CN115507379A - A gas boiler air volume control method - Google Patents
A gas boiler air volume control method Download PDFInfo
- Publication number
- CN115507379A CN115507379A CN202211192452.5A CN202211192452A CN115507379A CN 115507379 A CN115507379 A CN 115507379A CN 202211192452 A CN202211192452 A CN 202211192452A CN 115507379 A CN115507379 A CN 115507379A
- Authority
- CN
- China
- Prior art keywords
- air volume
- gas
- air
- value
- boiler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 239000007789 gas Substances 0.000 claims abstract description 239
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 56
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 56
- 239000001301 oxygen Substances 0.000 claims abstract description 56
- 238000005259 measurement Methods 0.000 claims abstract description 23
- 230000008859 change Effects 0.000 claims abstract description 7
- 238000012544 monitoring process Methods 0.000 claims description 67
- 230000001105 regulatory effect Effects 0.000 claims description 57
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 43
- 239000000446 fuel Substances 0.000 claims description 24
- 230000007423 decrease Effects 0.000 claims description 8
- 230000001276 controlling effect Effects 0.000 claims description 3
- 238000012937 correction Methods 0.000 abstract description 2
- 239000003546 flue gas Substances 0.000 description 37
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 36
- 238000002955 isolation Methods 0.000 description 20
- 238000003860 storage Methods 0.000 description 10
- 238000002485 combustion reaction Methods 0.000 description 8
- 238000006477 desulfuration reaction Methods 0.000 description 7
- 230000023556 desulfurization Effects 0.000 description 6
- 239000013589 supplement Substances 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012806 monitoring device Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 230000004323 axial length Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000003584 silencer Effects 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003034 coal gas Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N3/00—Regulating air supply or draught
- F23N3/005—Regulating air supply or draught using electrical or electromechanical means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L15/00—Heating of air supplied for combustion
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Air Supply (AREA)
Abstract
本发明提供一种煤气锅炉风量控制方法,所述煤气锅炉风量控制方法包括:步骤S100,根据锅炉负荷计算氧量设定值;步骤S200,通过氧量调节器将氧量设定值和获得的氧量测量值进行比较以获得氧量偏差值;步骤S300,根据锅炉负荷计算风量预设值;步骤S400,根据氧量偏差值和风量预设值计算得到风量设定值;步骤S500,通过风量调节器将风量设定值和获得的风量测量值进行比较以获得风量偏差值;步骤S600,根据风量偏差值控制送风机的送风量。本发明通过充分考虑氧量变化对风量预设值的影响,将氧量偏差值作为风量调节中对风量预设值的校正获得风量设定值,从而提高风量控制的准确性。
The invention provides a gas boiler air volume control method, the gas boiler air volume control method includes: step S100, calculate the oxygen set value according to the boiler load; step S200, the oxygen set value and the obtained Comparing the oxygen measurement values to obtain the oxygen deviation value; step S300, calculate the air volume preset value according to the boiler load; step S400, calculate the air volume set value according to the oxygen volume deviation value and the air volume preset value; step S500, obtain the air volume preset value; The regulator compares the air volume setting value with the obtained air volume measurement value to obtain the air volume deviation value; step S600, controlling the air supply volume of the blower according to the air volume deviation value. The present invention fully considers the influence of the change of the oxygen amount on the preset value of the air volume, and uses the deviation value of the oxygen amount as the correction of the preset value of the air volume in the adjustment of the air volume to obtain the set value of the air volume, thereby improving the accuracy of the air volume control.
Description
技术领域technical field
本发明涉及煤气锅炉技术领域,特别涉及一种煤气锅炉风量控制方法。The invention relates to the technical field of gas boilers, in particular to a gas boiler air volume control method.
背景技术Background technique
煤气锅炉广泛应用于钢厂、煤化工厂等自备电厂,利用副产品高炉煤气、转炉煤气、焦炉煤气、兰炭尾气等燃料进行发电,可实现能源的清洁高效利用。钢厂、煤化工厂根据生产工艺的不同,往往不止产生单一的副产品,而煤气锅炉燃料适应性较好,一般会有几种燃料工况。这些随着燃料的成分的不同,以及燃料的流量的变化所需的也不相同送风量不同。Gas boilers are widely used in self-owned power plants such as steel mills and coal chemical plants. By-product blast furnace gas, converter gas, coke oven gas, semi-coke tail gas and other fuels are used to generate electricity, which can realize clean and efficient use of energy. According to different production processes, steel mills and coal chemical plants often produce more than a single by-product, while gas boiler fuels have better adaptability, and generally have several fuel working conditions. These vary with the composition of the fuel and the changes in the flow rate of the fuel that require different air supply volumes.
目前,煤气锅炉风量控制方法通常将根据锅炉负荷计算的风量预设值直接和风量测量值进行比较以直接获得风量偏差值,并根据该风量偏差值控制送风量。然而,这种煤气锅炉风量控制方法没有充分考虑氧量变化对风量预设值的影响,导致获得的风量偏差值不准确。At present, the gas boiler air volume control method usually directly compares the air volume preset value calculated according to the boiler load with the air volume measurement value to directly obtain the air volume deviation value, and controls the air supply volume according to the air volume deviation value. However, this gas boiler air volume control method does not fully consider the influence of oxygen volume changes on the air volume preset value, resulting in inaccurate air volume deviation values.
因此,需要对现有的煤气锅炉风量控制方法进行改进,以提高风量控制的准确性。Therefore, it is necessary to improve the existing gas boiler air volume control method to improve the accuracy of air volume control.
发明内容Contents of the invention
本发明的目的在于提供一种煤气锅炉风量控制方法,以解决现有的煤气锅炉风量控制方法准确性低的问题。The purpose of the present invention is to provide a gas boiler air volume control method to solve the problem of low accuracy of the existing gas boiler air volume control method.
为解决上述技术问题,本发明提供一种煤气锅炉风量控制方法,包括:步骤S100,根据锅炉负荷计算氧量设定值;步骤S200,通过氧量调节器将氧量设定值和获得的氧量测量值进行比较以获得氧量偏差值;步骤S300,根据锅炉负荷计算风量预设值;步骤S400,根据氧量偏差值和风量预设值计算得到风量设定值;步骤S500,通过风量调节器将风量设定值和获得的风量测量值进行比较以获得风量偏差值;步骤S600,根据风量偏差值控制送风机的送风量。In order to solve the above technical problems, the present invention provides a gas boiler air volume control method, including: step S100, calculate the oxygen set value according to the boiler load; Oxygen volume measurement values are compared to obtain the oxygen volume deviation value; Step S300, calculate the air volume preset value according to the boiler load; Step S400, calculate the air volume set value according to the oxygen volume deviation value and the air volume preset value; Step S500, adjust the air volume The device compares the air volume setting value with the obtained air volume measurement value to obtain the air volume deviation value; step S600, controlling the air supply volume of the blower according to the air volume deviation value.
可选的,在步骤S200中,氧量测量值为多个测量点获取的有效的氧量值的平均值。Optionally, in step S200, the oxygen measurement value is an average value of effective oxygen values obtained at multiple measurement points.
可选的,在步骤S200中,氧量设定值和获得的氧量测量值进行比较时,若氧量测量值小于氧量设定值,则输出的风量偏差值为正数,若氧量测量值大于氧量设定值,则输出的风量偏差值为负数。Optionally, in step S200, when comparing the oxygen amount set value with the obtained oxygen amount measured value, if the oxygen amount measured value is less than the oxygen amount set value, the output air volume deviation value is a positive number, if the oxygen amount If the measured value is greater than the set value of the oxygen volume, the output air volume deviation value is a negative number.
可选的,在步骤S400中,通过风量偏差值和风量预设值求和以获得风量设定值,若风量偏差值为负数则风量预设值小于风量设定值,若风量偏差值为正数则风量预设值大于风量设定值。Optionally, in step S400, the air volume set value is obtained by summing the air volume deviation value and the air volume preset value. If the air volume deviation value is negative, the air volume preset value is less than the air volume set value. If the air volume deviation value is positive If the number is higher, the preset value of air volume is greater than the set value of air volume.
可选的,在步骤S500中,通过风量调节器将风量设定值和获得的风量测量值进行比较以获得风量偏差值,是将风量测量值减去风量设定值,当风量偏差值为正数时,送风量减小,当风量偏差值为负数时,送风量增加。Optionally, in step S500, by using the air volume regulator to compare the air volume set value with the obtained air volume measurement value to obtain the air volume deviation value, the air volume measurement value is subtracted from the air volume set value, when the air volume deviation value is positive When the number is small, the air supply volume decreases, and when the air volume deviation value is negative, the air supply volume increases.
可选的,步骤S600还包括计算实时的送风量,其中,当送风量大于预设值时,控制补充风机关闭,当送风量小于预设值时,控制补充风机开启,同时调整送风机的功率。Optionally, step S600 also includes calculating the real-time air supply volume, wherein, when the air supply volume is greater than the preset value, the supplementary fan is controlled to be turned off; when the air supply volume is smaller than the preset value, the supplementary fan is controlled to be turned on, and the air supply fan is adjusted simultaneously power.
可选的,在步骤S500和步骤S600之间还包括步骤S800,将锅炉主控前馈对风量偏差值进行求和以获得校正后的风量偏差值。Optionally, a step S800 is further included between step S500 and step S600, summing up the air volume deviation values by the boiler main control feedforward to obtain the corrected air volume deviation value.
可选的,还包括对锅炉主控前馈进行调节的燃料波动控制方法,所述对燃料波动控制方法包括:在锅炉的煤气主管道上设置监测位和调节位,在所述监测位处沿煤气流通方向依次设置多个压力监测单元,所述调节位位于所述监测位的下游并且设有主流量调节阀;通过监测位处的各压力监测单元对煤气压力进行监测,基于监测到的煤气压力波动计算得到因煤气波动所导致的煤气热量供给量的变化量ΔQ煤气;计算煤气从监测位运行到调节位所需的时间t1;若ΔQ煤气>0,经时间t1后,减小所述主流量调节阀开度,以提高煤气锅炉的主蒸汽参数稳定性;若ΔQ煤气<0,经时间t1后,增大所述主流量调节阀开度,以提高煤气锅炉的主蒸汽参数稳定性;若ΔQ煤气=0,保持所述主流量调节阀开度不变。Optionally, it also includes a fuel fluctuation control method for adjusting the boiler main control feedforward, the fuel fluctuation control method includes: setting a monitoring position and an adjustment position on the gas main pipeline of the boiler, and at the monitoring position along the gas A plurality of pressure monitoring units are arranged in sequence in the flow direction, and the adjustment position is located downstream of the monitoring position and is provided with a main flow regulating valve; the gas pressure is monitored through each pressure monitoring unit at the monitoring position, and based on the monitored gas pressure Calculation of fluctuations to obtain the change in gas heat supply due to gas fluctuations ΔQ gas ; calculate the time t1 required for the gas to run from the monitoring position to the adjustment position; if ΔQ gas >0, after time t1, reduce the main The opening of the flow regulating valve to improve the stability of the main steam parameters of the gas boiler; if ΔQ gas <0, after time t1, increase the opening of the main flow regulating valve to improve the stability of the main steam parameters of the gas boiler; If ΔQgas =0, keep the opening of the main flow regulating valve unchanged.
可选的,还包括:当所述主流量调节阀调至最大开度仍达不到控制目标时,进一步通过调节锅炉主给水流量以达到控制目标。Optionally, the method further includes: further adjusting the main feed water flow of the boiler to achieve the control target when the main flow regulating valve is adjusted to the maximum opening and still fails to reach the control target.
可选的,锅炉主给水流量的调节量按如下公式计算:Optionally, the adjustment amount of the main feed water flow of the boiler is calculated according to the following formula:
其中,η为锅炉热效率,hout为给水换热后比焓值,hin为给水换热前比焓值。Among them, η is the thermal efficiency of the boiler, h out is the specific enthalpy of the feed water after heat exchange, and h in is the specific enthalpy of the feed water before heat exchange.
本发明提供的一种煤气锅炉风量控制方法,具有以下有益效果:A gas boiler air volume control method provided by the present invention has the following beneficial effects:
首先,通过一端与大气连通且另一端与所述空气预热器前风道连通的补充风道,并在补充风道上设置补充风机,且所述空气预热器前风道的一端与大气连通,另一端与空气预热器的空气入口连通,因此,当锅炉需要的风量变大的时候,可通过补充风机和补充风道向空气预热器前风道内补充风量,进而通过空气预热器的空气入口向空气预热器补充风量,从而经过一端与所述空气预热器的空气出口连通且另一端与炉膛连通的空气预热器后风道向炉膛补充风量,从而可适应煤气锅炉需要较大送风量的工况,并且,相较于更换送风机和电机的以适应较大送风量的工况要经济。Firstly, through a supplementary air duct that communicates with the atmosphere at one end and communicates with the front air duct of the air preheater at the other end, a supplementary fan is set on the supplementary air duct, and one end of the front air duct of the air preheater communicates with the atmosphere , the other end communicates with the air inlet of the air preheater. Therefore, when the air volume required by the boiler increases, the air volume can be supplemented into the front air duct of the air preheater through the supplementary fan and the supplementary air duct, and then passed through the air preheater. The air inlet of the air preheater supplements the air volume to the air preheater, so that the air volume can be supplemented to the furnace through the air duct after the air preheater, which is connected to the air outlet of the air preheater at one end and communicated with the furnace at the other end, so as to meet the needs of the gas boiler The working condition of larger air supply volume, and it is more economical than replacing the blower and motor to adapt to the working condition of large air supply volume.
其次,通过充分考虑氧量变化对风量预设值的影响,将氧量偏差值作为风量调节中对风量预设值的校正获得风量设定值,从而提高风量控制的准确性。Secondly, by fully considering the influence of the oxygen change on the preset value of the air volume, the deviation value of the oxygen amount is used as the correction of the preset value of the air volume in the adjustment of the air volume to obtain the set value of the air volume, thereby improving the accuracy of the air volume control.
再次,通过充分考虑锅炉主控前馈对风量偏差值的影响,将锅炉主控前馈对风量偏差值进行求和以获得校正后的风量偏差值,从而提高风量控制的准确性。Thirdly, by fully considering the influence of the boiler main control feedforward on the air volume deviation, the boiler main control feedforward sums the air volume deviation to obtain the corrected air volume deviation, thereby improving the accuracy of air volume control.
其次,本发明在锅炉燃烧器上游设置监测位,当锅炉运行过程中出现煤气波动时,可以根据监测位处监测到的煤气波动所对应的热量供应值波动,提前对流量调节阀的开度进行调节,从而维持单位时间内煤气燃烧释放热量的稳定,进而提高煤气锅炉的主蒸汽参数稳定性。Secondly, the present invention sets a monitoring position upstream of the boiler burner. When gas fluctuations occur during the operation of the boiler, the opening of the flow regulating valve can be adjusted in advance according to the heat supply value fluctuations corresponding to the gas fluctuations monitored at the monitoring position. Adjustment, so as to maintain the stability of the heat released by gas combustion per unit time, and then improve the stability of the main steam parameters of the gas boiler.
附图说明Description of drawings
图1是本发明实施例中煤气锅炉送风和烟温调节系统的结构示意图;Fig. 1 is a schematic structural view of a gas boiler air supply and flue temperature regulating system in an embodiment of the present invention;
图2是本发明实施例中煤气锅炉风量控制方法的控制流程图;Fig. 2 is the control flowchart of gas boiler air volume control method in the embodiment of the present invention;
图3为本发明实施例提供的燃料波动控制系统的煤气管路示意图。Fig. 3 is a schematic diagram of the gas pipeline of the fuel fluctuation control system provided by the embodiment of the present invention.
101-空气预热器前风道;102-空气预热器;103-空气预热器后风道;104-换热器前烟道;105-补充风道;106-补充风机;107-送风机;108-补风支管;109-烟气煤气换热器;110-换热器后烟道;111-换热器前煤气管;112-换热器后煤气管;113-脱硫塔;114-送风机入口消音器;115-送风机入口调节风门;116-送风机出口挡板门;117-补充风机入口消音器;118-补充风机入口调节风门;119-补充风机出口挡板门;120-补充风道隔绝门;121-补充支管隔绝门;101-front duct of air preheater; 102-air preheater; 103-rear duct of air preheater; 104-front flue of heat exchanger; 105-supplementary air duct; 106-supplementary fan; ;108-Air supply branch pipe; 109-Flue gas gas heat exchanger; 110-Flue after heat exchanger; 111-Gas pipe before heat exchanger; 112-Gas pipe after heat exchanger; 113-Desulfurization tower; 114- 115-Blower inlet adjustment damper; 116-Blower outlet baffle door; 117-Supplementary fan inlet muffler; 118-Supplementary fan inlet adjustment damper; 119-Supplementary fan outlet baffle door; 120-Supplementary air duct Isolation door; 121-supplementary branch pipe isolation door;
200-煤气主管道;210-监测位;211-压力监测单元;212-热值仪;220-主流量调节阀;300-锅炉燃烧器;400-储气旁路;410-外源煤气源;420-旁路调节阀;430-快切阀430;500-煤气分支管道;510-支管流量调节阀;520-压力监测器件;530-切断阀;230-电动盲板阀;240-液动快切阀。200-gas main pipeline; 210-monitoring position; 211-pressure monitoring unit; 212-calorific value meter; 220-main flow regulating valve; 300-boiler burner; 400-gas storage bypass; 410-external gas source; 420-bypass regulating valve; 430-
具体实施方式detailed description
以下结合附图和具体实施例对本发明提出的煤气锅炉送风和烟温调节系统作进一步详细说明。根据下面说明,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。The gas boiler air supply and smoke temperature regulating system proposed by the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments. The advantages and features of the present invention will become clearer from the following description. It should be noted that all the drawings are in a very simplified form and use imprecise scales, and are only used to facilitate and clearly assist the purpose of illustrating the embodiments of the present invention.
实施例一、Embodiment one,
参考图1,图1是本发明实施例中煤气锅炉送风和烟温调节系统的结构示意图,本实施例提供一种煤气锅炉送风和烟温调节系统,包括:一端与大气连通的空气预热器前风道101,空气入口与所述空气预热器前风道101的另一端连接的空气预热器102,一端与所述空气预热器102的空气出口连通且另一端与炉膛连通的空气预热器后风道103,一端与所述空气预热器102的烟气出口连通的换热器前烟道104,一端与大气连通且另一端与所述空气预热器前风道101连通的补充风道105,设置在所述补充风道105上的补充风机106,以及设置在所述空气预热器前风道101上的送风机107。Referring to Fig. 1, Fig. 1 is a schematic structural diagram of a gas boiler air supply and flue temperature regulating system in an embodiment of the present invention. This embodiment provides a gas boiler air supply and flue temperature regulating system, including: Heater
通过一端与大气连通且另一端与所述空气预热器前风道101连通的补充风道105,并在补充风道105上设置补充风机106,且所述空气预热器前风道101的一端与大气连通,另一端与空气预热器102的空气入口连通,因此,当锅炉需要的风量变大的时候,可通过补充风机106和补充风道105向空气预热器前风道101内补充风量,进而通过空气预热器102的空气入口向空气预热器102补充风量,从而经过一端与所述空气预热器102的空气出口连通且另一端与炉膛连通的空气预热器后风道103向炉膛补充风量,从而可适应煤气锅炉需要较大送风量的工况,并且,相较于更换送风机107和电机的以适应较大送风量的工况要经济。Through the
参考图1,所述煤气锅炉送风和烟温调节系统还包括一端与所述补充风道连通且另一端与所述空气预热器后风道103连通的补风支管108。通过设置补风支管108一方面可将所述空气预热器前风道101和所述空气预热器后风道103连通,使得送风机107送入空气预热器前风道101的部分风量可从所述所述空气预热器后风道103进入炉膛中,也可使得补风机补充的风量可从补风支管108直接进入所述空气预热器后风道103,再进入所述炉膛中,如此可为不同工况提供不同风量,且可调节经过空气预热器102的烟气的温度,避免进入换热器前烟道104内的烟气的温度过高或者过低。Referring to FIG. 1 , the gas boiler air supply and flue temperature regulating system further includes a supplementary
参考图1,所述煤气锅炉送风和烟温调节系统还包括烟气煤气换热器109,以及一端与所述烟气煤气换热器109的烟气出口连通且另一端与所述烟囱连通的换热器后烟道110,所述换热器前烟道104的另一端与所述烟气煤气换热器109的烟气入口连通。Referring to Fig. 1, the gas boiler air supply and flue temperature regulating system also includes a flue gas
参考图1,所述煤气锅炉送风和烟温调节系统还包括一端与所述烟气煤气换热器109的煤气入口连通且另一端与所述煤气管网连通的换热器前煤气管111,一端与所述烟气煤气换热器109的煤气出口连通且另一端与锅炉的燃烧器连通的换热器后煤气管112。Referring to Figure 1, the gas boiler air supply and flue temperature regulating system also includes a
参考图1,所述煤气锅炉送风和烟温调节系统还包括脱硫塔113,所述脱硫塔113设置在所述换热器后烟道110上。Referring to FIG. 1 , the gas boiler air supply and flue temperature regulating system further includes a
参考图1,所述空气预热器前风道101和所述空气预热器后风道103数量为两个,所述补充风道105和所述补风支管108的数量为一个。Referring to FIG. 1 , the number of the
参考图1,所述煤气锅炉送风和烟温调节系统还包括送风机入口消音器114,所述送风机入口消音器114设置在所述空气预热器前风道101上且位于大气和送风机107之间。Referring to FIG. 1 , the air supply and flue temperature regulating system of the gas boiler also includes a
参考图1,所述煤气锅炉送风和烟温调节系统还包括送风机入口调节风门115,所述送风机入口调节风门115设置在所述空气预热器前风道101上且位于所述送风机入口消音器114和所述送风机107之间,用于调节进入所述送风机107的风量。Referring to Fig. 1, the gas boiler air supply and flue temperature regulating system also includes a blower
参考图1,所述煤气锅炉送风和烟温调节系统还包括送风机出口挡板门116,所述送风机出口挡板门116设置在所述空气预热器前风道101上且位于所述送风机107和所述空预器之间,用于控制所述空气预热器前风道101的流通和闭合。Referring to Fig. 1, the air supply and flue temperature regulating system of the gas boiler also includes a blower
参考图1,所述煤气锅炉送风和烟温调节系统还包括补充风机入口消音器117,所述补充风机入口消音器117设置在所述补充风道105上且位于所述大气与所述补充风机106之间。Referring to FIG. 1 , the gas boiler air supply and flue temperature regulating system also includes a supplementary
参考图1,所述煤气锅炉送风和烟温调节系统还包括补充风机入口调节风门118,所述补充风机入口调节风门118设置在所述补充风道105上且位于所述消音器和所述补充风机106之间,用于调节进入所述补充风机106的风量。Referring to FIG. 1 , the gas boiler air supply and flue temperature regulating system also includes a supplementary fan
参考图1,所述煤气锅炉送风和烟温调节系统还包括补充风机出口挡板门119,所述补充风机出口挡板门119设置在所述补充风道105上且位于所述空气预热器102和所述补充风机106之间,用于控制所述补充风道105的流通和闭合。Referring to Fig. 1, the gas boiler air supply and flue temperature regulating system also includes a supplementary fan
参考图1,所述煤气锅炉送风和烟温调节系统还包括设置在所述补充风道105上且位于所述补风支管108和所述空气预热器102之间的补充风道隔绝门120。Referring to FIG. 1 , the gas boiler air supply and flue temperature regulating system further includes a supplementary air duct insulation door arranged on the
参考图1,所述煤气锅炉送风和烟温调节系统还包括设置在所述补风支管108上的补风支管108隔绝门121。Referring to FIG. 1 , the air supply and flue temperature regulating system of the gas boiler further includes an
所述煤气锅炉送风和烟温调节系统还包括风量控制器,所述风量控制器用于根据所述锅炉的燃料工况控制所述送风机107、所述送风机出口挡板门116、所述补充风机106及补充风机出口挡板门119的开启和关闭,根据锅炉排烟温度控制所述补充风道隔绝门120和所述补风支管108隔绝门121的开启和关闭。The gas boiler air supply and smoke temperature regulating system also includes an air volume controller, which is used to control the
当锅炉燃料燃烧所需的送风量不大时,补充风机106、补充风机出口挡板门119、补充风道隔绝门120、补风支管108隔绝门121可关闭,冷空气从空气预热器前风道101进入空气预热器102,再进入空气预热器后风道103,之后流出至锅炉炉膛内。此时,若锅炉排烟温度较低,开启补充风道隔绝门120和补风支管108隔绝门121,部分冷空气从空气预热器前风道101的一端进入空气预热器前风道101内,之后可从空气预热器前风道101进入补充风道105内,之后进入补风支管108内,然后从补风支管108进入空气预热器后风道103流出至锅炉炉膛内,部分冷空气从空气预热器前风道101进入空气预热器102再进入空气预热器后风道103,之后流出至锅炉炉膛内。如此,可避免换热器前烟道104和换热器后烟道110内的烟气的温度过低,导致燃烧产生的二氧化硫在低温下容易对换热器后烟道110产生腐蚀以及影响脱硫塔113的脱硫效果。When the amount of air required for boiler fuel combustion is not large, the
当锅炉燃料燃烧所需的送风量较大时,开启补充风机106、补充风机出口挡板门119、补充风道隔绝门120,关闭补风支管108隔绝门121,冷空气从空气预热器前风道101和补充风道105进入空气预热器102,之后再进入空气预热器后风道103,之后流出至锅炉炉膛内。此时,若锅炉排烟温度较低,关闭补充风道隔绝门120,开启补风支管108隔绝门121,一部分冷空气从补充风道105经过补风支管108进入空气预热器后风道103再进入炉膛,一部分冷空气从空气预热器前风道101进入空气预热器102中,再从空气预热器102进入空气预热器后风道103,之后流出至锅炉炉膛内。When the amount of air supply required for boiler fuel combustion is large, open the
所述烟气可从锅炉炉膛经过空气预热器102流入换热器前烟道104,然后流入烟气煤气换热器109中,然后流入换热器后烟道110,最后流入烟囱中。The flue gas can flow from the boiler furnace through the
所述煤气可从煤气管网流入换热器前煤气管111,之后流入烟气煤气换热器109周昂,之后再流入换热器后煤气管112,然后再流入锅炉炉膛内。The gas can flow into the
其中,所述冷空气和所述烟气可在所述空气预热器102进行热交换以第一次冷却烟气,所述煤气和所述烟气可在烟气煤气换热器109处进行热交换以第二次冷却烟气。Wherein, the cold air and the flue gas can conduct heat exchange in the
当锅炉在低负荷(60%锅炉最大连续蒸发量附近)状态运行时,此时锅炉燃料燃烧所需的送风量不大且从锅炉内排出的烟气的温度相对较低,关闭补充风机106、补充风机出口挡板门119,开启补充风道105上的补充风道隔绝门120和补风支管108上的补风支管108隔绝门121。冷空气从空气预热器前风道101的一端进入空气预热器前风道101内,部分从空气预热器前风道101的另一端进入空气预热器102内,再流入空气预热器后风道103内,之后流入锅炉炉膛内;部分冷空气从补充风道105的一端依次经过补充风道105、补风支管108、空气预热器后风道103进入炉膛。由于部分冷空气未经过空气预热器102中,因此可减少在空气预热器102处与烟气进行换热的冷空气的量,从而可使经过空气预热器102和煤气换热器的烟气维持在140°左右,满足脱硫塔113中小苏打干法脱硫所需要的反应温度,避免烟气经过煤气换热器后温度在露点温度以上,形成低温腐蚀,影响烟气煤气换热器109的使用寿命。When the boiler is running at low load (near the maximum continuous evaporation of 60% of the boiler), the amount of air supply required for boiler fuel combustion is not large and the temperature of the flue gas discharged from the boiler is relatively low, so turn off the
当锅炉在高负荷(100%锅炉最大连续蒸发量附近)状态下运行时,此时如锅炉燃料燃烧所需的送风量不大,锅炉排烟温度较高,可关闭补充风机106、补充风机出口挡板门119、补充风道105上的补充风道隔绝门120和补风支管108上的补风支管108隔绝门121。冷空气从空气预热器前风道101的一端进入空气预热器前风道101内,全部从空气预热器前风道101的另一端进入空气预热器102内,流经空气预热器102后再流入空气预热器后风道103内,之后流入锅炉炉膛内。由于进入锅炉炉膛的空气全部需要与流经空气预热器102的烟气进行热量交换,从而可较大程度上的降低烟气的温度,提高锅炉效率。当锅炉燃料燃烧所需的送风量较大时,锅炉排烟温度较高,可开启补充风机106、补充风机出口挡板门119、补充风道105上的补充风道隔绝门120,关闭补风支管108上的补风支管108隔绝门121,冷空气从空气预热器前风道101的一端和补充风道105进入空气预热器前风道101内,全部从空气预热器前风道101的另一端进入空气预热器102内,流经空气预热器102后再流入空气预热器后风道103内,之后流入锅炉炉膛内。由于进入锅炉炉膛的空气全部需要与流经空气预热器102的烟气进行热量交换,从而可较大程度上的降低烟气的温度,提高锅炉效率。When the boiler is running under high load (near the maximum continuous evaporation capacity of the boiler at 100%), if the air supply volume required for boiler fuel combustion is not large and the exhaust gas temperature of the boiler is high, the
当锅炉运行在低温环境时,例如在北方的冬季环境下运行时,此时从烟气煤气换热器109前煤气管进入烟气煤气换热器109中的煤气的温度较低,导致经过烟气煤气换热器109中后进入换热器后烟道110中的烟气温度较低,此时,如锅炉燃料燃烧所需的送风量不大,关闭补充风机106、补充风机出口挡板门119,开启补充风道105上的补充风道隔绝门120和补风支管108上的补风支管108隔绝门121。冷空气从空气预热器前风道101的一端进入空气预热器前风道101内,部分从空气预热器前风道101的另一端进入空气预热器102内,再流入空气预热器后风道103内,之后流入锅炉炉膛内;部分冷空气从补充风道105的一端依次经过补充风道105、补风支管108、空气预热器后风道103进入炉膛。由于部分冷空气未经过空气预热器102,因此可减少在空气预热器102处与烟气进行换热的冷空气的量,从而可使经过空气预热器102和煤气换热器的烟气维持在较高温度。When the boiler operates in a low-temperature environment, such as in winter in the north, the temperature of the gas entering the flue
实施例二、Embodiment two,
参考图2,图2是本发明实施例中煤气锅炉风量控制方法的控制流程图,本实施例提供一种煤气锅炉风量控制方法,包括:Referring to FIG. 2, FIG. 2 is a control flow chart of a gas boiler air volume control method in an embodiment of the present invention. This embodiment provides a gas boiler air volume control method, including:
步骤S100,根据锅炉负荷计算氧量设定值;Step S100, calculating the oxygen setting value according to the boiler load;
步骤S200,通过氧量调节器将氧量设定值和获得的氧量测量值进行比较以获得氧量偏差值;Step S200, comparing the set value of the oxygen amount with the measured value of the oxygen amount obtained by the oxygen amount regulator to obtain an oxygen amount deviation value;
步骤S300,根据锅炉负荷计算风量预设值;Step S300, calculating the preset value of the air volume according to the boiler load;
步骤S400,根据氧量偏差值和风量预设值计算得到风量设定值;Step S400, calculating the air volume set value according to the oxygen amount deviation value and the air volume preset value;
步骤S500,通过风量调节器将风量设定值和获得的风量测量值进行比较以获得风量偏差值;Step S500, comparing the air volume setting value with the obtained air volume measurement value through the air volume regulator to obtain the air volume deviation value;
步骤S600,根据风量偏差值控制送风机的送风量。Step S600, controlling the air supply volume of the air blower according to the air volume deviation value.
本步骤S100和步骤S300中,所述锅炉负荷为单位时间产生的蒸汽量。比如用锅炉蒸汽来驱动汽轮机,汽轮机用来对外做功。锅炉在做功时,单位时间做功越多则说明锅炉负荷大,反之则小。In this step S100 and step S300, the boiler load is the amount of steam generated per unit time. For example, boiler steam is used to drive a steam turbine, and the steam turbine is used to do work externally. When the boiler is doing work, the more work done per unit time, the larger the boiler load, and vice versa.
在步骤S200中,氧量测量值为多个测量点获取的有效的氧量值的平均值。例如,有五个测量点,其中一个测量点测得氧量值明显有误,则将该测量点测得的氧量值删除,求其余四个测量点测得的氧量值求平均值即可获得氧量测量值。In step S200, the oxygen measurement value is an average value of effective oxygen values obtained at multiple measurement points. For example, there are five measurement points, and the oxygen value measured by one of the measurement points is obviously wrong, then delete the oxygen value measured by the measurement point, and calculate the average value of the oxygen value measured by the remaining four measurement points. Oxygen measurements are available.
在步骤S200中,氧量设定值和获得的氧量测量值进行比较时,若氧量测量值小于氧量设定值,则输出的风量偏差值为正数,若氧量测量值大于氧量设定值,则输出的风量偏差值为负数。In step S200, when comparing the oxygen amount set value with the obtained oxygen amount measured value, if the oxygen amount measured value is less than the oxygen amount set value, the output air volume deviation value is a positive number, if the oxygen amount measured value is greater than the oxygen amount If the set value of air volume is set, the output air volume deviation value is a negative number.
在步骤S100和步骤S200之间还包括步骤S700人工对氧量设定值进行修正。通过人工对氧量设定值进行修正,可进一步提高对送风机的风量控制的准确度。Between step S100 and step S200, step S700 is also included to manually correct the set value of the oxygen amount. By manually correcting the oxygen setting value, the accuracy of the air volume control of the blower can be further improved.
在步骤S400中,通过风量偏差值和风量预设值求和以获得风量设定值,若风量偏差值为负数则风量预设值小于风量设定值,若风量偏差值为正数则风量预设值大于风量设定值。In step S400, the air volume setting value is obtained by summing the air volume deviation value and the air volume preset value. If the air volume deviation value is negative, the air volume preset value is less than the air volume setting value. The set value is greater than the air volume set value.
在步骤S500中,通过风量调节器将风量设定值和获得的风量测量值进行比较以获得风量偏差值,是将风量测量值减去风量设定值,当风量偏差值为正数时,送风量减小,当风量偏差值为负数时,送风量增加。In step S500, the air volume setting value is compared with the obtained air volume measurement value through the air volume regulator to obtain the air volume deviation value, which is to subtract the air volume setting value from the air volume measurement value, and when the air volume deviation value is a positive number, send The air volume decreases, and when the air volume deviation value is negative, the air supply volume increases.
在步骤S600中,当风量偏差值为正数时,控制送风量减小,当风量偏差值为负数时,控制送风量增加。In step S600, when the air volume deviation value is a positive number, the air supply volume is controlled to decrease, and when the air volume deviation value is a negative number, the air supply volume is controlled to increase.
步骤S600还包括计算实时的送风量,其中,当送风量大于预设值时,控制补充风机关闭,当送风量小于预设值时,控制补充风机开启,同时调整送风机的功率。Step S600 also includes calculating the real-time air supply volume, wherein, when the air supply volume is greater than the preset value, the supplementary fan is controlled to be turned off, and when the air supply volume is smaller than the preset value, the supplementary fan is controlled to be turned on, and the power of the blower fan is adjusted at the same time.
在步骤S500和步骤S600之间还包括步骤S800,将锅炉主控前馈对风量偏差值进行求和以获得校正后的风量偏差值。其中,锅炉主控前馈为根据煤气波动计算获得的前馈风量值。当前馈风量值增加时,则燃料量增加时,所述风量偏差值越大,所需的送风量越大,当前馈风量值为减少时,则燃料量减小,所述风量偏差值越小,所需的送风量越小。也就是说煤气波动实时影响风量偏差值的大小,因此,若想对送风量进行实时准确的控制,对煤气波动的控制也较为关键。A step S800 is also included between step S500 and step S600 , summing the air volume deviation values by the boiler main control feedforward to obtain a corrected air volume deviation value. Among them, the boiler main control feed-forward is the feed-forward air volume value calculated according to the gas fluctuation. When the front feed air volume value increases, the fuel volume increases, and the greater the air volume deviation value, the greater the required air supply volume. When the current feed air volume value decreases, the fuel volume decreases, and the air volume deviation value increases. The smaller the air volume required, the smaller it will be. That is to say, gas fluctuations affect the magnitude of the air volume deviation in real time. Therefore, if you want to control the air supply volume in real time and accurately, the control of gas fluctuations is also critical.
实施例三、Embodiment three,
本实施例中,煤气波动越小对于风量控制越有利,基于此,本实施例提供一种燃料波动控制方法,所述方法为:In this embodiment, the smaller the gas fluctuation is, the more favorable it is for air volume control. Based on this, this embodiment provides a fuel fluctuation control method, the method is:
在锅炉的煤气主管道200上设置监测位210和调节位,在所述监测位210处沿煤气流通方向依次设置多个压力监测单元211,所述调节位位于所述监测位210的下游并且设有主流量调节阀220;A
通过监测位210处的各压力监测单元211对煤气压力进行监测,基于监测到的煤气压力波动计算得到因煤气波动所导致的煤气热量供给量的变化量ΔQ煤气;计算煤气从监测位210运行到调节位所需的时间t1;The gas pressure is monitored by each
若ΔQ煤气>0,经时间t1后,减小所述主流量调节阀220开度,以提高煤气锅炉的主蒸汽参数稳定性;If ΔQ gas >0, after time t1, reduce the opening of the main
若ΔQ煤气<0,经时间t1后,增大所述主流量调节阀220开度,以提高煤气锅炉的主蒸汽参数稳定性;If ΔQ gas <0, after time t1, increase the opening of the main
若ΔQ煤气=0,保持所述主流量调节阀220开度不变。If ΔQgas =0, keep the opening of the main
其中,监测位210是一段区间,即具有一定的管道轴向长度,例如为煤气主管道200的一个监测段,便于监测设备的布置。Wherein, the
其中,煤气压力测点(即压力监测单元211)的数量优选为是3个或3个以上,以保证压力监测的准确性和可靠性。相邻两个煤气压力测点之间的间距优选为在1~20m范围内,进一步优选为控制在5~15m范围内。Wherein, the number of gas pressure measuring points (ie, the pressure monitoring unit 211 ) is preferably 3 or more, so as to ensure the accuracy and reliability of the pressure monitoring. The distance between two adjacent gas pressure measuring points is preferably within the range of 1-20m, more preferably controlled within the range of 5-15m.
在其中一个实施例中,煤气热量供给量采用如下公式计算:In one of the embodiments, the gas heat supply is calculated using the following formula:
Q煤气=qm气 Q gas = qm gas
其中,q为煤气热值,可通过在管道上设置热值仪212进行实时监测;m气为煤气流量,m气可以通过监测煤气压力换算获得。Among them, q is the calorific value of the gas, which can be monitored in real time by installing a
相应地,在监测位210还设有煤气热值仪212,可以在线监测煤气热值,该煤气热值仪212可以与其中一个压力监测单元211相对布置在煤气主管道200的同一截面上,也可以布置在相邻两个压力监测单元211之间,或者布置在各压力监测单元211的下游。Correspondingly, a gas
实际运行中,煤气热值的波动较小,因此,本实施例中,主要考虑煤气流量波动对锅炉运行造成的影响。In actual operation, the fluctuation of the calorific value of the gas is relatively small. Therefore, in this embodiment, the impact of the fluctuation of the gas flow on the operation of the boiler is mainly considered.
监测位210与调节位之间具有一定的距离,保证在煤气波动时可以提前进行相应的处理。在其中一个实施例中,监测位210与调节位之间的距离在20m以上,例如控制在20~100m范围内。There is a certain distance between the
调节位与锅炉燃烧器300之间具有一定的距离,该距离也优选为在20m以上,例如在在20~100mm范围内。There is a certain distance between the adjustment position and the
进一步地,当计算煤气从监测位210运行到调节位所需的时间t1时,以中心位的煤气压力测点所在位置或者监测位210的中心位置作为煤气的起始运行位置,煤气流速可在该起始运行位置所监测到的煤气压力基础上、结合管径等进行计算得到。Further, when calculating the time t1 required for the gas to run from the
进一步地,当计算ΔQ煤气时,先获得煤气压力波动量,具体地,计算每相邻两个煤气压力测点之间的压力差,取各压力差的平均值作为上述煤气压力波动量。在计算每相邻两个煤气压力测点之间的压力差时,优选为是下游煤气压力测点的监测数据减去上游煤气压力测点的监测数据。由于煤气波动一般是徐变过程,而非突变过程,因此上述计算方式能保证监测结果的准确性和可靠性。Further, when calculating ΔQ gas , first obtain the gas pressure fluctuation, specifically, calculate the pressure difference between every two adjacent gas pressure measuring points, and take the average value of each pressure difference as the gas pressure fluctuation. When calculating the pressure difference between every two adjacent gas pressure measuring points, it is preferably the monitoring data of the downstream gas pressure measuring point minus the monitoring data of the upstream gas pressure measuring point. Since gas fluctuation is generally a creep process rather than a sudden change process, the above calculation method can ensure the accuracy and reliability of the monitoring results.
上述主流量调节阀220采用自动阀门,可以采用电动蝶阀等流量调节阀门。The above-mentioned main
进一步优选地,当调节所述主流量调节阀220开度时,调节的目标在于:控制锅炉中间点温度的波动范围在0~10℃之内,可达到上述提高煤气锅炉的主蒸汽参数稳定性的效果。Further preferably, when adjusting the opening degree of the main
在煤气热值波动不大的情况下,优选地,煤气压力每下降或上升1KPa,上述主流量调节阀220的开度相应地增加或减小1%~10%。When the calorific value of the gas fluctuates little, preferably, the opening of the main
进一步优选地,上述控制方法还包括:Further preferably, the above control method also includes:
当所述主流量调节阀220调至最大开度仍达不到控制目标时,进一步通过调节锅炉主给水流量以达到控制目标。其中,是在流量调节阀开至最大开度后,再进一步调节锅炉主给水流量。When the main
锅炉运行时,为保证主蒸汽参数稳定,燃料与给水应满足以下关系:When the boiler is running, in order to ensure the stability of the main steam parameters, the fuel and feed water should satisfy the following relationship:
Q水=ηQ煤气 Q water = ηQ gas
其中,Q水为给水热交换吸收的热量;η为锅炉热效率。Among them, Q water is the heat absorbed by the feed water heat exchange; η is the thermal efficiency of the boiler.
Q水=m水(hout-hin)Q water = m water (h out -h in )
其中,m水为锅炉主给水流量;hout为给水换热后比焓值,hin为给水换热前比焓值。对于hout以及hin的查表操作,目前工程上一般参考《水和水蒸气热力性质图表手册》;锅炉主给水与主蒸汽的参数适用于该手册中的“水和过热蒸汽表”。具体地,根据锅炉主给水的温度与压力参数,查询“水和过热蒸汽表”即可获取锅炉主给水比焓值hin;根据锅炉主蒸汽的温度与压力参数,查询“水和过热蒸汽表”即可获取锅炉主蒸汽比焓值hout。Among them, m water is the main feed water flow rate of the boiler; h out is the specific enthalpy value of the feed water after heat exchange, and h in is the specific enthalpy value of the feed water before heat exchange. For the table look-up operation of h out and h in , the current engineering generally refers to the "Water and Steam Thermodynamic Properties Chart Manual"; the parameters of boiler main feed water and main steam are applicable to the "water and superheated steam table" in this manual. Specifically, according to the temperature and pressure parameters of the boiler main feed water, query the "water and superheated steam table" to obtain the specific enthalpy value h in of the boiler main feed water; according to the temperature and pressure parameters of the boiler main steam, query the "water and superheated steam table ” to obtain the boiler main steam specific enthalpy value h out .
因此,锅炉主给水流量的计算公式为:Therefore, the formula for calculating the main feed water flow of the boiler is:
尽管不同负荷下锅炉热效率η不同,但由于煤气的波动一般是一个连续过程,锅炉热效率η不会发生突变,因此可近似认为相邻两个监测时刻的锅炉热效率η保持不变。但是,优选地,在每次主流量调节阀22012的开度调节之后,重新计算锅炉热效率η,具体的计算方法为本领域常规技术,此处不作赘述。Although the thermal efficiency η of the boiler is different under different loads, since the fluctuation of gas is generally a continuous process, the thermal efficiency η of the boiler will not change suddenly, so it can be approximately considered that the thermal efficiency η of the boiler at two adjacent monitoring times remains unchanged. However, preferably, after each adjustment of the opening of the main flow regulating valve 22012, the thermal efficiency η of the boiler is recalculated. The specific calculation method is a conventional technique in the art, and will not be repeated here.
相应地,锅炉主给水流量的调节量按如下公式计算:Correspondingly, the adjustment amount of the main feed water flow of the boiler is calculated according to the following formula:
其中,η为锅炉热效率,hout为给水换热后比焓值,hin为给水换热前比焓值。Among them, η is the thermal efficiency of the boiler, h out is the specific enthalpy of the feed water after heat exchange, and h in is the specific enthalpy of the feed water before heat exchange.
可以根据上述计算结果,调节给水泵的变频器频率来达到调节锅炉主给水流量的目的。锅炉主给水流量的调节量等于Δm水显然是理想的调节目标,但考虑实际工况,锅炉主给水流量的调节量接近该Δm水被认为是合理的,具体的差量应满足保证锅炉中间点温度的波动范围在0~10℃的要求。According to the above calculation results, the inverter frequency of the feed water pump can be adjusted to achieve the purpose of adjusting the main feed water flow of the boiler. The adjustment amount of boiler main feed water flow equal to Δm water is obviously an ideal adjustment target, but considering the actual working conditions, it is considered reasonable that the adjustment amount of boiler main feed water flow is close to this Δm water , and the specific difference should meet the guarantee of the middle point of the boiler The fluctuation range of temperature is required in the range of 0-10°C.
进一步地,所述方法还包括:Further, the method also includes:
获取煤气从监测位210传输至锅炉燃烧器300所需时间t2以及给水从给水泵传输至锅炉水冷壁所需时间t3,Obtain the time t2 required for the gas to be transmitted from the
若t2>t3,则滞后调节锅炉主给水流量,滞后时间为t2-t3。或者向煤气主管道200中补入外源煤气,以提高煤气锅炉的主蒸汽参数稳定性,其中,外源煤气补入点位于监测位210的下游,可以位于调节位的上游或下游,外源煤气到达锅炉燃烧器300的时间优选为与t3相同,在监测到煤气波动信号的同时,即补入外源煤气,外源煤气的通气时间为t2-t3。其中,可以在煤气主管道200上连接储气旁路400,该储气旁路400连接外源煤气源410,并在该储气旁路400上设置旁路调节阀420和快切阀430,通过该旁路调节阀420控制外源煤气的流速。If t2>t3, the main feed water flow of the boiler is adjusted laggingly, and the lag time is t2-t3. Or add external source gas to the gas
若t2<t3,则在锅炉主给水流量调节到位前,减小锅炉燃烧器300入口侧的煤气分支管道500上的支管流量调节阀510开度,以提高煤气锅炉的主蒸汽参数稳定性。进一步地,当到达时间t3后,再将支管流量调节阀510开度复位至煤气波动前的位置,以进一步提高后续锅炉运行的稳定性。If t2<t3, before the boiler main feedwater flow is adjusted in place, reduce the opening of the branch
基于上述方案,充分考虑煤气波动到达锅炉燃烧器300的时间和给水到达锅炉水冷壁的时间,保证调节操作的可靠性,能进一步提高煤气锅炉的运行稳定性,保证各种工况下的主蒸汽参数能控制在目标范围内。Based on the above scheme, the time for the gas fluctuation to reach the
上述煤气主管道200运输的优选为是钢厂煤气,例如高炉煤气等。上述主蒸汽参数优选为压力不低于22.12Mpa、温度不低于540℃,上述超临界煤气锅炉可适用于超临界煤气发电机组、超超临界煤气发电机组等。The above-mentioned
虽然,通过燃料波动控制方法可降低煤气的波动,以减小风量的调控,但仍然避免不了煤气的波动,因此,需要提供实施例二中的煤气锅炉风量控制方法以对送风机和补充风机的风量进行调控。Although the fuel fluctuation control method can reduce the fluctuation of the gas to reduce the regulation of the air volume, the fluctuation of the gas cannot be avoided. Therefore, it is necessary to provide the gas boiler air volume control method in the second embodiment to control the air volume of the blower and the supplementary fan. To regulate.
实施例四、Embodiment four,
本发明实施例提供一种燃料波动控制系统,包括煤气主管道200以及与各锅炉燃烧器300一一对应连接的多个煤气分支管道500,在所述煤气主管道200上设有监测位210和和调节位,在所述监测位210处设有煤气热值仪212以及沿煤气流通方向依次分布的多个压力监测单元211,所述调节位位于所述监测位210的下游并且设有主流量调节阀220。The embodiment of the present invention provides a fuel fluctuation control system, which includes a gas
其中,压力监测单元211可采用压力变送器等压力测量设备。Wherein, the
监测位210与调节位之间具有一定的距离,保证在煤气波动时可以提前进行相应的处理。在其中一个实施例中,监测位210与调节位之间的距离在20m以上,例如控制在20~100m范围内。There is a certain distance between the
调节位与锅炉燃烧器300之间具有一定的距离,该距离也优选为在20m以上,例如在20~100m范围内。There is a certain distance between the adjustment position and the
其中,监测位210是一段区间,即具有一定的管道轴向长度,例如为煤气主管道2001的一个监测段,便于监测设备的布置。Wherein, the
其中,煤气压力测点(即压力监测单元211)的数量优选为是3个或3个以上,以保证压力监测的准确性和可靠性。相邻两个煤气压力测点之间的间距优选为在1~20m范围内,进一步优选为控制在5~15m范围内。Wherein, the number of gas pressure measuring points (ie, the pressure monitoring unit 211 ) is preferably 3 or more, so as to ensure the accuracy and reliability of the pressure monitoring. The distance between two adjacent gas pressure measuring points is preferably within the range of 1-20m, more preferably controlled within the range of 5-15m.
煤气热值仪212可以与其中一个压力监测单元211相对布置在煤气主管道200的同一截面上,也可以布置在相邻两个压力监测单元211之间,或者布置在各压力监测单元211的下游。The gas
上述主流量调节阀220采用自动阀门,可以采用电动蝶阀等流量调节阀门。The above-mentioned main
进一步地,上述系统还包括主控制器和比较器,所述主控制器用于:Further, the above system also includes a main controller and a comparator, the main controller is used for:
获取所述煤气热值仪212的监测数据以及各所述压力监测单元211的监测数据;Obtain the monitoring data of the gas
以及将各压力监测单元211的监测数据发送给比较器进行比较,并获得所述比较器的比较结果;and sending the monitoring data of each
以及根据所述比较结果计算得到因煤气波动所导致的煤气热量供给量的变化量ΔQ煤气,并按预定策略控制主流量调节阀220的开度。And according to the comparison result, the change amount ΔQ gas of the gas heat supply caused by the gas fluctuation is calculated, and the opening degree of the main
进一步地,所述预定策略可参考上述实施例三中的相关内容,例如该预定策略包括:Further, the predetermined strategy may refer to the relevant content in the third embodiment above, for example, the predetermined strategy includes:
若ΔQ煤气>0,经时间t1后,减小所述主流量调节阀220开度,以提高煤气锅炉的主蒸汽参数稳定性;If ΔQ gas >0, after time t1, reduce the opening of the main
若ΔQ煤气<0,经时间t1后,增大所述主流量调节阀220开度,以提高煤气锅炉的主蒸汽参数稳定性;If ΔQ gas <0, after time t1, increase the opening of the main
若ΔQ煤气=0,保持所述主流量调节阀220开度不变。If ΔQgas =0, keep the opening of the main
进一步地,上述主控制器还用于调节主给水泵的变频器频率,以使供给的煤气量与主给水流量匹配。相关内容可参考上述实施例三,此处不作赘述。Further, the above-mentioned main controller is also used to adjust the frequency converter frequency of the main feedwater pump, so as to match the amount of supplied gas with the flow rate of the main feedwater. For relevant content, reference may be made to the third embodiment above, and details are not repeated here.
进一步地,如图3,图3为本发明实施例提供的燃料波动控制系统的煤气管路示意图,所述煤气分支管道500上设有支管流量调节阀510,进一步可在该煤气分支管道500上设置压力监测器件520,该支管流量调节阀510和压力监测器件520均与主控制器电性连接。另外,在该煤气分支管道500上还设有切断阀530,例如采用液动切断阀530,可以进一步提高系统运行的可靠性。Further, as shown in Figure 3, Figure 3 is a schematic diagram of the gas pipeline of the fuel fluctuation control system provided by the embodiment of the present invention, the
进一步地,如图3,所述煤气主管道200上连接有储气旁路400,所述储气旁路400连接有外源煤气源410,所述储气旁路400上设有旁路调节阀420和切断阀530。该外源煤气源410可以是外源煤气储罐等,该外源煤气可以是与煤气主管道200所供煤气相同的同种煤气,例如二者都是高炉煤气,在运行初期可以预先将外源煤气储罐储满。上述储气旁路400的旁接点优选为位于监测位210的下游,可以位于调节位的上游或下游。Further, as shown in Figure 3, the
上述主控制器还用于:The above main controller is also used to:
获取煤气从监测位210传输至锅炉燃烧器300所需时间t2以及给水从给水泵传输至锅炉水冷壁所需时间t3;以及将t2与t3发送给比较器进行比较并获得比较器的比较结果;以及根据比较结果执行设定策略。上述设定策略可参考实施例三中的相关内容。Obtain the time t2 required for the gas to be transmitted from the
另外,如图3,优选地,在煤气主管道200的尾端还设有换热器,该换热器优选为是烟气煤气换热器109,可以利用锅炉排放烟气的余热,提高煤气的燃烧效果。In addition, as shown in Figure 3, preferably, a heat exchanger is also provided at the tail end of the
可选地,如图3,在煤气主管道200上还设有电动盲板阀230和液动快切阀240,可以进一步提高系统运行的可靠性。Optionally, as shown in Fig. 3, an electric
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。The above description is only a description of the preferred embodiments of the present invention, and does not limit the scope of the present invention. Any changes and modifications made by those of ordinary skill in the field of the present invention based on the above disclosures shall fall within the protection scope of the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211192452.5A CN115507379B (en) | 2022-09-28 | 2022-09-28 | A method for controlling air volume of gas boiler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211192452.5A CN115507379B (en) | 2022-09-28 | 2022-09-28 | A method for controlling air volume of gas boiler |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115507379A true CN115507379A (en) | 2022-12-23 |
CN115507379B CN115507379B (en) | 2025-04-11 |
Family
ID=84505453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211192452.5A Active CN115507379B (en) | 2022-09-28 | 2022-09-28 | A method for controlling air volume of gas boiler |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115507379B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001336736A (en) * | 2000-05-30 | 2001-12-07 | Ishikawajima Harima Heavy Ind Co Ltd | Method and apparatus for controlling oxygen concentration in exhaust gas of oxyfuel boiler equipment |
US20040002030A1 (en) * | 2002-06-28 | 2004-01-01 | Shah Minish Mahendra | Firing method for a heat consuming device utilizing oxy-fuel combustion |
CN105485714A (en) * | 2016-02-02 | 2016-04-13 | 华北电力科学研究院有限责任公司 | Method and device for determining boiler operation oxygen content and automatic control system |
CN110145760A (en) * | 2019-05-21 | 2019-08-20 | 江苏方天电力技术有限公司 | A kind of BFG boiler air-supply optimal control method |
CN210738888U (en) * | 2019-07-22 | 2020-06-12 | 华北电力科学研究院有限责任公司 | A Power Plant Boiler Fan System with Asymmetric Power Arrangement |
CN111692611A (en) * | 2020-07-22 | 2020-09-22 | 大唐华银电力股份有限公司金竹山火力发电分公司 | Automatic control system and method for air supply of power plant boiler |
CN112611234A (en) * | 2020-12-30 | 2021-04-06 | 江苏和隆优化智能科技有限公司 | Intelligent combustion optimization control method for pulverized coal furnace for co-combustion of blast furnace gas |
WO2022088686A1 (en) * | 2020-10-27 | 2022-05-05 | 中冶南方都市环保工程技术股份有限公司 | Gas boiler tail flue gas energy-saving and emission-reduction system |
-
2022
- 2022-09-28 CN CN202211192452.5A patent/CN115507379B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001336736A (en) * | 2000-05-30 | 2001-12-07 | Ishikawajima Harima Heavy Ind Co Ltd | Method and apparatus for controlling oxygen concentration in exhaust gas of oxyfuel boiler equipment |
US20040002030A1 (en) * | 2002-06-28 | 2004-01-01 | Shah Minish Mahendra | Firing method for a heat consuming device utilizing oxy-fuel combustion |
CN105485714A (en) * | 2016-02-02 | 2016-04-13 | 华北电力科学研究院有限责任公司 | Method and device for determining boiler operation oxygen content and automatic control system |
CN110145760A (en) * | 2019-05-21 | 2019-08-20 | 江苏方天电力技术有限公司 | A kind of BFG boiler air-supply optimal control method |
CN210738888U (en) * | 2019-07-22 | 2020-06-12 | 华北电力科学研究院有限责任公司 | A Power Plant Boiler Fan System with Asymmetric Power Arrangement |
CN111692611A (en) * | 2020-07-22 | 2020-09-22 | 大唐华银电力股份有限公司金竹山火力发电分公司 | Automatic control system and method for air supply of power plant boiler |
WO2022088686A1 (en) * | 2020-10-27 | 2022-05-05 | 中冶南方都市环保工程技术股份有限公司 | Gas boiler tail flue gas energy-saving and emission-reduction system |
CN112611234A (en) * | 2020-12-30 | 2021-04-06 | 江苏和隆优化智能科技有限公司 | Intelligent combustion optimization control method for pulverized coal furnace for co-combustion of blast furnace gas |
Non-Patent Citations (1)
Title |
---|
揭其良;徐明东;: "超临界直流锅炉送风控制系统的分析及应用", 广东电力, no. 12, 25 December 2008 (2008-12-25) * |
Also Published As
Publication number | Publication date |
---|---|
CN115507379B (en) | 2025-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109084324B (en) | The burning air quantity control system and control method of biomass boiler | |
CN111396919A (en) | Unit unit control system and method based on real-time online analysis of coal quality | |
WO2022252414A1 (en) | Coal-air synchronous dynamic coordinated control method for coal-fired unit | |
WO2019223489A1 (en) | Boiler load control system and control method for biomass boiler | |
CN101050864B (en) | Control method for low temperature corrosion blocking ash of coal burning boiler air preheater | |
CN113457791A (en) | Online automatic optimization method for operating parameters of medium-speed coal mill for high-moisture coal | |
CN110500184B (en) | Waste heat utilization system for improving gas turbine combined cycle economy | |
CN107603653B (en) | Coal moisture control instrument detection and moisture control method for performing demineralized water heat exchange by utilizing coke oven flue gas | |
CN112363554B (en) | Thermal power generating unit air volume and air pressure decoupling control method | |
CN111365700A (en) | Gas boiler flue gas step heat exchange device and temperature control method | |
CN115507379A (en) | A gas boiler air volume control method | |
CN217978756U (en) | Supercritical gas boiler and gas supply pipeline thereof | |
CN115507380A (en) | A Gas Boiler Air Supply and Smoke Temperature Regulating System | |
CN115371036B (en) | Gas supply system and stable operation control method for supercritical gas boiler | |
CN113028446A (en) | Automatic temperature regulating system for isolating heat exchange by utilizing flue gas bypass | |
CN217978755U (en) | Gas supply system of supercritical gas boiler | |
CN111928290A (en) | Boiler flue gas treatment system | |
CN104791107B (en) | A kind of gas turbine combustion control device and method | |
CN117703595A (en) | Totally-enclosed submerged arc furnace gas grading utilization system | |
CN114543113A (en) | System for controlling low-temperature corrosion of heated surface at tail of boiler | |
CN212157243U (en) | Anti-blocking Self-Blowing System for Rotary Air Preheater of Coal-fired Boiler | |
CN115371035B (en) | Supercritical gas boiler stable operation control method and system | |
CN108568174A (en) | Bag filter anti-condensation automatic control device | |
CN112378267A (en) | Method for increasing flue gas temperature of semi-closed submerged arc furnace | |
CN112178684A (en) | A system and method for improving boiler air/fuel ratio accuracy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |