限制,冷却速率不高,会影响双相钢的组织结构,进而会影响其力学性能。因此,本发明旨在开发出一种1500MPa级高成形性合金化热镀锌双相钢。
发明内容
为了解决上述问题,本发明的目的在于提供一种1500MPa级高成形性合金化热镀锌双相钢及其制备方法,在保证带钢强度的同时,提升带钢的成形性能和延展性能,为广大汽车厂家和钢铁公司提供技术方案。
具体的技术方案是:
一种1500MPa级高成形性合金化热镀锌双相钢及其制备方法,其特征在于,化学成分以质量百分比计为C:0.21%~0.24%,Si:0.71%~0.80%,Mn:2.66%~2.85%,Alt:0.91%~1.10%,Cr:0.71%~1.10%,Mo:0.21%~0.35%,Nb:0.041%~0.085%,Ti:0.051%~0.095%,B:0.003~0.005%,P:0.035~0.070%,S≤0.004%,N≤0.0025%,且Si+Al:1.62%~1.90%,Cr+Mo:0.92%~1.45%,其余为Fe和不可避免的杂质元素。
上述各元素的作用及配比依据如下:
C:碳元素通过固溶强化来保障钢材的强度要求,目前国内生产的双相钢抗拉强度级别随碳含量的增大而上升。而碳含量过高会导致塑性下降,成本增加,还会有延迟断裂的风险。因此,本发明将碳含量控制为0.21%~0.24%。
Si:硅元素是铁素体稳定化元素,也是非碳化物形成元素,可以有效抑制碳化物的析出,但含硅双相钢的钢板表面不可避免生成大量含硅氧化物,影响到表面质量和可镀性,考虑到组织性能调控和可镀性,本发明中将硅元素的含量控制为0.71%~0.80%。
Mn:锰元素是典型的奥氏体稳定化元素,可以扩大奥氏体相区,显著提高钢的淬透性,并起到固溶强化和细化铁素体晶粒的作用。锰元素含量过低,过冷奥氏体不够稳定,降低钢板的塑性和韧性等;锰元素含量过高,会导致钢板焊接性能变差,增加成本,不利于工业化生产。因此,本发明中将锰元素含量控制为2.66%~2.85%。
Al:铝元素可以取代硅元素发挥固溶强化的作用,并减少钢材镀层时出现的表面质量问题,而且铝也是铁素体稳定化元素,加入Al元素可提高双相钢的相变点,在更高温度退火有助于缩短退火时间。但Al含量过高,不仅会提高生产成本,降低强度,还会导致连铸生产困难等问题的出现。因此,本发明中将铝元素含量的范围控制在0.91%~1.10%。
Cr:铬元素可以增加钢的淬透性来保证钢的强度,铬含量过低将影响钢的淬透性,含量过高将增加生产成本。因此,本发明中将铬元素含量的范围控制在0.71%~1.10%。
Mo:钼元素为钢中的强化元素,对提高钢的淬透性效果显著,钼元素的与钛元素配合使用兼顾高强度和高韧性,进而可以实现改善钢材抗延迟断裂性能的同时保持良好的综合力学性能。本发明将钼元素含量的范围控制在0.21%~0.35%。
Nb:微合金元素Nb具有细晶强化和析出强化的作用,在双相钢中能够细化组织晶粒和钉扎位错,从而改善双相钢的塑韧性以及降低钢的氢致延迟断裂敏感性。较高含量的Nb其细化晶粒作用不显著,却明显增加了生产成本,因此元素限定为:Nb:0.041%~0.085%。
Ti:添加钛元素可以细化晶粒尺寸,和Mo、Cr等元素添加形成纳米尺度的第二相粒子起到显著的析出强化作用,在提高强度的同时可以改善材料的抗氢脆性能,钛含量过高会形成大尺寸的液析TiN影响材料性能,因此,本发明将钛元素含量的范围控制在0.051%~0.095%。
P:P元素可以起到显著的固溶强化作用,本发明将P元素含量的范围控制在0.035%~0.070%。
B:B元素可以增加淬透性,降低冷却过程中的临界冷却速率,同时减少P在晶界偏聚,本发明将B元素含量的范围控制在0.003%~0.005%。
S:S元素为双相钢中杂质元素,其含量越低越好,S≤0.004%。
如上所述1500MPa级高成形性合金化热镀锌双相钢的制备方法,具体制备步骤如下:
(1)按照上述化学成分质量百分比冶炼铸坯;
(2)将上述铸坯加热至1220℃~1250℃,保温60min~120min,然后进行锻造,开锻温度≥1160℃,终锻温度≥980℃,得到锻坯;
(3)将所述锻坯加热至1210℃~1240℃保温90min~210min,开轧温度在1100℃~1150℃之间,终轧温度在860℃~870℃,轧制后钢板经层流冷却快速冷却至660℃~670℃之间,然后将钢板放入温度为660℃的保温炉中保温180min,随后取出钢板空冷至室温,得到厚度在3.0~5.0mm之间的热轧板;
(4)将所述热轧板进行酸洗、除氢后冷轧,冷轧总压下率控制在45%~65%,最后一道次的冷轧压下率控制在8%~12%,得到1.0mm~2.75mm厚的冷硬带钢;
(5)将所述冷硬带钢进行连续热镀锌退火及合金化热镀锌处理,退火时均热温度控制在890℃~910℃之间,退火时间控制在60s~80s之间,缓冷出口温度不低于760℃,快速冷却速率控制在15℃/s~25℃/s之间,快冷出口温度控制在475℃~495℃之间,镀锌温度为460℃,镀锌时间为6s,镀锌结束后带钢以大于30℃/s的冷速快速冷却到200℃~300℃之间,然后以10℃/s升温到550℃保温10s~20s进行合金化处理,然后以15℃/s的冷速冷却至室温,得到所述双相钢钢板。
本发明的一种1500MPa级高成形性合金化热镀锌双相钢及其制备方法,其特征在于,通过细晶强化、固溶强化和析出强化提高双相钢强度,通过晶粒细化和残余奥氏体的相变诱导增塑效应提高成形性。应用本发明生产的高成形性合金化热镀锌双相钢性能优异,抗拉强度≥1510MPa,屈服强度≥805MPa,断后伸长率≥8.0%。
本发明技术关键点在于:
1、通过成分的控制,特别是控制Si+Al和Cr+Mo的总量,能够更好的调控双相钢的相变温度及两相区温度区间,控制冷却过程中的临界冷却速度,同时可以引入一定量的残余奥氏体并控制双相钢的组织构成,从而通过提高双相钢的综合性能。
2、通过控制开轧温度、终轧温度和卷取温度保证热轧板的组织构成和质量。
3、通过控制冷硬带钢的退火温度、退火时间及冷却速率和冷却温度达到控制组织构成及各相比例和尺寸分布的目的,从而通过细晶强化、固溶强化和析出强化等强化机制提高双相钢强度。
本发明的有益效果
(1)本发明通过合理设计和添加Cr、Mo、Nb、Ti、B和P等元素,降低了生产合金化热镀锌双相钢对产线装备参数的要求,结合控制工艺参数优化可显著细化晶粒,通过细晶强化、固溶强化和析出强化提高双相钢的强度,通过铁素体和马氏体晶粒超细化并且分布均匀,形成大量细小弥散分布的纳米尺度的第二相粒子,从而改善双相钢的氢脆敏感性。
(2)本发明所获得的合金化热镀锌双相钢的微观组织主要为铁素体、马氏体、残余奥氏体以及细小弥散分布的纳米尺度的第二相粒子组成,其中铁素体含量<10%,马氏体含量≥85%,残余奥氏体含量为2%~6%,马氏体板条平均宽度<200nm,第二相粒子平均尺寸小于10nm。通过C、Mn、Si、Al元素的加入引入残余奥氏体,通过残余奥氏体的相变诱导增塑效应提高成形性,解决超高强度级别汽车用钢的成形性能差和延展性能不足等问题。
附图说明
图1:本发明实施例1的工程应力应变曲线。
具体实施方式
为了便于理解本发明,下文将结合实施例对本发明作更全面、细致的描述,但本发明的保护范围并不限于以下具体的实施例。
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解的含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。
除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等,均可通过市场购买得到或者可通过现有方法制备得到。
表1为本发明的各实施例的化学成分取值列表。
表1实施例的化学成分
钢种 | C | Si | Mn | P | S | Alt | Cr | Mo | Nb | Ti | B | N |
实施例1 | 0.21 | 0.72 | 2.68 | 0.051 | 0.001 | 0.92 | 0.72 | 0.22 | 0.041 | 0.071 | 0.004 | 0.0023 |
实施例2 | 0.24 | 0.78 | 2.80 | 0.035 | 0.002 | 0.95 | 0.75 | 0.30 | 0.045 | 0.085 | 0.003 | 0.0022 |
实施例3 | 0.22 | 0.71 | 2.71 | 0.065 | 0.004 | 0.99 | 0.95 | 0.25 | 0.065 | 0.055 | 0.004 | 0.0025 |
实施例1-3中双相钢的制备方法如下,其中退火及合金化热镀锌工艺参数如表2所示:
(1)按照上述化学成分质量百分比冶炼铸坯;
(2)将上述铸坯加热至1240℃,保温90min,然后进行锻造,开锻温度≥1160℃,终锻温度≥980℃,得到锻坯;
(3)将所述锻坯加热至1230℃保温120min,开轧温度为1130℃,终轧温度在860℃,卷取温度在660℃,得到厚度为4mm的热轧板;
(4)将所述热轧板进行酸洗、除氢后冷轧得到冷硬带钢;
(5)将所述冷硬带钢进行合金化热镀锌退火处理。
表2实施例的合金化热镀锌工艺参数
将实施例1-3中的双相钢分别进行力学性能测试,测试结果如表3所示。
表3实施例的力学性能
从表3可以看出,采用本发明的成分设计、轧制及合金化热镀锌工艺制备出的双相钢钢板均有较好的力学性能,抗拉强度≥1510MPa,屈服强度≥805MPa,断后伸长率≥8.0%。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
Claims (4)
1.一种1500MPa级高成形性合金化热镀锌双相钢,其特征在于化学成分以质量百分比计为C:0.21%~0.24%,Si:0.71%~0.80%,Mn:2.66%~2.85%,Alt:0.91%~1.10%,Cr:0.71%~1.10%,Mo:0.21%~0.35%,Nb:0.041%~0.085%,Ti:0.051%~0.095%,B:0.003~0.005%,P:0.035~0.070%,S≤0.004%,N≤0.0025%,且Si+Al:1.62%~1.90%,Cr+Mo:0.92%~1.45%,其余为Fe和不可避免的杂质元素;
1500MPa级高成形性合金化热镀锌双相钢的微观组织主要为铁素体、马氏体、残余奥氏体以及细小弥散分布的纳米尺度的第二相粒子组成,其中铁素体含量<10%,马氏体含量≥85%,残余奥氏体含量为2%~6%,马氏体板条平均宽度<200nm,第二相粒子平均尺寸小于10nm;
1500MPa级高成形性合金化热镀锌双相钢的抗拉强度≥1510MPa,屈服强度≥805MPa,断后伸长率≥8.0%。
2.如权利要求1所述的一种1500MPa级高成形性合金化热镀锌双相钢的制备方法,其特征在于具体包括以下步骤:
(1)按照所述化学成分质量百分比冶炼铸坯;
(2)将上述铸坯加热至1220℃~1250℃,保温60min~120min,然后进行锻造,开锻温度≥1160℃,终锻温度≥980℃,得到锻坯;
(3)将所述锻坯加热至1210℃~1240℃保温90min~210min,开轧温度在1100℃~1150℃之间,终轧温度在860℃~870℃,轧制后钢板经层流冷却快速冷却至660℃~670℃之间,然后将钢板放入温度为660℃的保温炉中保温180min,随后取出钢板空冷至室温,得到厚度在3.0~5.0mm之间的热轧板;
(4)将所述热轧板进行酸洗、除氢后冷轧,冷轧总压下率控制在45%~65%,最后一道次的冷轧压下率控制在8%~12%,得到1.0mm~2.75mm厚的冷硬带钢;
(5)将所述冷硬带钢进行连续热镀锌退火及合金化热镀锌处理,退火时均热温度控制在890℃~910℃之间,退火时间控制在60s~80s之间,缓冷出口温度不低于760℃,快速冷却速率控制在15℃/s~25℃/s之间,快冷出口温度控制在475℃~495℃之间,镀锌温度为460℃,镀锌时间为6s,镀锌结束后带钢以大于30℃/s的冷速快速冷却到200℃~300℃之间,然后以10℃/s升温到550℃保温10s~20s进行合金化处理,然后以15℃/s的冷速冷却至室温,得到所述双相钢。
3.如权利要求2所述的一种1500MPa级高成形性合金化热镀锌双相钢的制备方法,其特征在于,最终所获得的钢板的微观组织主要为铁素体、马氏体、残余奥氏体以及细小弥散分布的纳米尺度的第二相粒子组成,其中铁素体含量<10%,马氏体含量≥85%,残余奥氏体含量为2%~6%,马氏体板条平均宽度<200nm,第二相粒子平均尺寸小于10nm。
4.如权利要求2所述的一种1500MPa级高成形性合金化热镀锌双相钢的制备方法,其特征在于,通过细晶强化、固溶强化和析出强化提高双相钢强度,通过晶粒细化和残余奥氏体的相变诱导增塑效应提高成形性;高成形性合金化热镀锌双相钢的抗拉强度≥1510MPa,屈服强度≥805MPa,断后伸长率≥8.0%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210169805.3A CN114574760B (zh) | 2022-02-23 | 2022-02-23 | 一种1500MPa级高成形性合金化热镀锌双相钢及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210169805.3A CN114574760B (zh) | 2022-02-23 | 2022-02-23 | 一种1500MPa级高成形性合金化热镀锌双相钢及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114574760A CN114574760A (zh) | 2022-06-03 |
CN114574760B true CN114574760B (zh) | 2023-02-17 |
Family
ID=81774418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210169805.3A Active CN114574760B (zh) | 2022-02-23 | 2022-02-23 | 一种1500MPa级高成形性合金化热镀锌双相钢及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114574760B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024192218A1 (en) * | 2023-03-14 | 2024-09-19 | Cleveland-Cliffs Steel Properties Inc. | High strength galvanized and galvannealed steel sheets and manufacturing method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101348885A (zh) * | 2008-09-11 | 2009-01-21 | 北京科技大学 | 一种1000MPa级冷轧热镀锌双相钢及其制造方法 |
CN104508163A (zh) * | 2012-07-31 | 2015-04-08 | 杰富意钢铁株式会社 | 成形性及定形性优异的高强度热浸镀锌钢板及其制造方法 |
WO2021070925A1 (ja) * | 2019-10-09 | 2021-04-15 | 日本製鉄株式会社 | 鋼板及びその製造方法 |
CN113388773A (zh) * | 2021-05-21 | 2021-09-14 | 鞍钢股份有限公司 | 1.5GPa级高成形性抗氢脆超高强汽车钢及制备方法 |
CN113403529A (zh) * | 2021-05-21 | 2021-09-17 | 鞍钢股份有限公司 | 冷冲压用1470MPa级合金化镀锌钢板及其制备方法 |
-
2022
- 2022-02-23 CN CN202210169805.3A patent/CN114574760B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101348885A (zh) * | 2008-09-11 | 2009-01-21 | 北京科技大学 | 一种1000MPa级冷轧热镀锌双相钢及其制造方法 |
CN104508163A (zh) * | 2012-07-31 | 2015-04-08 | 杰富意钢铁株式会社 | 成形性及定形性优异的高强度热浸镀锌钢板及其制造方法 |
WO2021070925A1 (ja) * | 2019-10-09 | 2021-04-15 | 日本製鉄株式会社 | 鋼板及びその製造方法 |
CN113388773A (zh) * | 2021-05-21 | 2021-09-14 | 鞍钢股份有限公司 | 1.5GPa级高成形性抗氢脆超高强汽车钢及制备方法 |
CN113403529A (zh) * | 2021-05-21 | 2021-09-17 | 鞍钢股份有限公司 | 冷冲压用1470MPa级合金化镀锌钢板及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114574760A (zh) | 2022-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110129668B (zh) | 一种1000MPa级合金化热镀锌复相钢及其制备方法 | |
JP7150022B2 (ja) | 加工性に優れた高強度鋼板及びその製造方法 | |
CN108018484B (zh) | 抗拉强度1500MPa以上成形性优良的冷轧高强钢及其制造方法 | |
CN104593674B (zh) | 热镀锌超低碳烘烤硬化钢及其生产方法 | |
EP3235922B1 (en) | Hot dipped galvanized steel sheet with excellent hole expansibility, hot dipped galvannealed steel sheet, and manufacturing method therefor | |
CN113737087B (zh) | 一种超高强双相钢及其制造方法 | |
CN110863138B (zh) | 一种1800MPa级热成形钢及其制造方法 | |
CN106011652A (zh) | 一种磷化性能优异的冷轧低密度钢板及其制造方法 | |
CN113249648B (zh) | 一种800MPa级热基锌铝镁镀层复相钢及其制备方法 | |
CN113528944B (zh) | 一种1000MPa易成形耐磨钢板及其制备方法 | |
CN112251668B (zh) | 一种成形增强复相钢及其制备方法 | |
CN117957339A (zh) | 具有良好的残余奥氏体分解耐受性的汽车用高强度冷轧钢带板 | |
CN114574760B (zh) | 一种1500MPa级高成形性合金化热镀锌双相钢及其制备方法 | |
CN111534760B (zh) | 一种热轧热成形钢及其制备方法 | |
CN111270161B (zh) | 一种抗拉强度≥1000MPa的高延伸率热轧组织调控钢及生产方法 | |
CN115505847B (zh) | 一种具有优异冲击性能的冷轧超高强钢板及其制备方法 | |
CN110066966B (zh) | 一种低内应力含钛高强钢及生产方法 | |
CN114381655A (zh) | 一种高强塑积冷轧qp钢及其退火工艺和制造方法 | |
CN113528946B (zh) | 一种1200MPa级增强成形复相钢及其制备方法 | |
CN114934228A (zh) | 一种热成形钢板及其生产方法 | |
CN115109994A (zh) | 一种高强度冷轧热镀锌微合金带钢及其制造方法 | |
CN111394650A (zh) | 具有优良成形性的高r值800MPa级冷轧钢及生产方法 | |
CN115584442B (zh) | 高表面质量汽车钢及其生产方法 | |
CN115449707B (zh) | 一种超高强度热轧复相钢及其制备方法 | |
CN113528942B (zh) | 一种热镀锌复相钢及其生产方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |