CN115557522A - 一种大比表面积球状水滑石的制备方法及其在矿化去除重金属污染物中的用途 - Google Patents

一种大比表面积球状水滑石的制备方法及其在矿化去除重金属污染物中的用途 Download PDF

Info

Publication number
CN115557522A
CN115557522A CN202211345051.9A CN202211345051A CN115557522A CN 115557522 A CN115557522 A CN 115557522A CN 202211345051 A CN202211345051 A CN 202211345051A CN 115557522 A CN115557522 A CN 115557522A
Authority
CN
China
Prior art keywords
spherical
surface area
specific surface
spherical hydrotalcite
hydrotalcite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211345051.9A
Other languages
English (en)
Other versions
CN115557522B (zh
Inventor
田强
赵国强
尤杰
李春华
卢承豪
钱雪芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Vansinvena Material Technology Co ltd
Original Assignee
Shandong Vansinvena Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Vansinvena Material Technology Co ltd filed Critical Shandong Vansinvena Material Technology Co ltd
Priority to CN202211345051.9A priority Critical patent/CN115557522B/zh
Publication of CN115557522A publication Critical patent/CN115557522A/zh
Application granted granted Critical
Publication of CN115557522B publication Critical patent/CN115557522B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/78Compounds containing aluminium and two or more other elements, with the exception of oxygen and hydrogen
    • C01F7/784Layered double hydroxide, e.g. comprising nitrate, sulfate or carbonate ions as intercalating anions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/78Compounds containing aluminium and two or more other elements, with the exception of oxygen and hydrogen
    • C01F7/784Layered double hydroxide, e.g. comprising nitrate, sulfate or carbonate ions as intercalating anions
    • C01F7/785Hydrotalcite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/002Compounds containing, besides titanium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • C01P2002/22Two-dimensional structures layered hydroxide-type, e.g. of the hydrotalcite-type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

本发明公开了一种大比表面积球状水滑石的制备方法及其在矿化去除重金属污染物中的用途。球状水滑石的化学式为:[M2+ 1‑xN3+ x(OH)2]x+·(An‑)x/n·mH2O或[M2+ 1‑xY4+ x(OH)2]2x+·(An‑)2x/n·mH2O;M2+选自Zn2+、Mg2+和Ca2+;N3+选自Fe3+、Al3+;Y4+为Ti4+;An‑是SO4 2‑或CO3 2‑。粒径为50‑800nm,壁厚≤5nm,比表面积≥100m2/g。本发明采用双层微乳方法,通过调控表面活性剂和共表面活性剂的比例,实现限域空间的调控,达到球状LDH的可控合成,在吸附矿化重金属方面具有极其优越的性能。

Description

一种大比表面积球状水滑石的制备方法及其在矿化去除重金 属污染物中的用途
技术领域
本发明涉及吸附剂技术领域,具体涉及一种大比表面积球状水滑石的制备方法及其在矿化去除重金属污染物中的用途。
背景技术
球状材料,因为其相比体相块体材料具有独特的物化特征,因为其表面丰富的基团、高的比表面体相比例,以及丰富的晶格缺陷,在吸附等方面引起了广泛的关注和应用。如申请号为201510005317.9的专利公开了一种水滑石量子点催化剂及其制备方法和电催化分解水产氧应用;该材料作为光电催化剂用于电解水产氧。球状材料具有较高的比表面积,除了作为催化剂使用,还可以作为吸附剂使用。
近些年,环境污染是困扰人类可持续发展的难题。特别是近些年重金属离子排放,导致土壤和水体污染。土壤中重金属污染物的毒性主要取决于重金属的赋存状态:游离态的重金属离子易被农作物吸收而造成危害;当处于沉淀状态时,重金属离子难以被农作物吸收,阻断了重金属在农作物中富集的途径,可以显著降低重金属的危害。基于此原理,如果调变LDHs结构组成,能够将镉、镍、铜、砷、汞和铅等重金属离子锚定在主体结构晶格中,使其溶度积常数(Ksp)较相应的氢氧化物(~10-20)低数十个数量级(可达10-40~10-50),可显著降低重金属离子在环境中的迁移性和生物有效性,在土壤修复等领域具有广泛应用。因此,需要一种大比表面积球状水滑石,通过矿化除去重金属污染物,实现环境修复。
发明内容
针对上述现有技术,本发明的目的是提供一种大比表面积球状水滑石的制备方法及其在矿化去除重金属污染物中的用途。本发明提供一种大比表面积球状水滑石。该材料粒径为50-800nm,部分呈空心球,其壁厚为≤5nm,在吸附矿化重金属方面具有极其优越的吸附性能。
为实现上述目的,本发明采用如下技术方案:
本发明的第一方面,提供一种大比表面积球状水滑石,所述球状水滑石的化学式为[M2+ 1-xN3+ x(OH)2]x+·(An-)x/n·mH2O或者[M2+ 1-xY4+ x(OH)2]2x+·(An-)2x/n·mH2O;
其中M2+选自Zn2+、Mg2+和Ca2+中的一种或几种;N3+选自Fe3+、Al3+中的一种或几种;Y4 +为Ti4+;An-是SO4 2-或CO3 2-;x≤1;n为阴离子的化合价数,m为结晶水数量,m≤10。
优选的,所述球状水滑石的粒径为50-800nm,部分呈空心球,其壁厚≤5nm,比表面积≥100m2/g。
其中ZnTi-LDH、MgAl-LDH等为空心球体,MgFe-LDH为实心球体。
优选的,所述球状水滑石由以下方法制备:
向微乳液中加入二价金属盐,待二价金属盐完全溶解后加入三价金属盐或四价钛盐;待三价金属盐或四价钛盐溶解后,水热晶化;采用异丁醇与水的混合溶液进行离心清洗,最后采用异丁醇洗涤,干燥得到产物,即为大比表面积球状水滑石。
优选的,所述微乳液的制备方法为:将异辛烷、去离子水和十二烷基硫酸钠混合均一,然后缓慢加入1-丁醇和CH2Cl2,搅拌至澄清,得到微乳液。
优选的,所述异辛烷、去离子水、十二烷基硫酸钠、1-丁醇和CH2Cl2的加入量之比为(0.2~80)mL:(0.2~2.0)mL:(0.12~2.16)g:(0.5~2.0)mL:(0.05~2.0)mL。
优选的,所述二价金属盐为硫酸盐或氯化盐;
更为优选的,所述二价金属盐为硫酸锌、氯化锌、硫酸镁、氯化镁、硫酸钙和氯化钙中的一种或几种。
优选的,所述三价金属盐为硫酸铝、氯化铝、硫酸铁、氯化铁中的一种或几种;所述四价钛盐为四氯化钛或钛酸四丁脂。
优选的,所述二价金属盐与三价金属盐或四价钛盐的加入量的摩尔比为1-5:1。
优选的,所述水热晶化的温度为80-120℃,时间为5-40h。
本发明的第二方面,提供球状水滑石在矿化去除重金属污染物中的用途,将球状水滑石分散于含有重金属的水体中,即可实现重金属的去除。
本发明的有益效果:
(1)本发明采用双层微乳方法,通过调控表面活性剂十二烷基硫酸钠和由异辛烷,1-丁醇和CH2Cl2组成的共表面活性剂的比例,使得共表面活性剂与表面活性剂协同作用,共同起到调控LDH形貌的作用,异辛烷,1-丁醇和CH2Cl2的加入对LDH的晶面生长有调节作用,可以实现限域空间的调控,达到球状LDH的可控合成。
(2)本发明制备的球状水滑石,因为表面弯曲,表面含有丰富的缺陷位,具有大的表面积,以及良好的吸附性能。
附图说明
图1为实施例1-3所获得的球状水滑石产物的XRD谱图(曲线a-c分别对应实施例1-3所获得的球状水滑石产物的XRD谱图);
图2为实施例1所获得的球状ZnTi-LDH材料的扫描电镜图;
图3为实施例2所获得的球状MgFe-LDH材料的扫描电镜图;
图4为实施例3所获得的球状MgAl-LDH材料的扫描电镜图;
图5为传统对比样品,采用共沉淀得到的片状ZnTi-LDH扫描电镜图;
图6为实施例1所获得的球状中空ZnTi-LDH材料的透射电镜图;(a)比例尺为50nm的透射电镜图,(b)比例尺为20nm的透射电镜图,(c)比例尺为10nm的透射电镜图;
图7为实施例2所获得的球状MgFe-LDH材料的透射电镜图;
图8为实施例3所获得的球状MgAl-LDH材料的透射电镜图;
图9为实施例1(球状ZnTi-LDH)、实例2(MgFe-LDH),实例3(MgAl-LDH)及对比样品ZnTi-LDHs去除水中100ppm Cu2+重金属性能图(曲线b-d分别对应实施例1、2、3,曲线e代表对比例1制备的ZnTi-LDH吸附去除性能图)。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
为了使得本领域技术人员能够更加清楚地了解本申请的技术方案,以下将结合具体的实施例详细说明本申请的技术方案。
本发明实施例中所用的试验材料均为本领域常规的试验材料,均可通过商业渠道购买得到。
实施例1
1.ZnTi-LDH球状水滑石材料的制备:
将异辛烷50ml、1.1ml去离子水加入到烧瓶中,表面活性剂十二烷基硫酸钠1.08g加入到三口烧瓶中搅拌至溶液均一;缓慢加入1-丁醇1.5ml,2.0ml CH2Cl2溶液,搅拌至澄清,即得微乳液;将0.002mol的ZnSO4·6H2O和0.002mol TiCl4加入到上述配制的微乳液中,待盐溶解后,加入沉淀剂尿素1.08g,95℃晶化回流45h。
反应完成后,产物抽滤,用体积比为1:1的去离子水和乙醇的混合溶液离心洗涤3次,再用无水异丁醇洗涤1次,离心,60℃干燥14h,即得到球型ZnTi-LDH产物。
上述制备的球型ZnTi-LDH化学式为[Zn2+ 1-xTi4+ x(OH)2]2x+·(CO3 2-)x·mH2O,其中x=0.5;m为结晶水数量,取值为4。
将ZnTi-LDH材料应用于吸附矿化溶液中的Cu离子,将40mg吸附剂(ZnTi-LDH)投入烧杯中,加入40mL pH=5的含有100ppm的Cu2+重金属离子溶液,将该混和物置于磁力搅拌器上,以750rpm min-1的转速搅拌不同时间,取出体系中上清液定量分析测定其重金属离子浓度。
对材料进行表征:图1中曲线a为实施例1制备的ZnTi-LDH球状产物的XRD谱图。由图1可知,通过调控水滑石层板元素组成,可形成良好的水滑石结构,其(003),(006),(110)特征峰明显,不可避免的,有少量ZnO和TiO2杂质。图2显示实施例1制备的ZnTi-LDHs球状材料的直径大小大约为50~100nm,其含有大量的孔道结构。由图6可知,该类球状材料为空心结构,壁厚大约15nm。图9中曲线b显示,ZnTi-LDH球状材料在240min,即可处理76%的Cu2+。以上说明ZnTi-LDH球状材料具有十分优异的去除水体重金属污染物的能力。
实施例2
MgFe-LDH球状水滑石材料的制备:
将异辛烷50ml、1.1ml去离子水加入到烧瓶中,表面活性剂十二烷基硫酸钠1.08g加入到三口烧瓶中搅拌至溶液均一;缓慢加入1-丁醇1.5ml,CH2Cl2 2mL搅拌至澄清,即得微乳液;将0.002mol的MgSO4·6H2O和0.001mol的FeCl3·6H2O加入到上述配制的微乳液中,待盐溶解后,加入沉淀剂尿素1.08g,95℃晶化回流45h。
反应完成后,产物抽滤,用体积比为1:1的去离子水和异丁醇的混合溶液离心洗涤3次,再用无水异丁醇洗涤1次,离心,60℃干燥14h,即得到球型MgFe-LDH产物。
上述制备的MgFe-LDs球型化学式为[Mg2+ 1-xFe3+ x(OH)2]x/2+·(CO3 2-)x/2·mH2O,其中x=0.33;m为结晶水数量,取值为0.33。
将上述方法制备得到的MgFe-LDH材料应用于吸附矿化溶液中的Cu离子,将40mg吸附剂(MgFe-LDHs)投入烧杯中,加入40mL pH=5的含有100ppm的Cu2+重金属离子溶液,将该混和物置于磁力搅拌器上,以750rpm min-1的转速搅拌不同时间,取出体系中上清液定量分析测定其重金属离子浓度。
对材料进行表征:图1中曲线b为MgFe-LDH球状产物的XRD谱图。由图1可知,通过调控水滑石层板元素组成,可形成良好的水滑石结构,其(003),(006),(110)特征峰明显。图3显示得到的MgFe-LDHs球状材料的直径大小大约为200nm–1000nm。由图7可知,该类球状材料为实心结构。图9中曲线c显示,MgFe-LDH球状材料在120min,即可处理99%的Cu离子。以上说明MgFe-LDH球状材料具有十分优异的去除水体重金属污染物的能力。
实施例3
MgAl-LDH球状水滑石材料的制备:
将异辛烷50ml、1.1ml去离子水加入到烧瓶中,表面活性剂十二烷基硫酸钠1.08g加入到三口烧瓶中搅拌至溶液均一;缓慢加入1-丁醇1.5ml,CH2Cl2 2mL;搅拌至澄清,即得微乳液。将0.002mol的MgSO4·6H2O和0.002mol的Al2(SO4)3·6H2O加入到上述配制的微乳液中,待盐溶解后,加入沉淀剂尿素1.08g,90℃晶化回流45h。
反应完成后,产物抽滤,用体积比为1:1的去离子水和异丁醇的混合溶液离心洗涤3次,再用无水异丁醇洗涤1次,离心,60℃干燥14h,即得到球型MgAl-LDH产物。
上述制备的MgAl-LDHs球型材料的化学式为[Mg2+ 1-xAl3+ x(OH)2]x+·(CO3 2-)x/2·mH2O,其中x=0.5;m为结晶水数量,取值为4。
对材料进行表征:图1中曲线c为MgAl-LDHs球状产物的XRD谱图。由图1可知,通过调控水滑石层板元素组成,可形成良好的水滑石结构,其(003),(006),(110)特征峰明显。图4显示得到的MgAl-LDH球状材料的直径大小大约为200nm。由图8可知,该类球状材料为空心结构。图9曲线d显示,MgAl-LDH球状材料在120min,即可处理99%的Cu离子。以上说明MgAl-LDH球状材料具有十分优异的去除水体重金属污染物的能力。
实施例4
CaAl-LDH球状水滑石材料的制备:
将异辛烷50ml、1.1ml去离子水加入到烧瓶中,表面活性剂十二烷基硫酸钠1.08g加入到三口烧瓶中搅拌至溶液均一;缓慢加入1-丁醇1.5ml,CH2Cl2 2mL搅拌至澄清,即得微乳液;将0.002mol的CaCl2·6H2O和0.002mol的AlCl3加入到上述配制的微乳液中,待盐溶解后,同时滴加NaOH,使溶液pH维持在12,室温晶化回流45h。
反应完成后,产物抽滤,用体积比为1:1的去离子水和异丁醇的混合溶液离心洗涤3次,再用无水异丁醇洗涤1次,离心,60℃干燥14h,即得到球型CaAl-LDHs产物。
上述制备的CaAl-LDH球型材料的化学式为[Ca2+ 1-xAl3+ x(OH)2]x+·(CO3 2-)x/2·mH2O,其中x=0.5;m为结晶水数量,取值为4。
对比例1
按照申请号为201510005317.9一种水滑石量子点催化剂及其制备方法和电催化分解水产氧应用中实施例1的方法配置微乳液:
将异丙醇5mL、油胺oIeyIamine 8mL、4mL去离子水加入到烧瓶中,搅拌至溶液均一,即得微乳液环境。
将0.002mol的ZnSO4·6H2O和溶解于CH2Cl2溶液的0.002mol的TiCl4(浓度为1mol/L)加入到上述配制的微乳液中,待盐溶解后,加入沉淀剂尿素1.08g,95℃晶化回流45h。
反应完成后,产物抽滤,用体积比为1:1的去离子水和乙醇的混合溶液离心洗涤3次,再用无水异丁醇洗涤1次,离心,60℃干燥14h,即得到ZnTi-LDH。
将对比例制备的ZnTi-LDH材料应用于吸附矿化溶液中的Cu离子,将40mg吸附剂(ZnTi-LDH)投入烧杯中,加入40mL pH=5的含有100ppm的Cu2+重金属离子溶液,将该混和物置于磁力搅拌器上,以750rpm min-1的转速搅拌不同时间,取出体系中上清液定量分析测定其重金属离子浓度。图9中曲线e显示,对比例制备的ZnTi-LDH球状材料在240min,只能处理26%的Cu2+
对比例2
与实施例1的区别在于:不添加表面活性剂。
对比例3
与实施例1的区别在于:不添加由异辛烷,1-丁醇和CH2Cl2组成的共表面活性剂。
对比例2~3制备的ZnTi-LDH无法形成曲面,得到球状材料,其比表面积也很小,按照实施例1的方法进行Cu2+吸附,对比例2的去除率为16%;对比例3的去除率仅为9%。
对比例4
与实施例1的区别在于:增加表面活性剂的用量,十二烷基硫酸钠的用量增加至3.0g。
对比例5
与实施例1的区别在于:增加共表面活性剂的用量,异辛烷的用量增加至100ml、1-丁醇的用量增加至2.5ml,CH2Cl2的用量增加至2.5ml。
对比例4~5改变共表面活性剂与表面活性剂用量比之后,得到的ZnTi-LDH球状材料,其直径在200~500nm之间。按照实施例1的方法进行Cu2+吸附,对比例3的去除率为36%;对比例3的去除率为34%。
本发明制备的系列球状水滑石材料,因为其主体层板组成不同,赋予了其独特的吸附特性。含有Mg,Ca的LDH,因为层板元素氧化还原特性较弱,其在溶液中容易溶出,在矿化取出重金属离子方面具有独特的优势。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

1.一种大比表面积球状水滑石,其特征在于,所述球状水滑石的化学式为[M2+ 1-xN3+ x(OH)2]x+·(An-)x/n·mH2O或者[M2+ 1-xY4+ x(OH)2]2x+·(An-)2x/n·mH2O;
其中M2+选自Zn2+、Mg2+和Ca2+中的一种或几种;N3+选自Fe3+、Al3+中的一种或几种;Y4+为Ti4+;An-是SO4 2-或CO3 2-;x≤1;n为阴离子的化合价数,m为结晶水数量,m≤10。
2.根据权利要求1所述的大比表面积球状水滑石,其特征在于,所述球状水滑石的粒径为50-800nm,其壁厚≤5nm,比表面积≥100m2/g。
3.根据权利要求1所述的大比表面积球状水滑石,其特征在于,所述球状水滑石由以下方法制备:
向微乳液中加入二价金属盐,待二价金属盐完全溶解后加入三价金属盐或四价钛盐;待三价金属盐或四价钛盐溶解后,水热晶化;采用异丁醇与水的混合溶液进行离心清洗,最后采用异丁醇洗涤,干燥得到产物,即为大比表面积球状水滑石。
4.根据权利要求3所述的大比表面积球状水滑石,其特征在于,所述微乳液的制备方法为:将异辛烷、去离子水和十二烷基硫酸钠混合均一,然后缓慢加入1-丁醇和CH2Cl2,搅拌至澄清,得到微乳液。
5.根据权利要求4所述的大比表面积球状水滑石,其特征在于,所述异辛烷、去离子水、十二烷基硫酸钠、1-丁醇和CH2Cl2的加入量之比为(0.2~80)mL:(0.2~2.0)mL:(0.12~2.16)g:(0.5~2.0)mL:(0.05~2.0)mL。
6.根据权利要求3所述的大比表面积球状水滑石,其特征在于,所述二价金属盐为硫酸盐或氯化盐;
优选的,所述二价金属盐为硫酸锌、氯化锌、硫酸镁、氯化镁、硫酸钙和氯化钙中的一种或几种。
7.根据权利要求3所述的大比表面积球状水滑石,其特征在于,所述三价金属盐为硫酸铝、氯化铝、硫酸铁、氯化铁中的一种或几种;所述四价钛盐为四氯化钛或钛酸四丁脂。
8.根据权利要求3所述的大比表面积球状水滑石,其特征在于,所述二价金属盐与三价金属盐或四价钛盐的加入量的摩尔比为1-5:1。
9.根据权利要求3所述的大比表面积球状水滑石,其特征在于,所述水热晶化的温度为80-120℃,时间为5-40h。
10.权利要求1~9任一项所述的球状水滑石在矿化去除重金属污染物中的用途,其特征在于,将权利要求1~9任一项所述的球状水滑石分散于含有重金属的水体中,即可实现重金属的去除。
CN202211345051.9A 2022-10-31 2022-10-31 一种大比表面积球状水滑石的制备方法及其在矿化去除重金属污染物中的用途 Active CN115557522B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211345051.9A CN115557522B (zh) 2022-10-31 2022-10-31 一种大比表面积球状水滑石的制备方法及其在矿化去除重金属污染物中的用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211345051.9A CN115557522B (zh) 2022-10-31 2022-10-31 一种大比表面积球状水滑石的制备方法及其在矿化去除重金属污染物中的用途

Publications (2)

Publication Number Publication Date
CN115557522A true CN115557522A (zh) 2023-01-03
CN115557522B CN115557522B (zh) 2023-12-22

Family

ID=84769074

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211345051.9A Active CN115557522B (zh) 2022-10-31 2022-10-31 一种大比表面积球状水滑石的制备方法及其在矿化去除重金属污染物中的用途

Country Status (1)

Country Link
CN (1) CN115557522B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116586028A (zh) * 2023-05-04 2023-08-15 生态环境部南京环境科学研究所 一种Fe3+-Ti4+-Zr4+-LDH型吸附剂的制备方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104355297A (zh) * 2014-10-24 2015-02-18 武汉理工大学 一种介孔羟基磷灰石粉体的微乳液合成方法
CN104607191A (zh) * 2015-01-06 2015-05-13 中国科学院理化技术研究所 一种水滑石量子点电催化剂及其制备方法和电催化分解水产氧应用
EP3015429A1 (en) * 2014-10-30 2016-05-04 Wintershall Holding GmbH Monolayer from at least one layered double hydroxide (LDH)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104355297A (zh) * 2014-10-24 2015-02-18 武汉理工大学 一种介孔羟基磷灰石粉体的微乳液合成方法
EP3015429A1 (en) * 2014-10-30 2016-05-04 Wintershall Holding GmbH Monolayer from at least one layered double hydroxide (LDH)
CN104607191A (zh) * 2015-01-06 2015-05-13 中国科学院理化技术研究所 一种水滑石量子点电催化剂及其制备方法和电催化分解水产氧应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116586028A (zh) * 2023-05-04 2023-08-15 生态环境部南京环境科学研究所 一种Fe3+-Ti4+-Zr4+-LDH型吸附剂的制备方法及应用

Also Published As

Publication number Publication date
CN115557522B (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
Dhiman et al. ZnO Nanoadsorbents: A potent material for removal of heavy metal ions from wastewater
Salah et al. Development of nano-hydroxyapatite/chitosan composite for cadmium ions removal in wastewater treatment
DE10392330B4 (de) Verfahren zur Herstellung eines oberflächenaktivierten Titanoxidprodukts und zur Verwendung desselben in Wasseraufbereitungsverfahren
US11472706B2 (en) Hydroxyapatite composite for use in removal of contaminants from effluents and methods of making
JP5463525B2 (ja) 選択吸着剤およびその製造方法
US7625487B2 (en) Adsorbent bed and water treatment method of use
Liu et al. An antibacterial and antifouling amidoxime-functionalized graphene oxide aerogel for selective uranium adsorption in Salt Lake water
Wang et al. High-efficiency adsorption for acid dyes over CeO2· xH2O synthesized by a facile method
Al-Obaidi et al. Synthesis of chitosan-TiO2 nanocomposite for efficient Cr (VI) removal from contaminated wastewater sorption kinetics, thermodynamics and mechanism
CN110028090B (zh) 一种类水滑石化合物及其制备方法和应用
CN115557522B (zh) 一种大比表面积球状水滑石的制备方法及其在矿化去除重金属污染物中的用途
CN111889499B (zh) 一种超稳矿化剂及其修复重金属污染土壤的应用
Jiang et al. Thorny hydrangea-like SnIn4S8/Mn0. 3Cd0. 7S as novel type-II heterojunction photocatalyst to enhance the efficient degradation of imidacloprid
Chung et al. Factors affecting crystallization of copper sulfide in fed-batch fluidized bed reactor
CN107281999A (zh) 一种铁氧化物/二氧化锰纳米复合材料及其制备方法与应用
Shwetharani et al. La activated high surface area titania float for the adsorption of Pb (ii) from aqueous media
KR20130056649A (ko) 이종금속으로 개질된 이트륨 히드록시카보네이트, 이의 제조방법 및 이를 포함하는 중금속 흡착제와 필터장치
WO2021042599A1 (zh) 一种低纳米零价铁和纳米银负载量净水炭复合材料的制备方法
CN113772778A (zh) 一种重金属离子污染的酸化土壤和酸性废水的治理方法
Shan et al. Development and application of lanthanum peroxide loaded sepiolite nanocomposites for simultaneous removal of phosphate and inhibition of cyanobacteria growth
Matern et al. Removal of nickel from groundwater by iron and manganese oxides
JP2014173924A (ja) 放射性Cs汚染水の処理方法、放射性Cs吸着剤及びその製造方法
CN109692650A (zh) 高效脱除水中亚砷酸根离子的吸附剂及其制备方法
CN110711553B (zh) 一种水滑石拟薄水铝石复合薄膜及其制备方法和应用
CN109694114B (zh) 铝代水铁矿在吸附重金属中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant