CN115521500B - 一种基于双轴拉伸超高分子量聚乙烯的超薄高强复合质子交换膜的制备方法 - Google Patents

一种基于双轴拉伸超高分子量聚乙烯的超薄高强复合质子交换膜的制备方法 Download PDF

Info

Publication number
CN115521500B
CN115521500B CN202211187139.2A CN202211187139A CN115521500B CN 115521500 B CN115521500 B CN 115521500B CN 202211187139 A CN202211187139 A CN 202211187139A CN 115521500 B CN115521500 B CN 115521500B
Authority
CN
China
Prior art keywords
molecular weight
weight polyethylene
ultra
high molecular
resin solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211187139.2A
Other languages
English (en)
Other versions
CN115521500A (zh
Inventor
魏子栋
王建川
袁伟
张涛昌
王鑫陈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN202211187139.2A priority Critical patent/CN115521500B/zh
Publication of CN115521500A publication Critical patent/CN115521500A/zh
Application granted granted Critical
Publication of CN115521500B publication Critical patent/CN115521500B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/94Non-porous diffusion electrodes, e.g. palladium membranes, ion exchange membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/10Homopolymers or copolymers of unsaturated ethers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明提供一种基于双轴拉伸多孔超高分子量聚乙烯的超薄高强复合质子交换膜及其制备方法,将全氟磺酸树脂与本身具有超薄厚度和高强度的多孔超高分子量聚乙烯薄膜复合,加上适当表面处理,实现了两种材质良好的兼容,通过流延机大规模制备的复合膜展现出致密的结构、4μm的超薄厚度、115MPa的高强机械强度、极低的吸水溶胀以及气体渗透和高电导率的优点,避免复合膜缺陷孔道产生,有效防止燃料交叉,展现出优异的燃料电池性能。

Description

一种基于双轴拉伸超高分子量聚乙烯的超薄高强复合质子交 换膜的制备方法
一、技术领域:
本发明属于燃料电池技术领域,特别涉及一种基于双轴拉伸超高分子量聚乙烯的超薄高强复合质子交换膜的制备方法。
二、背景技术:
氢燃料电池拥有极高的能量转换效率、极高的能量密度和零污染的突出优势,是应对全球气候变暖问题,实现“双碳”目标的关键技术之一。其中,质子交换膜燃料电池在电动车领域应用最为广泛。而质子交换膜是其关键部件,涉及燃料电池功率输出、寿命以及成本。因此,理想的质子交换膜需要具备较高的质子传导性能、低气体渗透性能、高机械性能、优异的化学稳定性以及低成本的优势。
目前,国内外应用前景最好的质子交换膜多采用多孔基底膜复合增强的策略,并且质子交换膜也趋于更薄厚度。然而,复合增强膜面临着全氟磺酸树脂与基底膜相容性难题,影响膜的导电性能与气体渗透性能;而使用最多的多孔PTFE基底膜机械性能不高,制备的复合膜机械性能一般(<30MPa);此外,PTFE多孔膜成本较高,制备出的复合膜在成本上难有优势。因此,开发相容性好、超薄厚度、机械性能高以及低成本的多孔复合质子交换膜将是燃料电池未来发展的重要环节。
三、发明内容:
本发明的目的是针对质子交换膜厚度、机械性能、与多孔基底膜相容性和成本等问题,提供一种基于双轴拉伸多孔超高分子量聚乙烯的超薄高强的复合质子交换膜及其制备方法,将全氟磺酸树脂与本身具有超薄厚度和高强度的多孔超高分子量聚乙烯薄膜复合,加上适当表面处理,通过流延机大规模制备的复合膜展现出致密结构、超薄的厚度、高强的机械强度、极低的吸水溶胀以及气体渗透和高电导率的优点。
本发明为了上述目的,提供了一种基于双轴拉伸超高分子量聚乙烯的超薄高强复合质子交换膜的制备方法,包括以下步骤:
(1)表面处理:对双轴拉伸超高分子量聚乙烯多孔薄膜的表面进行处理,得到活化的该基底薄膜;
(2)全氟磺酸树脂溶液配制:首先,将全氟磺酸树脂溶解在极性溶液中,在50-100℃条件下,搅拌至完全溶解,配制质量浓度为10-50wt%的树脂溶液;其次,放置真空脱泡机中0.5-5h,排除树脂溶液中气泡;
(3)流延成型:将树脂溶液倾倒在流延机溶液槽中,使得表面处理后的双轴拉伸超高分子量聚乙烯多孔薄膜通过溶液槽,得到该基底膜浸渍有树脂溶液的浸渍膜;浸渍膜通过高度范围为100-500μm的刮刀,进入常压烘箱,在60-100℃温度中,烘干1-5h,得到厚度为3-20μm的基于双轴拉伸超高分子量聚乙烯的超薄高强复合质子交换膜。
可选的,步骤(1)中所述双轴拉伸超高分子量聚乙烯多孔薄膜的特点:双轴拉伸,纳米纤维网状,厚度为3-10μm,孔径为50-500nm,孔隙率为50-80%,机械强度为200-400MPa,断裂伸长率为20-80%,结晶度为30-70%。
可选的,步骤(1)中所述表面处理方法包括紫外光辐射处理、等离子体处理、活性溶剂处理和表面氧化处理;其中,所述紫外光辐射处理,波长范围为50-300nm;所述等离子体处理,压力为5-10KPa,等离子体气体为N2、O2、NH3、CO2、Ar、He以及H2O中的一种;所述活性溶剂处理,溶剂为甲醇、乙醇、四氢呋喃、乙腈、N-甲基吡咯烷酮、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲亚砜中的一种或多种;所述表面氧化处理,氧化溶液中溶剂为水,溶质为重铬酸钾、高锰酸钾、硝酸、亚硝酸、次氯酸和双氧水中一种或多种。
可选的,步骤(2)中极性溶剂为四氢呋喃、乙腈、甲醇、乙醇、N-甲基吡咯烷酮、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲亚砜中的一种或多种。
本发明采用上述技术方案后,主要有以下优点:
(1)、超高分子量聚乙烯材质与全氟磺酸树脂有更好的相容性,加上合适的表面处理增强基底膜亲水性,使得制备的复合质子交换膜形成致密的内部结构,可以有效防止燃料交叉;
(2)、由于超高分子量聚乙烯多孔薄膜具有双轴拉伸,适度结晶的特性,使得本身具有高强度和超薄厚度,而制备的复合膜很好的继承这两点,实现厚度最低可达到超薄的4μm,机械强度也达到超强的150MPa以上;
(3)、由于超高分子量聚乙烯多孔薄的成本价格远低于PTFE薄膜,制备的复合膜在成本上更具优势;
(4)、制备的复合质子交换膜在燃料电池应用上展现出优异的性能。
四、附图说明:
图1为一种基于双轴拉伸超高分子量聚乙烯的超薄高强复合质子交换膜的扫描电子显微镜(SEM)图,左图为平面,右图为断面;
图2为制备的复合膜与Nafion HP膜的机械性能图;
图3为制备的复合膜的燃料电池性能图。
五、具体实施方式:
结合以下具体实施方式,进一步说明本发明:
实施例1
一种基于双轴拉伸超高分子量聚乙烯的超薄高强复合质子交换膜的制备方法,包括以下步骤:
(1)表面处理:对双轴拉伸超高分子量聚乙烯多孔薄膜的表面进行处理,得到活化的该基底薄膜;
(2)全氟磺酸树脂溶液配制:首先,将全氟磺酸树脂溶解在极性溶液中,在60℃条件下,搅拌至完全溶解,配制质量浓度为20wt%的树脂溶液;其次,放置真空脱泡机中1h,排除树脂溶液中气泡;
(3)流延成型:将树脂溶液倾倒在流延机溶液槽中,使得表面处理后的双轴拉伸超高分子量聚乙烯多孔薄膜通过溶液槽,得到该基底膜浸渍有树脂溶液的浸渍膜;浸渍膜通过高度范围为100μm的刮刀,进入常压烘箱,在80℃温度中,烘干2h,得到厚度为4μm的基于双轴拉伸超高分子量聚乙烯超薄高强的复合质子交换膜;
(4)复合质子交换膜性能测试
复合膜形貌测试:将步骤(3)制备的复合质子交换膜在液氮下脆断,使用SEM观察其表面和断面形貌,得到如图1所示;
复合膜机械性能测试:裁剪1cm×4cm步骤(3)制备的复合质子交换膜样品,置于纯水中24h后快速擦干表面水份后,使用MTS tensile tester(E44.104)型号的万能材料试验机测试其机械性能,测试温度为25℃,拉伸速率为5mm/min,得到如图2所示曲线;
复合膜吸水溶胀、电导率和离子交换容量(IEC)测试:吸水溶胀测试是在25℃温度下,将复合膜浸泡纯水24小时后,测量其浸泡前后复合膜质量和尺寸变化量的百分数;电导率测试是将1cm×4cm步骤(3)制备的复合质子交换膜样品在25℃温度下,直接使用Solartron1287&1260交流阻抗仪测试;IEC测试是通过常见的酸碱滴定法测试,测试结果如表1所示。
实施例2
一种基于双轴拉伸超高分子量聚乙烯的超薄高强复合质子交换膜的制备方法,包括以下步骤:
(1)表面处理:对双轴拉伸超高分子量聚乙烯多孔薄膜的表面进行处理,得到活化的该基底薄膜;
(2)全氟磺酸树脂溶液配制:首先,将全氟磺酸树脂溶解在极性溶液中,在80℃条件下,搅拌至完全溶解,配制质量浓度为30wt%的树脂溶液;其次,放置真空脱泡机中2h,排除树脂溶液中气泡;
(3)流延成型:将树脂溶液倾倒在流延机溶液槽中,使得表面处理后的双轴拉伸超高分子量聚乙烯多孔薄膜通过溶液槽,得到该基底膜浸渍有树脂溶液的浸渍膜;浸渍膜通过高度范围为150μm的刮刀,进入常压烘箱,在70℃温度中,烘干2h,得到厚度为8μm的基于双轴拉伸超高分子量聚乙烯超薄高强的复合质子交换膜。
实施例3
一种基于双轴拉伸超高分子量聚乙烯的超薄高强复合质子交换膜的制备方法,包括以下步骤:
(1)表面处理:对超高分子量聚乙烯多孔薄膜的表面进行处理,得到活化的该基底薄膜;
(2)全氟磺酸树脂溶液配制:首先,将全氟磺酸树脂溶解在极性溶液中,在90℃条件下,搅拌至完全溶解,配制质量浓度为20wt%的树脂溶液;其次,放置真空脱泡机中3h,排除树脂溶液中气泡;
(3)流延成型:将树脂溶液倾倒在流延机溶液槽中,使得表面处理后的双轴拉伸超高分子量聚乙烯多孔薄膜通过溶液槽,得到该基底膜浸渍有树脂溶液的浸渍膜;浸渍膜通过高度范围为200μm的刮刀,进入常压烘箱,在90℃温度中,烘干2h,得到厚度为10μm的基于双轴拉伸超高分子量聚乙烯超薄高强的复合质子交换膜。
对比实验例
对比实验例选择商用Nafion HP膜,测试方法与实施例1除燃料电池测试外,其他测试方法相同。
本发明的试验结果:
上述实施例1制备的复合质子交换膜及对比例质子交换膜性能测试结果见下面表1:
厚度/μm IEC/mmol g-1 溶胀率/% 电导率mS cm-1 拉伸强度/MPa
对比例 20 1.1 5.0 74 33
实施例1 4 0.8 2.4 150 115
由表1可知,本发明制备的基于双轴拉伸超高分子量聚乙烯的超薄高强复合质子交换膜与商业的Nafion HP膜相比,具有更低厚度,更低的吸水溶胀,更高的电导率和更高的机械强度,说明该复合膜具有更好的应用前景。此外,SEM图像表明,双轴拉伸超高分子量聚乙烯与全氟磺酸树脂具有良好致密的界面,实现了两种材质良好的兼容,避免复合膜缺陷孔道产生,有效防止燃料交叉,从而在单电池测试中,其燃料电池峰值功率密度可高达1.4W cm-2

Claims (5)

1.一种基于双轴拉伸超高分子量聚乙烯的超薄高强复合质子交换膜的制备方法,包括以下步骤:
(1)表面处理:对双轴拉伸超高分子量聚乙烯多孔薄膜的表面进行处理,得到活化的该基底薄膜;
(2)全氟磺酸树脂溶液配制:首先,将全氟磺酸树脂溶解在极性溶液中,在50-100℃条件下,搅拌至完全溶解,配制质量浓度为10-50wt%的树脂溶液;其次,放置真空脱泡机中0.5-5h,排除树脂溶液中气泡;
(3)流延成型:将树脂溶液倾倒在流延机溶液槽中,使得表面处理后的双轴拉伸超高分子量聚乙烯多孔薄膜通过溶液槽,得到该基底膜浸渍有树脂溶液的浸渍膜;浸渍膜通过高度范围为100-500μm的刮刀,进入常压烘箱,在60-100℃温度中,烘干1-5h,得到厚度为3-20μm的基于双轴拉伸超高分子量聚乙烯的超薄高强复合质子交换膜;
步骤(1)中所述双轴拉伸超高分子量聚乙烯多孔薄膜的特点:双轴拉伸,纳米纤维网状,厚度为3-10μm,孔径为50-500nm,孔隙率为50-80%,机械强度为200-400MPa,断裂伸长率为20-80%,结晶度为30-70%;
步骤(1)中所述表面处理方法包括紫外光辐射处理、等离子体处理、活性溶剂处理和表面氧化处理;其中,所述紫外光辐射处理,波长范围为50-300nm;所述等离子体处理,压力为5-10KPa,等离子体气体为N2、O2、NH3、CO2、Ar、He以及H2O中的一种;所述活性溶剂处理,溶剂为甲醇、乙醇、四氢呋喃、乙腈、N-甲基吡咯烷酮、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲亚砜中的一种或多种;所述表面氧化处理,氧化溶液中溶剂为水,溶质为重铬酸钾、高锰酸钾、硝酸、亚硝酸、次氯酸和双氧水中一种或多种。
2.按照权利要求1所述的一种基于双轴拉伸超高分子量聚乙烯的超薄高强复合质子交换膜的制备方法,其特征在于步骤(2)中极性溶剂为四氢呋喃、乙腈、甲醇、乙醇、N-甲基吡咯烷酮、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲亚砜中的一种或多种。
3.按照权利要求1所述的一种基于双轴拉伸超高分子量聚乙烯的超薄高强复合质子交换膜的制备方法,其特征在于步骤(1)、(2)和(3):
(1)表面处理:对双轴拉伸超高分子量聚乙烯多孔薄膜的表面进行处理,得到活化的该基底薄膜;
(2)全氟磺酸树脂溶液配制:首先,将全氟磺酸树脂溶解在极性溶液中,在60℃条件下,搅拌至完全溶解,配制质量浓度为20wt%的树脂溶液;其次,放置真空脱泡机中1h,排除树脂溶液中气泡;
(3)流延成型:将树脂溶液倾倒在流延机溶液槽中,使得表面处理后的双轴拉伸超高分子量聚乙烯多孔薄膜通过溶液槽,得到该基底膜浸渍有树脂溶液的浸渍膜;浸渍膜通过高度范围为100μm的刮刀,进入常压烘箱,在80℃温度中,烘干2h,得到厚度为4μm的基于双轴拉伸超高分子量聚乙烯超薄高强的复合质子交换膜。
4.按照权利要1所述的一种基于双轴拉伸超高分子量聚乙烯的超薄高强复合质子交换膜的制备方法,其特征在于步骤(1)、(2)和(3):
(1)表面处理:对双轴拉伸超高分子量聚乙烯多孔薄膜的表面进行处理,得到活化的该基底薄膜;
(2)全氟磺酸树脂溶液配制:首先,将全氟磺酸树脂溶解在极性溶液中,在80℃条件下,搅拌至完全溶解,配制质量浓度为30wt%的树脂溶液;其次,放置真空脱泡机中2h,排除树脂溶液中气泡;
(3)流延成型:将树脂溶液倾倒在流延机溶液槽中,使得表面处理后的双轴拉伸超高分子量聚乙烯多孔薄膜通过溶液槽,得到该基底膜浸渍有树脂溶液的浸渍膜;浸渍膜通过高度范围为150μm的刮刀,进入常压烘箱,在70℃温度中,烘干2h,得到厚度为8μm的基于双轴拉伸超高分子量聚乙烯超薄高强的复合质子交换膜。
5.按照权利要求1所述的一种基于双轴拉伸超高分子量聚乙烯的超薄高强复合质子交换膜的制备方法,其特征在于步骤(1)、(2)和(3):
(1)表面处理:对超高分子量聚乙烯多孔薄膜的表面进行处理,得到活化的该基底薄膜;
(2)全氟磺酸树脂溶液配制:首先,将全氟磺酸树脂溶解在极性溶液中,在90℃条件下,搅拌至完全溶解,配制质量浓度为20wt%的树脂溶液;其次,放置真空脱泡机中3h,排除树脂溶液中气泡;
(3)流延成型:将树脂溶液倾倒在流延机溶液槽中,使得表面处理后的双轴拉伸超高分子量聚乙烯多孔薄膜通过溶液槽,得到该基底膜浸渍有树脂溶液的浸渍膜;浸渍膜通过高度范围为200μm的刮刀,进入常压烘箱,在90℃温度中,烘干2h,得到厚度为10μm的基于双轴拉伸超高分子量聚乙烯超薄高强的复合质子交换膜。
CN202211187139.2A 2022-09-28 2022-09-28 一种基于双轴拉伸超高分子量聚乙烯的超薄高强复合质子交换膜的制备方法 Active CN115521500B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211187139.2A CN115521500B (zh) 2022-09-28 2022-09-28 一种基于双轴拉伸超高分子量聚乙烯的超薄高强复合质子交换膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211187139.2A CN115521500B (zh) 2022-09-28 2022-09-28 一种基于双轴拉伸超高分子量聚乙烯的超薄高强复合质子交换膜的制备方法

Publications (2)

Publication Number Publication Date
CN115521500A CN115521500A (zh) 2022-12-27
CN115521500B true CN115521500B (zh) 2023-08-08

Family

ID=84699542

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211187139.2A Active CN115521500B (zh) 2022-09-28 2022-09-28 一种基于双轴拉伸超高分子量聚乙烯的超薄高强复合质子交换膜的制备方法

Country Status (1)

Country Link
CN (1) CN115521500B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024086988A1 (zh) * 2022-10-24 2024-05-02 四川大学 超薄高强质子交换膜及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1861668A (zh) * 2006-06-16 2006-11-15 武汉理工大学 基于亲水性多孔聚四氟乙烯基体的复合质子交换膜的制备方法
CN109997247A (zh) * 2016-11-17 2019-07-09 香港科技大学 纳米多孔超高分子量聚乙烯薄膜
CN111916807A (zh) * 2020-07-16 2020-11-10 苏州科润新材料股份有限公司 超薄增强型复合质子交换膜、制备方法及应用
CN112940343A (zh) * 2021-04-06 2021-06-11 苏州科润新材料股份有限公司 一种增强型全氟磺酸复合质子交换膜及其生产工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1861668A (zh) * 2006-06-16 2006-11-15 武汉理工大学 基于亲水性多孔聚四氟乙烯基体的复合质子交换膜的制备方法
CN109997247A (zh) * 2016-11-17 2019-07-09 香港科技大学 纳米多孔超高分子量聚乙烯薄膜
CN111916807A (zh) * 2020-07-16 2020-11-10 苏州科润新材料股份有限公司 超薄增强型复合质子交换膜、制备方法及应用
CN112940343A (zh) * 2021-04-06 2021-06-11 苏州科润新材料股份有限公司 一种增强型全氟磺酸复合质子交换膜及其生产工艺

Also Published As

Publication number Publication date
CN115521500A (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
Lin et al. Bis-imidazolium based poly (phenylene oxide) anion exchange membranes for fuel cells: the effect of cross-linking
Li et al. Poly (vinyl benzyl methylpyrrolidinium) hydroxide derived anion exchange membranes for water electrolysis
Chen et al. Advanced acid-base blend ion exchange membranes with high performance for vanadium flow battery application
He et al. Anion exchange membranes with branched ionic clusters for fuel cells
Che et al. Porous polybenzimidazole membranes with high ion selectivity for the vanadium redox flow battery
Wang et al. Phosphoric acid-doped polybenzimidazole with a leaf-like three-layer porous structure as a high-temperature proton exchange membrane for fuel cells
Lu et al. Polytetrafluoroethylene (PTFE) reinforced poly (ethersulphone)–poly (vinyl pyrrolidone) composite membrane for high temperature proton exchange membrane fuel cells
US7785751B2 (en) Production method of electrolyte membrane, electrolyte membrane and solid polymer fuel cell using same
Zhang et al. A novel solvent-template method to manufacture nano-scale porous membranes for vanadium flow battery applications
Zhu et al. Novel crosslinked membranes based on sulfonated poly (ether ether ketone) for direct methanol fuel cells
CN115521500B (zh) 一种基于双轴拉伸超高分子量聚乙烯的超薄高强复合质子交换膜的制备方法
JP2006216531A (ja) 電解質膜及びそれを用いた固体高分子型燃料電池
CN106549171B (zh) 一种具有高抗氧化性能高电导率的交联型聚苯并咪唑高温质子交换膜及其制备方法
CN111916807A (zh) 超薄增强型复合质子交换膜、制备方法及应用
Wang et al. Constructing unique carboxylated proton transport channels via the phosphoric acid etching of a metal–organic framework in a crosslinked branched polybenzimidazole
Wu et al. Phosphoric acid-doped Gemini quaternary ammonium-grafted SPEEK membranes with superhigh proton conductivity and mechanical strength for direct methanol fuel cells
KR20110035124A (ko) 무수 전해질에 의한 가교 고분자 전해질 복합막의 제조방법 및 이를 이용한 고분자전해질 연료전지 시스템
Peng et al. A morphology strategy to disentangle conductivity–selectivity dilemma in proton exchange membranes for vanadium flow batteries
Hidayati et al. Characterization of sPEEK/chitosan membrane for the direct methanol fuel cell
Zhang et al. Morphology and performance of stretched PFSA for direct methanol fuel cells
Chen et al. Structural design of gas diffusion layer to mitigate carbon corrosion in proton exchange membrane fuel cells
CN111952648B (zh) 一种增强型复合高分子电解质膜及其制备方法和应用
Feng et al. Improved performance of nafion membranes by blending ultra-high molecular weight polyvinylidene fluoride
JP4827224B2 (ja) 電解質膜及び固体高分子型燃料電池
Mohamad Said et al. Fabrication of Sulphonated Poly (Ether Ether Ketone)(SPEEK)–Calcium Oxide (CaO) Multilayer Membrane for Fuel Cell Application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant