CN115569658B - Cabb/ucnt异质结复合光催化剂及其制备方法与应用 - Google Patents

Cabb/ucnt异质结复合光催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN115569658B
CN115569658B CN202211224187.4A CN202211224187A CN115569658B CN 115569658 B CN115569658 B CN 115569658B CN 202211224187 A CN202211224187 A CN 202211224187A CN 115569658 B CN115569658 B CN 115569658B
Authority
CN
China
Prior art keywords
ucnt
agbibr
cabb
preparation
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211224187.4A
Other languages
English (en)
Other versions
CN115569658A (zh
Inventor
王朋
宋加
黄柏标
王泽岩
刘媛媛
郑昭科
程合锋
张倩倩
张晓阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202211224187.4A priority Critical patent/CN115569658B/zh
Publication of CN115569658A publication Critical patent/CN115569658A/zh
Application granted granted Critical
Publication of CN115569658B publication Critical patent/CN115569658B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/48Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
    • C07C29/50Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups with molecular oxygen only
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/36Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in compounds containing six-membered aromatic rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)

Abstract

本发明属于新能源和光催化技术领域,涉及CABB/UCNT异质结复合光催化剂及其制备方法与应用。其制备方法为:以UCNT作为成核位点利用反溶剂法将Cs2AgBiBr6在成核位点处原位沉积,即得;过程为:将Cs2AgBiBr6溶解于第一溶剂制成前驱体溶液,将UCNT分散于第二溶剂制成UCNT悬浮液,将前驱体溶液缓慢滴加至UCNT悬浮液,搅拌。本发明提供的光催化剂不仅具有更高的光催化活性,而且制备方法简单、反应条件温和,成本低可大规模制备以及无污染等优点。

Description

CABB/UCNT异质结复合光催化剂及其制备方法与应用
技术领域
本发明属于新能源和光催化技术领域,涉及CABB/UCNT异质结复合光催化剂及其制备方法与应用。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
芳香烃的选择性氧化生产芳香醛和芳香醇是利用低附加值芳香烃的理想途径,而C(sp3)-H键的活化是这个过程中的关键步骤。然而,由于C(sp3)-H键的高键解离能(355-439kJ mol-1),传统的活化方法通常需要贵金属催化剂、有毒和腐蚀性的化学氧化剂以及苛刻的反应条件,并且伴随着危险的操作条件和高能量消耗。值得注意的是,光催化过程中产生的活性自由基(如·O2-和·OH)显示出很强的氧化能力,这使得活化过程可以在绿色温和的条件下进行。因此,利用可再生的太阳能来驱动C(sp3)-H键的活化是一个非常有吸引力和前景的策略。尽管如此,光催化甲苯转化反应仍然是低效的,缺乏高效的光催化剂是基础研究和工业发展的瓶颈。最近,全无机卤化物钙钛矿由于其优异的性能,如可调控的带隙、宽的光吸收范围和大的消光系数,已经引起越来越多的关注。但是,经典的含铅卤化物钙钛矿存在着毒性和环境稳定性问题。研究人员已逐渐将注意力转向无铅卤化物钙钛矿的各种光催化应用,包括H2生产、CO2还原、选择性氧化和有机污染物的降解。特别是,无铅卤化物钙钛矿在芳香烃的光催化转化方面显示出巨大的潜力。与大多数无铅碘卤化物钙钛矿相比,价带位置相对较正的无铅溴化物和氯化物钙钛矿具有更强的氧化能力,更有利于光催化C(sp3)-H键的活化。进一步,从实际应用的角度来看,无铅钙钛矿Cs2AgBiBr6(CABB)也有可能是铅卤化物钙钛矿的理想替代品。而且作为一种低毒和稳定的光催化材料,近年来Cs2AgBiBr6的研究越来越引起研究人员们的注意。然而,由于无铅钙钛矿中光生载流子的快速重组,其光催化活性需要进一步优化。
发明内容
为了解决现有技术的不足,本发明的目的是提供CABB/UCNT异质结复合光催化剂及其制备方法与应用,本发明提供的光催化剂不仅具有更高的光催化活性,而且制备方法简单、反应条件温和,成本低,可大规模制备以及无污染等优点。
为了实现上述目的,本发明的技术方案为:
一方面,一种CABB/UCNT异质结复合光催化剂的制备方法,以UCNT作为成核位点,利用反溶剂法将Cs2AgBiBr6在成核位点处原位沉积,即得;过程为:将Cs2AgBiBr6溶解于第一溶剂制成前驱体溶液,将UCNT分散于第二溶剂制成UCNT悬浮液,将前驱体溶液滴加至UCNT悬浮液,搅拌。
传统的水相光催化体系里,在众多提升光催化材料光生载流子分离效率的方法中,通过与其它半导体材料构建异质结的能带工程被认为是促进载流子分离和提高材料催化性能的有效策略。进一步将这一策略应用在有机相的卤化物钙钛矿材料光催化体系中无疑会是一个有意义的拓展。在众多经典的半导体光催化剂中,石墨氮化碳是一个非常好的选择,因为它具有高稳定性、易于合成、无毒性的优点,特别是它的能带位置可以与Cs2AgBiBr6相匹配。柔性超薄氮化碳片UCNT作为一种典型的二维材料,显示出足够大的比表面积和超薄的特性,这更加有利于其与其它材料的复合。
本发明利用反溶剂方法来构建CABB/UCNT异质结结构,其工作机制是通过创造一个瞬间的局部过饱和度来催化异质成核。同时,反溶剂的使用促进了快速成核,导致Cs2AgBiBr6纳米晶在二维柔性超薄氮化碳片UCNT表面实现原位沉积并且没有明显的颗粒团聚。通过UCNT和Cs2AgBiBr6之间能带的交错排列,建立了快速电荷转移通道,从而提高了载流子分离效率,进而提高光催化剂的催化活性。
另一方面,一种CABB/UCNT异质结复合光催化剂,由上述制备方法获得。
第三方面,一种上述CABB/UCNT异质结复合光催化剂在光催化氧化甲苯中的应用。
本发明的有益效果为:
本发明采用反溶剂法,通过在UCNT上原位生长Cs2AgBiBr6纳米晶体,制备了一系列CABB-x@UCNT(x=40~160)II型异质结系统。实验结果证实,尺寸调节和能带工程之间的协同作用大大促进了光生载流子的分离,增强了Cs2AgBiBr6选择性氧化甲苯的能力。同时,本发明采用的反溶剂法具有制备方法简单,反应条件温和,成本低,可大规模制备以及无污染等优点。
实验表明,本发明利用制备的CABB/UCNT异质结复合催化剂在光催化C(sp3)-H键活化过程中的主要活性物种是·O2 -和h+。在模拟太阳光照射下,CABB-80@UCNT样品将甲苯氧化为苯甲醛和苯甲醇的总转化率达到2630μmol g-1h-1,分别是UCNT和Cs2AgBiBr6的10.7和6倍。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为实施例1和例2中UCNT和一系列CABB-x@UCNT异质结光催化剂的合成示意图;
图2为实施例1中UCN和UCNT的制备过程;
图3为实施例1中UCN和UCNT的XRD图谱;
图4为实施例1中产物UCNT光催化剂的SEM以及TEM图;
图5为实施例1和例2中UCNT,Cs2AgBiBr6和一系列CABB-x@UCNT异质结光催化剂的XRD图谱;
图6为实施例2中产物CABB-80@UCNT光催化剂的SEM以及TEM图;
图7为实施例2中产物CABB-80@UCNT光催化剂的XPS图;
图8为实施例3中产物CABB-80@UCNT光催化剂的光催化甲苯氧化测试过程图;
图9为实施例3中产物CABB-80@UCNT材料的光催化甲苯氧化性能图。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如背景技术所介绍的,现有技术中针对非铅钙钛矿Cs2AgBiBr6光催化剂载流子分离效率低,复合速率快的问题仍有待提升。基于此,本发明提出了CABB/UCNT异质结复合光催化剂及其制备方法与应用。
本发明的一种典型实施方式,提供了一种CABB/UCNT异质结复合光催化剂的制备方法,以UCNT作为成核位点利用反溶剂法将Cs2AgBiBr6在成核位点处原位沉积,即得;过程为:将Cs2AgBiBr6溶解于第一溶剂制成前驱体溶液,将UCNT分散于第二溶剂制成UCNT悬浮液,将前驱体溶液滴加至UCNT悬浮液,搅拌。
在一些实施例中,所述第一溶剂为二甲基亚砜(DMSO)。
在一些实施例中,所述第二溶剂为异丙醇。
在一些实施例中,Cs2AgBiBr6与UCNT的质量比为40~160:15。当Cs2AgBiBr6与UCNT的质量比为40~120:15时,光催化的性能更好,尤其是Cs2AgBiBr6与UCNT的质量比为70~90:15。
本发明通过前驱体溶液的添加量控制光催化剂中Cs2AgBiBr6的量,在一些实施例中,前驱体溶液的浓度(质量/体积)与UCNT悬浮液的浓度(质量/体积)的比为40~50:2~4。
在一些实施例中,将前驱体溶液滴加至UCNT悬浮液后搅拌1~3h。
在一些实施例中,搅拌后离心分离,将分离后的沉淀用异丙醇和乙醇洗涤数次。洗涤后进行研磨。
在一些实施例中,UCNT的制备过程为:以尿素为原料通过两步煅烧得到。
具体包括利用煅烧尿素得到超薄氮化碳片前驱体UCN,再利用热剥离法得到柔性超薄氮化碳片(简称UCNT)。更为具体地,将尿素程序升温至530~570℃煅烧3.5~4.5h获得超薄氮化碳片前驱体UCN,然后程序升温至480~520℃煅烧1.5~2.5h,即得柔性超薄氮化碳片UCNT。
在一些实施例中,块体Cs2AgBiBr6的制备过程为:以溴化铯作为铯源,溴化银作为银源,溴化铋作为铋源采用酸沉淀法制得。
具体地,将铯源、银源、铋源和氢溴酸加热反应后,自然降温析出块体Cs2AgBiBr6。铯源、银源、铋源的摩尔比为2:0.9~1.1:0.9~1.1。氢溴酸的浓度为45~50wt%,更为具体地,加热温度为100~120℃,加热时间为1~3h。
本发明的另一种实施方式,提供了一种CABB/UCNT异质结复合光催化剂,由上述制备方法获得。
本发明的第三种实施方式,提供了一种上述CABB/UCNT异质结复合光催化剂在光催化氧化甲苯中的应用。
具体地,光催化氧化甲苯为光催化氧化甲苯制苯甲醇和/或苯甲醛。
为了使得本领域技术人员能够更加清楚地了解本发明的技术方案,以下将结合具体的实施例详细说明本发明的技术方案。
以下实施例中所用的试验材料均为本领域常规的试验材料,均可通过商业渠道购买得到。
实施例1
一种柔性超薄氮化碳片UCNT及其制备方法,包括如下步骤:
(1)UCN前驱体的制备:
将12克尿素在550℃的马弗炉中以5℃/mi5-1的加热速率煅烧4h。
(2)通过热氧化进一步蚀刻得到的UCN:
将1克UCN平放在一个没有盖子的瓷舟上,在500℃的空气中煅烧2h,加热速率同样是5℃/mi5-1
(3)自然冷却后,取出样品,即得到一种柔性超薄氮化碳片UCNT。
(4)将得到的催化剂研磨后即可进行光催化活性测试。
实施例2
一系列CABB-x@UCNT异质结光催化剂及其制备方法,包括如下步骤:
(1)利用酸沉淀法合成块体Cs2AgBiBr6
首先,将20mL的48wt%氢溴酸油浴加热到110℃,随后加入0.376g AgBr(2mmol)和0.898g BiBr3(2mmol)。一旦AgBr和BiBr3完全溶解,就在持续搅拌下缓慢加入0.852g CsBr(4mmol)。然后将混合溶液在110℃下保持2h,最终自然冷却到25℃的室温。收集橙色的沉淀物,在60℃真空下干燥过夜。
(2)CABB/DMSO前驱体溶液的配置:
将0.425g已制备好的块体Cs2AgBiBr6溶于10mL DMSO中,得到40mM的CABB/DMSO前驱体溶液。
(3)利用反溶剂法获得一系列的CABB-x@UCNT样品:
首先将15mg的UCNT加入到50mL的异丙醇中。持续超声2h后形成均匀的混合物,然后进行剧烈的搅拌。接着,将一定量的CABB/DMSO前驱体溶液缓慢地滴加到剧烈搅拌的UCNT悬浮液中。2h后,用离心机收集所得产品,分别用异丙醇和乙醇洗涤两次,并在60℃下真空干燥过夜。通过调整CABB/DMSO前驱体溶液的滴入量,在UCNT悬浮液中加入了不同数量的CABB(40、80、120和160mg)。最终,制备了一系列不同质量比的CABB-x@UCNT样品(x=40、80、120和160)。
实施例3
在含有0.1M四丁基六氟磷酸铵的二氯甲烷溶液中,用电化学分析仪(CHI660E)进行了瞬态光电流和电化学阻抗测试。采用标准三电极模式,包括一个涂有催化剂的FTO玻璃作为工作电极,一个Ag/AgCl参比电极和一个铂片对电极。光源是一个配备有AM 1.5G截止滤波片的300W Xe灯。
光催化氧化甲苯性能测试:
1、试验方法:
使用所制备的催化剂进行的光催化甲苯氧化实验是在一个双颈石英反应器中进行的。通常,将10mg的催化剂均匀地分散在5mL甲苯溶剂中。随后,向反应器中加入100mg无水Na2SO4,以除去反应过程中产生的微量水。使用一个循环冷却水系统将反应温度保持在25℃。使用300W Xe灯作为光源,通过PL-MW2000光辐射仪校准,将光强调整为300mW cm-2。在辐照之前,该系统用O2鼓泡15mi5,然后搅拌30mi5以建立吸附-解吸平衡。接着,在辐照2h后从反应器中取出0.5mL溶液,以10,000rpm离心2mi5,然后用液相色谱仪分析2μL上清液。
2、试验结果
如图1所示,首先以尿素为原料制备了UCN前驱体,然后通过进一步热氧化UCN来合成UCNT。随后,使用经典的酸沉淀法制备了块体Cs2AgBiBr6。最终利用反溶剂法在UCNT上原位生长Cs2AgBiBr6纳米颗粒,得到了一系列CABB-x@UCNT复合材料。
如图2所示,将UCN放在没有盖子的瓷舟中煅烧是为了保证热剥离过程中有足够的氧气供应。该过程是一个简单以及可重复的合成策略,可以获得具有大表面积的柔性超薄氮化碳片UCNT且不使用任何模板。如图3所示,与UCN相比,UCNT在12.9°和27.5°处显示出较弱和较宽的峰值,表明有序的结构被破坏,层间间距增加,进而形成分层皱缩的超薄纳米片。
实施例1制备的UCNT光催化剂的扫描电镜和透射电镜表征如图4所示,UCNT样品由具有几至几十微米的宽尺寸分布的褶皱层状结构组成。该结构可以通过缩短电荷传输距离来促进光生载流子的分离。
实施例1和实施例2制备的UCNT,Cs2AgBiBr6以及一系列CABB-x@UCNT异质结光催化剂的XRD图谱如图5所示,CABB-x@UCNT复合材料的主要衍射峰的位置与Cs2AgBiBr6的位置一致,表明反溶剂方法不会破坏原始Cs2AgBiBr6的结构。此外,与Cs2AgBiBr6的特征峰对应的复合材料的主峰尖锐,表明Cs2AgBiBr6纳米晶在UCNT上原位生长,且显示出令人满意的结晶性。
实施例2制备的CABB-80@UCNT光催化剂的扫描电镜和透射电镜表征如图6所示,生长在UCNT表面上的Cs2AgBiBr6纳米晶平均尺寸为数十至数百纳米,这表明UCNT为Cs2AgBiBr6纳米晶提供了丰富的成核位点,且可以促进Cs2AgBiBr6纳米晶的沉积和尺寸减小。
实施例2制备的CABB-80@UCNT光催化剂的XPS表征如图7所示,在CABB-80@UCNT的光谱中发现了一个对应于UCNT的N元素的特征峰,证实了复合材料中UCNT的存在。此外,UCNT的N1s光谱在398.5,399.8和400.9eV处显示了三个峰,分别代表sp2杂化氮(C-N=C)、sp3氮(N-(C)3)和末端氨基(C-NHx)。很明显,在CABB-80@UCNT复合材料中,后两个峰分别负移至399.6和400.7eV。该结果进一步证实了UCNT和CABB之间异质结的形成。
实施例1及实施例2产物的光催化甲苯氧化测试过程如图8所示。
实施例1及实施例2产物的光催化氧化甲苯性能比较如图9所示。图9表明在模拟太阳光照射下,CABB-80@UCNT样品将甲苯氧化为苯甲醛和苯甲醇的总转化率达到2630μmolg-1h-1,分别是UCNT和Cs2AgBiBr6的10.7和6倍。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种CABB/UCNT异质结复合光催化剂在光催化氧化甲苯制苯甲醇和/或苯甲醛中的应用,其特征是,
所述CABB/UCNT异质结复合光催化剂的制备方法,以UCNT作为成核位点利用反溶剂法将Cs2AgBiBr6在成核位点处原位沉积,即得;
过程为:将Cs2AgBiBr6溶解于二甲基亚砜制成前驱体溶液,将UCNT分散于异丙醇制成UCNT悬浮液,将前驱体溶液滴加至UCNT悬浮液,搅拌;
Cs2AgBiBr6与UCNT的质量比为40~160:15;
UCNT的制备过程为:将尿素程序升温至530~570 ℃煅烧3.5~4.5 h获得超薄氮化碳片前驱体UCN,然后程序升温至480~520 ℃煅烧1.5~2.5 h,即得柔性超薄氮化碳片UCNT。
2.如权利要求1所述的应用,其特征是,前驱体溶液的浓度与UCNT悬浮液的浓度的比为40~50:2~4。
3.如权利要求1所述的应用,其特征是,将前驱体溶液滴加至UCNT悬浮液后搅拌1~3 h。
4.如权利要求1所述的应用,其特征是,Cs2AgBiBr6的制备过程为:以溴化铯作为铯源,溴化银作为银源,溴化铋作为铋源采用酸沉淀法制得。
CN202211224187.4A 2022-10-08 2022-10-08 Cabb/ucnt异质结复合光催化剂及其制备方法与应用 Active CN115569658B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211224187.4A CN115569658B (zh) 2022-10-08 2022-10-08 Cabb/ucnt异质结复合光催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211224187.4A CN115569658B (zh) 2022-10-08 2022-10-08 Cabb/ucnt异质结复合光催化剂及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN115569658A CN115569658A (zh) 2023-01-06
CN115569658B true CN115569658B (zh) 2024-03-19

Family

ID=84584172

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211224187.4A Active CN115569658B (zh) 2022-10-08 2022-10-08 Cabb/ucnt异质结复合光催化剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN115569658B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114772640A (zh) * 2022-05-25 2022-07-22 重庆大学 一种无铅稳定的双钙钛矿纳米晶的制备方法及其产品和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108559503A (zh) * 2018-03-30 2018-09-21 华中科技大学 一种Cs2AgBiBr6双钙钛矿及其制备方法
CN110385146A (zh) * 2019-08-08 2019-10-29 上海大学 一种Ni0.85Se/PDA/g-C3N4复合光催化剂及其应用
CN112295576A (zh) * 2020-10-27 2021-02-02 苏州大学 Cs3Bi2Br9/TiO2钙钛矿异质结及其制备方法与在光催化甲苯氧化中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108559503A (zh) * 2018-03-30 2018-09-21 华中科技大学 一种Cs2AgBiBr6双钙钛矿及其制备方法
CN110385146A (zh) * 2019-08-08 2019-10-29 上海大学 一种Ni0.85Se/PDA/g-C3N4复合光催化剂及其应用
CN112295576A (zh) * 2020-10-27 2021-02-02 苏州大学 Cs3Bi2Br9/TiO2钙钛矿异质结及其制备方法与在光催化甲苯氧化中的应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Hong-Hong Zhang et al..Constructing a Cs3Sb2Br9/g-C3N4 Hybrid for Photocatalytic Aromatic C(sp3)─H Bond Activation.《Solar RRL》.2021,第5卷(第12期),1-7. *
Kunpeng Song et al..Environmentally Stable Mesoporous g-C3N4 Modified Lead-Free Double Perovskite Cs2AgBiBr6 for Highly Efficient Photocatalytic Hydrogen Evolution.《Catalysis Letters》.2022,第153卷(第2期),534-543. *
Yingying Wang et al..Lead-free perovskite Cs2AgBiBr6@g-C3N4 Z-scheme system for improving CH4 production in photocatalytic CO2 reduction.《Applied Catalysis B: Environmental》.2020,第282卷1-7. *
Zhang-Jun Bai et al..Tuning photocatalytic performance of Cs3Bi2Br9 perovskite by g-C3N4 for C(sp3)-H bond activation.《Nano Research》.2022,第16卷(第5期),6104-6112. *

Also Published As

Publication number Publication date
CN115569658A (zh) 2023-01-06

Similar Documents

Publication Publication Date Title
Raizada et al. Surface defect engineering of metal oxides photocatalyst for energy application and water treatment
You et al. CdS nanoparticles/CeO2 nanorods composite with high-efficiency visible-light-driven photocatalytic activity
Phang et al. Recent advances in homojunction-based photocatalysis for sustainable environmental remediation and clean energy generation
Biswal et al. Rationally designed Ti3C2/N, S-TiO2/g-C3N4 ternary heterostructure with spatial charge separation for enhanced photocatalytic hydrogen evolution
Lu et al. Preparation and photocatalytic properties of g-C3N4/TiO2 hybrid composite
US20180065856A1 (en) Nanostructured metal oxide compositions for applied photocatalysis
WO2010104717A2 (en) Nanostructures having crystalline and amorphous phases
Pillai et al. Template-free, solid-state synthesis of hierarchically macroporous S-doped TiO2 nano-photocatalysts for efficient water remediation
CN113713823B (zh) 一种CoTiO3/BiVO4复合光催化剂的制备方法及应用
Cui et al. Construction of atomic-level charge transfer channel in Bi12O17Cl2/MXene heterojunctions for improved visible-light photocatalytic performance
Li et al. Carbon black-doped anatase TiO2 nanorods for solar light-induced photocatalytic degradation of methylene blue
CN112023938B (zh) 一种双金属离子掺杂的纳米复合光催化剂及其制备方法
Naing et al. Enhanced visible-light-driven photocatalysis of in-situ reduced of bismuth on BiOCl nanosheets and montmorillonite loading: Synergistic effect and mechanism insight
Zhou et al. Decorating (001) dominant anatase TiO2 nanoflakes array with uniform WO3 clusters for enhanced photoelectrochemical water decontamination
CN115569658B (zh) Cabb/ucnt异质结复合光催化剂及其制备方法与应用
Carrasco-Jaim et al. Enhanced photocatalytic hydrogen production of AgMO3 (M= Ta, Nb, V) perovskite materials using CdS and NiO as co-catalysts
Jiang et al. Interfacial effects of MnO x-loaded TiO 2 with exposed {001} facets and its catalytic activity for the photoreduction of CO 2
CN113145138A (zh) 热响应型复合光催化剂及其制备方法和应用
Zhang et al. Mixed-valent cobalt-modulated tungsten trioxide nanorod arrays for improved photocatalytic N2 fixation
Wan et al. Selectively constructing sandwich-like heterostructure of CdS/PbTiO3/TiO2 to improve visible-light photocatalytic H2 evolution
Waehayee et al. Controlling the photocatalytic activity and benzylamine photooxidation selectivity of Bi2WO6 via ion substitution: effects of electronegativity
CN110743575A (zh) 一种具有吸附-光催化协同效应的AgIn5S8/SnS2固溶体催化剂的制备方法
CN111151275A (zh) MoS2/Mo2C复合物、MoS2/Mo2C/CdS复合材料及其制备方法和应用
Gundeboina et al. Perovskite material-based photocatalysts
CN111790418B (zh) 一种钙钛复合材料及其制备方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant