CN115572867B - 一种发动机用耐腐蚀铝合金型材及其制备方法 - Google Patents

一种发动机用耐腐蚀铝合金型材及其制备方法 Download PDF

Info

Publication number
CN115572867B
CN115572867B CN202211298528.2A CN202211298528A CN115572867B CN 115572867 B CN115572867 B CN 115572867B CN 202211298528 A CN202211298528 A CN 202211298528A CN 115572867 B CN115572867 B CN 115572867B
Authority
CN
China
Prior art keywords
aluminum alloy
resistant
corrosion
heating
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211298528.2A
Other languages
English (en)
Other versions
CN115572867A (zh
Inventor
李娜
丁国庆
戚杰
金建平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Spaceflight Yueda Precision Machinery Co ltd
Original Assignee
Changzhou Spaceflight Yueda Precision Machinery Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Spaceflight Yueda Precision Machinery Co ltd filed Critical Changzhou Spaceflight Yueda Precision Machinery Co ltd
Priority to CN202211298528.2A priority Critical patent/CN115572867B/zh
Publication of CN115572867A publication Critical patent/CN115572867A/zh
Application granted granted Critical
Publication of CN115572867B publication Critical patent/CN115572867B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/003Aluminium alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明涉及铝合金材料加工技术领域,具体为一种发动机用耐腐蚀铝合金型材及其制备方法;本发明为提高铝合金材料的耐高温,首先制备了耐热铝合金基体,调整了耐热铝合金基体中的元素组分,严格限定了硅元素含量,在增加铝合金机械强度的同时防止析出粗大硅相,避免铝合金连续性下降,造成强度损失;之后又制备了耐磨耐腐蚀涂层,利用离子喷涂的方式在铝合金表面制备了以铬与铝为主要原料的涂层,提升表面硬度与化学稳定性,从而提升耐磨与耐腐蚀能力。

Description

一种发动机用耐腐蚀铝合金型材及其制备方法
技术领域
本发明涉及铝合金材料加工技术领域,具体为一种发动机用耐腐蚀铝合金型材及其制备方法。
背景技术
铝合金是一种具有优越性能的金属材料,具有比强度高、性价比高的优点,于是应用这一特点,铝合金材质的发动机已逐渐普及,但是发动机是汽车、飞机等器械的动力心脏,在使用中常需要面临较高的工作温度与较大的温差变化,同时由于其内部染料的不断燃烧与活塞的不断转动,同样会使的发动机面临着严重的化学腐蚀与应力侵蚀,从而导致发动机的损害与功率下降,并最终造成发动机的损坏。
发明内容
本发明的目的在于提供一种发动机用耐腐蚀铝合金型材及其制备方法,以解决上述背景技术中提出的问题。
为了解决上述技术问题,本发明提供如下技术方案:一种发动机用耐腐蚀铝合金型材,具有以下特征:所述发动机用耐腐蚀铝合金型材由耐热铝合金基体和喷覆在耐热铝合金基体内壁上的耐磨耐腐蚀涂层组成;
其中,按质量百分比计,所述耐热铝合金基体包括以下元素:Si含量为12.1-14.8%,Cu含量为4.5-8%,Ni含量为1.2-3%,Mg含量为0.6-0.8,Mn含量为0.2-0.4,Ti含量为0.05-0.15%,V含量为0.05-0.15%,Zr含量为0.05-0.1%,余量为Al和杂质;
所述耐磨耐腐蚀涂层包括以下元素:Si含量为2.4-6%,Mn含量为2.5-5%,Cr含量为24-40%,余量为Al。
进一步的,所述耐磨耐腐蚀涂层厚度为300-500μm。
一种发动机用耐腐蚀铝合金型材的制备方法,包括以下步骤:
S1.制备耐热铝合金基体;
S11.将铝锭与镁锭加热,升温至700-730℃,高温熔炼至液态后,加入硅锭与铜锭,待原料全部熔融后,升温至770-790℃,加入剩余原料,并电磁搅拌,直至原料全部熔化,得到铝合金熔体;
S12.向铝合金熔体中加入精炼剂,继续精炼15-30min后,扒渣取样,检测各组分含量;
S13.对步骤S12制得的铝合金熔体进行半连续水冷直接铸造,得到耐热铝合金基体坯件;
S14.将步骤S13制得的耐热铝合金基体坯件升温至380-420℃,升温速率为5-10℃/min,保温2-4h后,降温至120-140℃,降温速率为3-5min/min,保温1.5-3h,升温至400-440℃,升温速率为3-5℃/min,保温结束后,随炉冷却至室温,对耐热铝合金基体坯件再次升温至490-500℃,挤压机挤压成型后,将其水雾冷却至180-200℃,并以3-5℃/min的速率升温至420-440℃,保温1-2h后,随炉冷却至240-260℃,使用冰水速冷至50-80℃,得到耐热铝合金基体;
S2.制备耐磨耐腐蚀涂层;
S21.将锰锭、铝锭、硅锭与铬锭分别球磨,制备为粉末状颗粒,将其按照配比混合均匀,得到耐磨耐腐蚀涂层喷涂料;
S22.将步骤S21制备的耐磨耐腐蚀涂层喷涂料采用等离子喷涂方法,喷涂在耐热铝合金基体内侧,得到耐磨耐腐蚀涂层;
S3.将带有耐磨耐腐蚀涂层的耐热铝合金基体再次加热,以1-3℃/min的速率升温至120-150℃,保温8-12h后,继续升温至220-240℃,保温5-10h,以1-3℃/min的速率降温至90-110℃,保温8-12h,再次升温至220-240℃,保温8-12h,降温至110-130℃,空冷至室温,得到发动机用耐腐蚀铝合金型材。
本发明为提高铝合金材料的耐高温能力,在制备耐热铝合金基体时提高了其中的硅含量,但是硅含量过高易导致铝合金中出现粗大的硅相,造成铝合金基体连续性下降,使其强度韧性性能出现劣化,并且硅相还会导致铝合金材料的晶间腐蚀加剧,使其耐腐蚀能力变弱,因此本申请严格限定了原料中的硅含量;在此基础上,本申请进一步调整了Cu、Mg与Ni元素的添加量,从而对铝合金进行固溶强化,并改善其高温性能,同时细化晶粒,改善初生硅形态,从而使其分布均匀,提升基体强度;
之后本申请进一步制备了耐磨耐腐蚀涂层,在铝合金型材内壁上制备了以Cr、Al为主要组分的涂层,避免了使用铸铁内壁造成的与铝合金因为热膨胀系数不同而造成的应力损害,同时本申请中添加了较多的Cr元素,以确保涂层具备足够的显微硬度与强度,并添加了Al,从而确保涂层与铝合金基体具有足够的结合强度,避免涂层剥离。
在此基础只上,本申请进一步的对铝合金型材进行了时效强化处理,进一步地提升整体结合强度与硬度。
进一步的,步骤S12中,所述精炼剂为氟硼酸钠。
进一步的,步骤S12中,所述精炼剂的添加量为合金熔体总质量的0.2-0.35%。
进一步的,步骤S13中,铸造温度为750-760℃,铸造速度为60-75mm/min,冷却水压为0.2-0.3MPa,冷却水流量为2000-2800L/min。
进一步的,步骤S21中,所述粉末状颗粒粒径为20-35μm。
进一步的,步骤S22中,等离子喷涂时,喷涂电压为60-70V,喷涂距离为25-35mm,旋转速率为100-150rpm,送粉速率为150-200g/min,喷涂角度为45°。
与现有技术相比,本发明所达到的有益效果是:本发明为提高铝合金材料的耐高温,首先制备了耐热铝合金基体,调整了耐热铝合金基体中的元素组分,严格限定了硅元素含量,在增加铝合金机械强度的同时防止析出粗大硅相,避免铝合金连续性下降,造成强度损失;之后又制备了耐磨耐腐蚀涂层,利用离子喷涂的方式在铝合金表面制备了以铬与铝为主要原料的涂层,提升表面硬度与化学稳定性,从而提升耐磨与耐腐蚀能力。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1.
一种发动机用耐腐蚀铝合金型材的制备方法,包括以下步骤:
S1.制备耐热铝合金基体;
S11.将81kg铝锭与0.6kg镁锭加热,升温至700℃,高温熔炼至液态后,加入12.1kg硅锭与4.5kg铜锭,待上述原料全部熔融后,升温至770℃,加入1.2kg=镍锭与0.2kg锰锭,并电磁搅拌,直至全部熔化,得到铝合金熔体;
S12.向铝合金熔体中加入0.2kg氟硼酸钠,继续精炼15min后,扒渣取样,检测各组分含量,具体含量如下:Si含量为12.3%,Cu含量为4.53%,Ni含量为1.24%,Mg含量为0.61%,Mn含量为0.23%,Ti含量为0.06%,V含量为0.05%,Zr含量为0.06%,余量为Al和杂质;
S13.对步骤S12制得的铝合金熔体进行半连续水冷直接铸造,铸造温度为750℃,铸造速度为60mm/min,冷却水压为0.2MPa,冷却水流量为2000L/min,得到耐热铝合金基体坯件;
S14.将步骤S13制得的耐热铝合金基体坯件升温至380℃,升温速率为5℃/min,保温2h后,降温至120℃,降温速率为3min/min,保温1.5h,升温至400℃,升温速率为3℃/min,保温结束后,随炉冷却至室温,对耐热铝合金基体坯件再次升温至490℃,挤压机挤压成型后,将其水雾冷却至180℃,并以3℃/min的速率升温至420℃,保温1h后,随炉冷却至240℃,使用冰水速冷至50℃,得到耐热铝合金基体;
S2.制备耐磨耐腐蚀涂层;
S21.将锰锭、铝锭、硅锭与铬锭分别球磨,制备为粒径为20-35μm的粉末状颗粒,分别称量48g硅粉末状颗粒、50gMn粉末状颗粒、480gCr粉末状颗粒、1422gAl粉末状颗粒混合,得到耐磨耐腐蚀涂层喷涂料;
S22.将步骤S21制备的耐磨耐腐蚀涂层喷涂料采用等离子喷涂方法,喷涂在耐热铝合金基体内侧,喷涂电压为60V,喷涂距离为25mm,旋转速率为100rpm,送粉速率为150g/min,喷涂角度为45°,得到耐喷涂厚度为316μm的耐磨耐腐蚀涂层;
S3.将带有耐磨耐腐蚀涂层的耐热铝合金基体再次加热,以1℃/min的速率升温至120℃,保温8h后,继续升温至220℃,保温5h,以1℃/min的速率降温至90℃,保温8h,再次升温至220℃,保温8h,降温至110℃,空冷至室温,得到发动机用耐腐蚀铝合金型材。
实施例2.
与实施例1相比,本实施例改变了步骤S14中的操作条件;
一种发动机用耐腐蚀铝合金型材的制备方法,包括以下步骤:
S1.制备耐热铝合金基体;
S11.将81kg铝锭与0.6kg镁锭加热,升温至700℃,高温熔炼至液态后,加入12.1kg硅锭与4.5kg铜锭,待上述原料全部熔融后,升温至770℃,加入1.2kg=镍锭与0.2kg锰锭,并电磁搅拌,直至全部熔化,得到铝合金熔体;
S12.向铝合金熔体中加入0.2kg氟硼酸钠,继续精炼15min后,扒渣取样,检测各组分含量,具体含量如下:Si含量为12.3%,Cu含量为4.53%,Ni含量为1.24%,Mg含量为0.61%,Mn含量为0.23%,Ti含量为0.06%,V含量为0.05%,Zr含量为0.06%,余量为Al和杂质;
S13.对步骤S12制得的铝合金熔体进行半连续水冷直接铸造,铸造温度为750℃,铸造速度为60mm/min,冷却水压为0.2MPa,冷却水流量为2000L/min,得到耐热铝合金基体坯件;
S14.将步骤S13制得的耐热铝合金基体坯件升温至420℃,升温速率为10℃/min,保温4h后,降温至140℃,降温速率为5min/min,保温3h,升温至440℃,升温速率为5℃/min,保温结束后,随炉冷却至室温,对耐热铝合金基体坯件再次升温至500℃,挤压机挤压成型后,将其水雾冷却至200℃,并以5℃/min的速率升温至440℃,保温2h后,随炉冷却至260℃,使用冰水速冷至80℃,得到耐热铝合金基体;
S2.制备耐磨耐腐蚀涂层;
S21.将锰锭、铝锭、硅锭与铬锭分别球磨,制备为粒径为20-35μm的粉末状颗粒,分别称量48g硅粉末状颗粒、50gMn粉末状颗粒、480gCr粉末状颗粒、1422gAl粉末状颗粒混合,得到耐磨耐腐蚀涂层喷涂料;
S22.将步骤S21制备的耐磨耐腐蚀涂层喷涂料采用等离子喷涂方法,喷涂在耐热铝合金基体内侧,喷涂电压为60V,喷涂距离为25mm,旋转速率为100rpm,送粉速率为150g/min,喷涂角度为45°,得到耐喷涂厚度为316μm的耐磨耐腐蚀涂层;
S3.将带有耐磨耐腐蚀涂层的耐热铝合金基体再次加热,以1℃/min的速率升温至120℃,保温8h后,继续升温至220℃,保温5h,以1℃/min的速率降温至90℃,保温8h,再次升温至220℃,保温8h,降温至110℃,空冷至室温,得到发动机用耐腐蚀铝合金型材。
实施例3.
与实施例1相比,本实施例增加了步骤S11中硅锭的添加量;
一种发动机用耐腐蚀铝合金型材的制备方法,包括以下步骤:
S1.制备耐热铝合金基体;
S11.将78.3kg铝锭与0.6kg镁锭加热,升温至700℃,高温熔炼至液态后,加入14.8kg硅锭与4.5kg铜锭,待上述原料全部熔融后,升温至770℃,加入1.2kg=镍锭与0.2kg锰锭,并电磁搅拌,直至全部熔化,得到铝合金熔体;
S12.向铝合金熔体中加入0.2kg氟硼酸钠,继续精炼15min后,扒渣取样,检测各组分含量,具体含量如下:Si含量为14.9%,Cu含量为4.54%,Ni含量为1.22%,Mg含量为0.6%,Mn含量为0.25%,Ti含量为0.08%,V含量为0.06%,Zr含量为0.06%,余量为Al和杂质;
S13.对步骤S12制得的铝合金熔体进行半连续水冷直接铸造,铸造温度为750℃,铸造速度为60mm/min,冷却水压为0.2MPa,冷却水流量为2000L/min,得到耐热铝合金基体坯件;
S14.将步骤S13制得的耐热铝合金基体坯件升温至380℃,升温速率为5℃/min,保温2h后,降温至120℃,降温速率为3min/min,保温1.5h,升温至400℃,升温速率为3℃/min,保温结束后,随炉冷却至室温,对耐热铝合金基体坯件再次升温至490℃,挤压机挤压成型后,将其水雾冷却至180℃,并以3℃/min的速率升温至420℃,保温1h后,随炉冷却至240℃,使用冰水速冷至50℃,得到耐热铝合金基体;
S2.制备耐磨耐腐蚀涂层;
S21.将锰锭、铝锭、硅锭与铬锭分别球磨,制备为粒径为20-35μm的粉末状颗粒,分别称量48g硅粉末状颗粒、50gMn粉末状颗粒、480gCr粉末状颗粒、1422gAl粉末状颗粒混合,得到耐磨耐腐蚀涂层喷涂料;
S22.将步骤S21制备的耐磨耐腐蚀涂层喷涂料采用等离子喷涂方法,喷涂在耐热铝合金基体内侧,喷涂电压为60V,喷涂距离为25mm,旋转速率为100rpm,送粉速率为150g/min,喷涂角度为45°,得到耐喷涂厚度为316μm的耐磨耐腐蚀涂层;
S3.将带有耐磨耐腐蚀涂层的耐热铝合金基体再次加热,以1℃/min的速率升温至120℃,保温8h后,继续升温至220℃,保温5h,以1℃/min的速率降温至90℃,保温8h,再次升温至220℃,保温8h,降温至110℃,空冷至室温,得到发动机用耐腐蚀铝合金型材。
实施例4.
与实施例1相比,本实施例增加了步骤S22中耐磨耐腐蚀涂层的厚度;
一种发动机用耐腐蚀铝合金型材的制备方法,包括以下步骤:
S1.制备耐热铝合金基体;
S11.将81kg铝锭与0.6kg镁锭加热,升温至700℃,高温熔炼至液态后,加入12.1kg硅锭与4.5kg铜锭,待上述原料全部熔融后,升温至770℃,加入1.2kg=镍锭与0.2kg锰锭,并电磁搅拌,直至全部熔化,得到铝合金熔体;
S12.向铝合金熔体中加入0.2kg氟硼酸钠,继续精炼15min后,扒渣取样,检测各组分含量,具体含量如下:Si含量为12.3%,Cu含量为4.53%,Ni含量为1.24%,Mg含量为0.61%,Mn含量为0.23%,Ti含量为0.06%,V含量为0.05%,Zr含量为0.06%,余量为Al和杂质;
S13.对步骤S12制得的铝合金熔体进行半连续水冷直接铸造,铸造温度为750℃,铸造速度为60mm/min,冷却水压为0.2MPa,冷却水流量为2000L/min,得到耐热铝合金基体坯件;
S14.将步骤S13制得的耐热铝合金基体坯件升温至380℃,升温速率为5℃/min,保温2h后,降温至120℃,降温速率为3min/min,保温1.5h,升温至400℃,升温速率为3℃/min,保温结束后,随炉冷却至室温,对耐热铝合金基体坯件再次升温至490℃,挤压机挤压成型后,将其水雾冷却至180℃,并以3℃/min的速率升温至420℃,保温1h后,随炉冷却至240℃,使用冰水速冷至50℃,得到耐热铝合金基体;
S2.制备耐磨耐腐蚀涂层;
S21.将锰锭、铝锭、硅锭与铬锭分别球磨,制备为粒径为20-35μm的粉末状颗粒,分别称量48g硅粉末状颗粒、50gMn粉末状颗粒、480gCr粉末状颗粒、1422gAl粉末状颗粒混合,得到耐磨耐腐蚀涂层喷涂料;
S22.将步骤S21制备的耐磨耐腐蚀涂层喷涂料采用等离子喷涂方法,喷涂在耐热铝合金基体内侧,喷涂电压为60V,喷涂距离为25mm,旋转速率为100rpm,送粉速率为150g/min,喷涂角度为45°,得到耐喷涂厚度为497μm的耐磨耐腐蚀涂层;
S3.将带有耐磨耐腐蚀涂层的耐热铝合金基体再次加热,以1℃/min的速率升温至120℃,保温8h后,继续升温至220℃,保温5h,以1℃/min的速率降温至90℃,保温8h,再次升温至220℃,保温8h,降温至110℃,空冷至室温,得到发动机用耐腐蚀铝合金型材。
实施例5.
一种发动机用耐腐蚀铝合金型材的制备方法,包括以下步骤:
S1.制备耐热铝合金基体;
S11.将73kg铝锭与0.8kg镁锭加热,升温至730℃,高温熔炼至液态后,加入14.8kg硅锭与8kg铜锭,待上述原料全部熔融后,升温至790℃,加入3kg=镍锭与0.4kg锰锭,并电磁搅拌,直至全部熔化,得到铝合金熔体;
S12.向铝合金熔体中加入0.35kg氟硼酸钠,继续精炼30min后,扒渣取样,检测各组分含量,具体含量如下:Si含量为14.83%,Cu含量为8.10%,Ni含量为3.05%,Mg含量为0.83%,Mn含量为0.44%,Ti含量为0.05%,V含量为0.06%,Zr含量为0.06%,余量为Al和杂质;
S13.对步骤S12制得的铝合金熔体进行半连续水冷直接铸造,铸造温度为760℃,铸造速度为75mm/min,冷却水压为0.3MPa,冷却水流量为2800L/min,得到耐热铝合金基体坯件;
S14.将步骤S13制得的耐热铝合金基体坯件升温至380℃,升温速率为5℃/min,保温2h后,降温至120℃,降温速率为3min/min,保温1.5h,升温至400℃,升温速率为3℃/min,保温结束后,随炉冷却至室温,对耐热铝合金基体坯件再次升温至490℃,挤压机挤压成型后,将其水雾冷却至180℃,并以3℃/min的速率升温至420℃,保温1h后,随炉冷却至240℃,使用冰水速冷至50℃,得到耐热铝合金基体;
S2.制备耐磨耐腐蚀涂层;
S21.将锰锭、铝锭、硅锭与铬锭分别球磨,制备为粒径为20-35μm的粉末状颗粒,分别称量120g硅粉末状颗粒、100gMn粉末状颗粒、800gCr粉末状颗粒、980gAl粉末状颗粒混合,得到耐磨耐腐蚀涂层喷涂料;
S22.将步骤S21制备的耐磨耐腐蚀涂层喷涂料采用等离子喷涂方法,喷涂在耐热铝合金基体内侧,喷涂电压为70V,喷涂距离为35mm,旋转速率为150rpm,送粉速率为200g/min,喷涂角度为45°,得到耐喷涂厚度为486μm的耐磨耐腐蚀涂层;
S3.将带有耐磨耐腐蚀涂层的耐热铝合金基体再次加热,以3℃/min的速率升温至150℃,保温12h后,继续升温至240℃,保温10h,以3℃/min的速率降温至110℃,保温12h,再次升温至240℃,保温12h,降温至130℃,空冷至室温,得到发动机用耐腐蚀铝合金型材。
检测:根据ASTMA370检测试样常温下抗拉强度与加热至350℃后抗拉强度;使用纤维维氏硬度计检测试样内壁硬度,每件试样选取5个硬度取样点,最终硬度数据取平均值;结果见下表;
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种发动机用耐腐蚀铝合金型材的制备方法,其特征在于,包括以下步骤:
S1.制备耐热铝合金基体;
S11.将铝锭与镁锭加热,升温至700-730℃,高温熔炼至液态后,加入硅锭与铜锭,待原料全部熔融后,升温至770-790℃,加入剩余原料,并电磁搅拌,直至原料全部熔化,得到铝合金熔体;
S12.向铝合金熔体中加入精炼剂,继续精炼15-30min后,扒渣取样,检测各组分含量;
S13.对步骤S12制得的铝合金熔体进行半连续水冷直接铸造,得到耐热铝合金基体坯件;
S14.将步骤S13制得的耐热铝合金基体坯件升温至380-420℃,升温速率为5-10℃/min,保温2-4h后,降温至120-140℃,降温速率为3-5min/min,保温1.5-3h,升温至400-440℃,升温速率为3-5℃/min,保温结束后,随炉冷却至室温,对耐热铝合金基体坯件再次升温至490-500℃,挤压机挤压成型后,将其水雾冷却至180-200℃,并以3-5℃/min的速率升温至420-440℃,保温1-2h后,随炉冷却至240-260℃,使用冰水速冷至50-80℃,得到耐热铝合金基体;
其中,按质量百分比计,所述耐热铝合金基体包括以下元素:Si含量为12.1-14.8%,Cu含量为4.5-8%,Ni含量为1.2-3%,Mg含量为0.6-0.8%,Mn含量为0.2-0.4%,Ti含量为0.05-0.15%,V含量为0.05-0.15%,Zr含量为0.05-0.1%,余量为Al和杂质;
S2.制备耐磨耐腐蚀涂层;
S21.将锰锭、铝锭、硅锭与铬锭分别球磨,制备为粉末状颗粒,将其按照配比混合均匀,得到耐磨耐腐蚀涂层喷涂料;
S22.将步骤S21制备的耐磨耐腐蚀涂层喷涂料采用等离子喷涂方法,喷涂在耐热铝合金基体内侧,得到耐磨耐腐蚀涂层;
所述耐磨耐腐蚀涂层包括以下元素:Si含量为2.4-6%,Mn含量为2.5-5%,Cr含量为24-40%,余量为Al;
S3.将带有耐磨耐腐蚀涂层的耐热铝合金基体再次加热,以1-3℃/min的速率升温至120-150℃,保温8-12h后,继续升温至220-240℃,保温5-10h,以1-3℃/min的速率降温至90-110℃,保温8-12h,再次升温至220-240℃,保温8-12h,降温至110-130℃,空冷至室温,得到发动机用耐腐蚀铝合金型材。
2.根据权利要求1所述的一种发动机用耐腐蚀铝合金型材的制备方法,其特征在于:所述耐磨耐腐蚀涂层厚度为300-500μm。
3.根据权利要求1所述的一种发动机用耐腐蚀铝合金型材的制备方法,其特征在于:步骤S12中,所述精炼剂为氟硼酸钠。
4.根据权利要求1所述的一种发动机用耐腐蚀铝合金型材的制备方法,其特征在于:步骤S12中,所述精炼剂的添加量为合金熔体总质量的0.2-0.35%。
5.根据权利要求1所述的一种发动机用耐腐蚀铝合金型材的制备方法,其特征在于:步骤S13中,铸造温度为750-760℃,铸造速度为60-75mm/min,冷却水压为0.2-0.3MPa,冷却水流量为2000-2800L/min。
6.根据权利要求1所述的一种发动机用耐腐蚀铝合金型材的制备方法,其特征在于:步骤S21中,所述粉末状颗粒粒径为20-35μm。
7.根据权利要求1所述的一种发动机用耐腐蚀铝合金型材的制备方法,其特征在于:步骤S22中,等离子喷涂时,喷涂电压为60-70V,喷涂距离为25-35mm,旋转速率为100-150rpm,送粉速率为150-200g/min,喷涂角度为45°。
CN202211298528.2A 2022-10-24 2022-10-24 一种发动机用耐腐蚀铝合金型材及其制备方法 Active CN115572867B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211298528.2A CN115572867B (zh) 2022-10-24 2022-10-24 一种发动机用耐腐蚀铝合金型材及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211298528.2A CN115572867B (zh) 2022-10-24 2022-10-24 一种发动机用耐腐蚀铝合金型材及其制备方法

Publications (2)

Publication Number Publication Date
CN115572867A CN115572867A (zh) 2023-01-06
CN115572867B true CN115572867B (zh) 2023-10-03

Family

ID=84586197

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211298528.2A Active CN115572867B (zh) 2022-10-24 2022-10-24 一种发动机用耐腐蚀铝合金型材及其制备方法

Country Status (1)

Country Link
CN (1) CN115572867B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1240953A (en) * 1968-05-23 1971-07-28 Chromalloy American Corp Diffused coating of high temperature resistant alloys
RU2088684C1 (ru) * 1990-11-19 1997-08-27 Инко Эллойз Интернэшнл Инк. Сплав, стойкий к окислению (варианты)
CN103924132A (zh) * 2014-03-13 2014-07-16 淮北银丰铝业有限公司 一种高耐蚀高耐磨发动机汽缸盖铝合金型材的制备方法
CN112703106A (zh) * 2018-10-04 2021-04-23 安赛乐米塔尔公司 模压淬火方法
CN113897520A (zh) * 2020-07-06 2022-01-07 济南科为达新材料科技有限公司 发动机活塞用高强耐热铸造铝硅合金

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1240953A (en) * 1968-05-23 1971-07-28 Chromalloy American Corp Diffused coating of high temperature resistant alloys
RU2088684C1 (ru) * 1990-11-19 1997-08-27 Инко Эллойз Интернэшнл Инк. Сплав, стойкий к окислению (варианты)
CN103924132A (zh) * 2014-03-13 2014-07-16 淮北银丰铝业有限公司 一种高耐蚀高耐磨发动机汽缸盖铝合金型材的制备方法
CN112703106A (zh) * 2018-10-04 2021-04-23 安赛乐米塔尔公司 模压淬火方法
CN113897520A (zh) * 2020-07-06 2022-01-07 济南科为达新材料科技有限公司 发动机活塞用高强耐热铸造铝硅合金

Also Published As

Publication number Publication date
CN115572867A (zh) 2023-01-06

Similar Documents

Publication Publication Date Title
CN108425043B (zh) 一种稀土变质的Al-Si-Mg-Mn铸造合金及其制备方法
WO2020040602A1 (ko) 다이캐스팅용 알루미늄 합금 및 그 제조방법, 다이캐스팅 방법
CN111101034A (zh) 一种低稀土高性能的稀土铝合金及其制备方法
CN110983120A (zh) 一种300MPa级高强塑非热处理自强化压铸铝合金及制造方法
CN105002408A (zh) 一种优质高强铸造铝合金材料及制备方法
CN110885941B (zh) 高韧性铝合金材料及其制备方法
CN108048703B (zh) 一种高强耐磨压铸铝合金及其压铸方法
CN107447138B (zh) 一种抗腐蚀铝合金型材及其挤压方法
CN109989045B (zh) 一种用于真空磁控溅射的铝银合金靶材及其制备方法
CN115572867B (zh) 一种发动机用耐腐蚀铝合金型材及其制备方法
CN100532604C (zh) 一种Nd、Sr复合强化耐热镁合金及其制备方法
CN104233016A (zh) 一种汽油机活塞材料及其制备方法
WO2021147397A1 (zh) 一种铸造镁合金及其制备方法
CN101235454A (zh) 一种准晶增强Mg-Zn-Er耐热镁合金及其制备方法
CN110592448B (zh) 耐热耐腐蚀2219型铝合金及其制备方法
CN103556117B (zh) 一种MCrAlY离子镀阴极材料及其铸件的制备方法
CN112126816A (zh) 一种耐腐蚀稀土铜合金
CN110257669B (zh) 一种高性能锌合金新材料及其制备方法
CN110629081B (zh) 新型耐热高强度高塑性耐腐蚀Al-Cu-Mg-Zn-Ti系铝合金及其制备方法
CN113462914A (zh) 耐腐蚀铝锭及其制备方法
CN109868397B (zh) 一种高强韧高模量铝合金材料及其压铸工艺
CN108559890B (zh) 一种含Ni-Be高强耐热铝合金及其制备方法
CN114657426B (zh) 一种耐腐蚀铝合金及其制备方法
CN115232996B (zh) 一种zl105a铝合金熔炼方法
CN112322944B (zh) 一种耐高温轻型铝钛合金

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant