CN115487316B - 钾离子选择性滤膜/磁性介孔纳米复合材料、荧光/磁共振双模态成像探针及应用 - Google Patents

钾离子选择性滤膜/磁性介孔纳米复合材料、荧光/磁共振双模态成像探针及应用 Download PDF

Info

Publication number
CN115487316B
CN115487316B CN202210091745.8A CN202210091745A CN115487316B CN 115487316 B CN115487316 B CN 115487316B CN 202210091745 A CN202210091745 A CN 202210091745A CN 115487316 B CN115487316 B CN 115487316B
Authority
CN
China
Prior art keywords
magnetic
potassium ion
nano particles
filter membrane
ion selective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210091745.8A
Other languages
English (en)
Other versions
CN115487316A (zh
Inventor
李方园
凌代舜
王绮玥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202210091745.8A priority Critical patent/CN115487316B/zh
Publication of CN115487316A publication Critical patent/CN115487316A/zh
Application granted granted Critical
Publication of CN115487316B publication Critical patent/CN115487316B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/183Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an inorganic material or being composed of an inorganic material entrapping the MRI-active nucleus, e.g. silica core doped with a MRI-active nucleus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0002General or multifunctional contrast agents, e.g. chelated agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0089Particulate, powder, adsorbate, bead, sphere
    • A61K49/0091Microparticle, microcapsule, microbubble, microsphere, microbead, i.e. having a size or diameter higher or equal to 1 micrometer
    • A61K49/0093Nanoparticle, nanocapsule, nanobubble, nanosphere, nanobead, i.e. having a size or diameter smaller than 1 micrometer, e.g. polymeric nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明公开了一种钾离子选择性滤膜/磁性介孔纳米复合材料,包括核壳结构磁性介孔纳米粒子和沉积于核壳结构磁性介孔纳米粒子表面的钾离子选择性滤膜,核壳结构磁性介孔纳米粒子包括单分散的磁性纳米粒子内核和介孔二氧化硅外壳。本发明还公开了一种荧光/磁共振双模态成像探针及在制备良恶性肿瘤鉴别设备中的应用。该荧光/磁共振双模态纳米探针的应用可实现灵敏、无创的肿瘤良恶性鉴别。

Description

钾离子选择性滤膜/磁性介孔纳米复合材料、荧光/磁共振双 模态成像探针及应用
技术领域
本发明涉及纳米影像探针的制备领域,具体涉及一种钾离子选择性滤膜/磁性介孔纳米复合材料、荧光/磁共振双模态成像探针应用。
背景技术
长期以来,组织病理学活检一直是临床上良恶性肿瘤鉴别的金标准。然而侵入性的穿刺活检过程复杂,有可能因为取样偏差导致误诊,还有可能促进肿瘤转移,造成患者痛苦。利用医学影像学技术,包括磁共振成像、电子计算机断层扫描、超声成像等鉴别良恶性肿瘤通常是通过肿瘤结构进行诊断,比如肿瘤边界、结节形态等。这种基于肿瘤结构成像的诊断方法灵敏度和准确性有待提高。因此,发展非侵入性的、具有高灵敏度和准确性的良恶性肿瘤鉴别方法至关重要。
在体内正常组织中,细胞内K+浓度([K+]o)约为145mM,细胞外[K+]o约为3-5mM。近年来有研究表明,由于恶性肿瘤细胞增殖分裂速度快,营养物质供给不足,存在凋亡坏死区域。细胞死亡后,细胞内容物释放,导致肿瘤微环境[K+]o升高约5-10倍(~40mM)。然而,良性肿瘤通常不会出现细胞坏死。因此,良恶性肿瘤微环境可能存在的[K+]o差异有望为发展新型良恶性肿瘤鉴别方法提供思路。
目前,K+微电极是监测[K+]o变化最常用的方法,但具有侵入性。近年来,K+光学传感器被广泛研究。尽管K+光学传感器的选择性有了显著的提高,但仍难以很好的区分开Na+和K+。由于体内细胞外Na+浓度比较高,现有K+传感器低的Na+和K+选择性会导致细胞外Na+干扰成像结果。同时,荧光成像技术缺乏空间分辨率,尤其在活体成像中难以进行病灶定位。磁共振成像具有非侵入性、无辐射、软组织分辨率高、空间分辨率高等优势,如果将高灵敏度的荧光成像与高空间分辨率的磁共振成像相结合,优势互补,有助于提高影像学技术对肿瘤的诊断效率。
综上所述,利用恶性肿瘤微环境[K+]o变化,研发一种具有高灵敏度、高选择性、高空间分辨率的新型K+选择性荧光/磁共振双模态成像探针用于恶性肿瘤诊断,具有十分重要的科学研究价值和临床治疗意义。
发明内容
本发明的目的在于提供一种钾离子选择性滤膜/磁性介孔纳米复合材料及包含该材料的荧光/磁共振双模态成像探针及应用,将高分辨率的结构磁共振成像与高灵敏度的功能性荧光成像结合。
本发明解决上述技术问题所提供的技术方案为:
一种钾离子选择性滤膜/磁性介孔纳米复合材料,包括核壳结构磁性介孔纳米粒子和沉积于核壳结构磁性介孔纳米粒子表面的钾离子选择性滤膜,核壳结构磁性介孔纳米粒子包括单分散的磁性纳米粒子内核和介孔二氧化硅外壳。
本发明中所述的单分散的磁性纳米粒子内核(如氧化铁纳米粒子)的粒径为5~80nm。作为优选,所述单分散的磁性纳米粒子内核(如氧化铁纳米粒子)的粒径10~30nm。进一步优选为10~20nm。
本发明中所述的核壳结构磁性介孔纳米粒子的粒径为30~300nm。作为优选,所述磁性介孔纳米粒子的粒径50~150nm。进一步优选为80~120nm。
本发明中所述的离子选择性滤膜由结构式Ⅰ的分子组装而成,能够特异性捕获钾离子,随后将离子扩散至磁性介孔纳米粒子孔道内,同时磁性介孔纳米粒子可以携载钾离子指示剂,从而对活体细胞外钾离子浓度进行高选择性、高灵敏度荧光成像。
本发明提供的钾离子选择性滤膜/磁性介孔纳米复合材料的制备方法包括:
1)通过热分解法,以油酸为表面配体,得到尺寸形貌均一的磁性氧化铁纳米粒子;
2)利用十六烷基三甲基溴化铵作为氧化铁纳米粒子的稳定剂和介孔二氧化硅形成的模板,在碱性环境中(如pH 10左右),以硅酸四乙酯为硅源,在氧化铁纳米粒子内核外形成介孔二氧化硅外壳,得到核壳结构磁性介孔纳米粒子。
3)将滤膜前体小分子沉积于磁性介孔纳米粒子表面,得到钾离子选择性滤膜/磁性介孔纳米复合材料。
作为优选,本发明提供的钾离子选择性滤膜/磁性介孔纳米复合材料的制备方法,包括:
(1)所述磁性氧化铁纳米粒子的制备:通过热分解法,将油酸和油酸铁复合物溶于二十烷溶液中,在300~340℃下反应0.5~1h,用丙酮沉淀洗涤得到氧化铁纳米粒子。
(2)所述磁性介孔纳米粒子的制备:利用十六烷基三甲基溴化铵作为氧化铁纳米粒子的稳定剂和介孔二氧化硅形成的模板,在65~75℃下加入硅酸四乙酯和乙酸乙酯,继续反应0.5~4h;用氯化钠甲醇溶液萃取产物,得到磁性介孔纳米粒子。
(3)将N-苄基水杨酰胺和无水碳酸钾加入到N,N-二甲基甲酰胺中,加热至85~95℃,继续加入1,1,1-三(对甲苯磺酰氧基-甲基)乙烷和2-氨基对苯二甲酸反应,得到钾离子选择性滤膜前体。
(4)所述钾离子选择性滤膜/磁性介孔纳米复合材料的制备:将磁性介孔纳米粒子分散于乙腈溶液中;在剧烈搅拌的条件下,向上述溶液中加入含有滤膜前体的乙腈溶液进行反应,通过原位沉积法将滤膜前体修饰于磁性介孔纳米粒子表面;在室温条件下退火10~15h,得到钾离子选择性滤膜/磁性介孔纳米复合材料。
本发明中还提供了一种钾离子选择性荧光/磁共振双模态成像探针,包括如上述的钾离子选择性滤膜/磁性介孔纳米复合材料,以及吸附在磁性介孔纳米粒子内的钾离子指示剂。氧化铁纳米粒子内核具有良好的磁共振成像性能;磁性介孔纳米粒子具有极大的孔洞体积,能够携载钾离子指示剂,表面包裹的离子选择性滤膜对钾离子具有较高的亲和性,选择性捕获钾离子并将其扩散至孔道内,与指示剂结合,可实现高选择性、高灵敏度钾离子浓度监测。
本发明中还提供了一种如上述的钾离子选择性荧光/磁共振双模态成像探针在制备肿瘤良恶性诊断设备中的应用。双模态探针通过磁共振成像检测肿瘤位置形态,为功能性荧光成像提供解剖学信息;进一步通过荧光成像对肿瘤部位细胞外钾离子浓度进行监测,通过荧光信号变化确定肿瘤良恶性。
同现有技术相比,本发明的有益效果体现在:
(1)本发明中提供的钾离子选择性荧光/磁共振双模态探针具有优异的磁共振成像性能;同时能够选择性捕获钾离子,随后将离子扩散至孔道内与装载的钾离子指示剂结合,通过荧光成像实现高选择性、高灵敏度的活体细胞外钾离子浓度的动态监测。
(2)本发明提供的钾离子选择性荧光/磁共振双模态探针能够有效地将高分辨率的结构磁共振成像与高灵敏度的功能性荧光成像结合,在肿瘤良恶性诊断方面具有很好的研究及应用前景,可实现灵敏、无创的肿瘤良恶性鉴别。
(3)本发明中制备方法的反应体系温和,条件可控,所制备的材料均具有良好的生物相容性,适用性广,推广性强,具有良好的临床转化可能性。
附图说明
图1为实施例1中磁性介孔纳米粒子的TEM图;
图2为实施例2中磁性介孔纳米粒子的TEM图;
图3为实施例3中钾离子选择性荧光/磁共振双模态成像探针的TEM图;
图4为应用例1中钾离子选择性荧光/磁共振双模态探针在30mM Na+/K+溶液中的荧光成像结果图;
图5为应用例2中钾离子选择性荧光/磁共振双模态探针在细胞外不同钾离子浓度下荧光成像结果图;
图6为应用例2中钾离子选择性荧光/磁共振双模态探针在细胞外不同钾离子浓度下磁共振成像结果图;
图7为应用例3中钾离子选择性荧光/磁共振双模态探针在裸鼠良恶性移植瘤模型中成像结果图。
具体实施方式
下面结合具体的实施例和说明书附图对本发明作进一步说明。
实施例1:磁性介孔硅纳米粒子的合成
将0.1g十六烷基三甲基溴化铵溶解于5mL去离子水中,逐滴加入0.5mL分散于氯仿中的氧化铁纳米粒子(4mg/mL)。超声30min后,加热至60℃以除去氯仿。之后,向氧化铁纳米粒水溶液中加入45mL浓度为16mM的氨水,在剧烈搅拌条件下升温至70℃。随后快速加入0.5mL硅酸四乙酯和3mL乙酸乙酯,继续搅拌反应1.5h。用乙醇洗涤三次,离心收集产物。将收集到的产物用1wt%氯化钠甲醇溶液萃取12h洗去模板剂即可得到磁性介孔硅纳米粒子。本实施例制备的磁性介孔硅纳米粒子的透射电镜图如图1所示,证明所得的纳米粒子尺寸形貌均一,直径约为75nm。
实施例2:磁性介孔硅纳米粒子的合成
将0.1g十六烷基三甲基溴化铵溶解于5mL去离子水中,逐滴加入0.5mL分散于氯仿中的氧化铁纳米粒子(4mg/mL)。超声30min后,加热至60℃以除去氯仿。之后,向氧化铁纳米粒水溶液中加入45mL浓度为16mM的氨水,在剧烈搅拌条件下升温至70℃。随后快速加入0.5mL硅酸四乙酯和3mL乙酸乙酯,继续搅拌反应3h。用乙醇洗涤三次,离心收集产物。将收集到的产物用1wt%氯化钠甲醇溶液萃取12h洗去模板剂即可得到磁性介孔硅纳米粒子。本实施例制备的磁性介孔硅纳米粒子的透射电镜图如图2所示,证明所得的纳米粒子尺寸形貌均一,直径约为115nm。
实施例3:钾离子选择性荧光/磁共振双模态成像探针的合成
(1)将1mL实施例2中合成的磁性介孔硅纳米粒子(10mg/mL)与2mL钾离子探针(0.5mg/mL)混合,避光搅拌24h后,水洗两次,离心收集产物分散于乙腈中,得到非选择性荧光/磁共振双模态成像探针
(2)将3.4g N-苄基水杨酰胺和2.5g无水碳酸钾依次加入25mL无水二甲基甲酰胺中升温至90℃,随后加入2.9g 1,1,1-三(对甲苯磺酰氧基-甲基)乙烷和0.3mL 2-氨基对苯二甲酸,搅拌12h。冷却至室温后,将反应混合物加入200ml去离子水中。以石油醚-乙酸乙酯(2:1)作为洗脱液,将得到的固体产物用硅胶柱色谱处理,得到白色的滤膜前体固体产物。
(3)在剧烈搅拌下,将2mL浓度为10mg/mL的滤膜前体乙腈溶液加入到5mL含有浓度为2mg/mL的非选择性荧光/磁共振双模态探针的乙腈溶液中,升温至50℃反应60min,在室温下退火12h,用甲醇洗涤一次并用水洗涤两次,即可得到钾离子选择性荧光/磁共振双模态成像探针。
本实施例制备的钾离子选择性双模态探针的透射电镜图如图3所示,证明所得的纳米粒子尺寸形貌均一,滤膜层厚度约为3nm。
应用例1:钾离子选择性成像效果评价
将实施例3合成的钾离子选择性荧光/磁共振双模态探针,非选择性荧光/磁共振双模态探针,钾离子指示剂分别分散于30mM KCl溶液,30mM NaCl溶液和去离子水中,并置于200μL的PCR管中。利用活体荧光成像仪进行扫描,结果如图4所示,与去离子水组相比,钾离子选择性探针仅在30mM KCl溶液中有显著的荧光信号增强,而非选择性探针和商用钾离子指示剂在KCl和NaCl溶液中均有明显的荧光信号增强。由此说明,该探针具有优异的钾离子选择性荧光成像性能,不受Na+干扰。
应用例2:细胞水平钾离子选择性双模态成像
细胞水平钾离子选择性荧光成像:将4T1乳腺癌细胞接种于共聚焦皿中(9×104个细胞/皿),在5%CO2,37℃条件下培养24h。之后,将培养液更换为新鲜的RPMI 1640培养液(培养液中钾离子浓度分别为5,15,30mM)和含有浓度为0.5mg/mL钾离子选择性双模态探针的RPMI 1640培养液(培养液中钾离子浓度分别为5,15,30mM)。1h后,进行活细胞的共聚焦显微镜扫描。
结果如图5所示,随着细胞外钾离子浓度提高,细胞外荧光信号增强,说明该探针能够进行细胞外钾离子选择性荧光成像。
细胞水平磁共振成像:将4T1乳腺癌细胞分别培养于新鲜的RPMI 1640培养液(培养液中钾离子浓度分别为5,15,30mM)和含有浓度为0.5mg/mL钾离子选择性双模态探针的RPMI 1640培养液(培养液中钾离子浓度分别为5,15,30mM)中。在5%CO2,37℃条件下培养1h后,收集培养液,并将细胞消化离心。随后,将离心后的细胞重新分散于收集的培养液中,并用1%的琼脂糖溶液固定,进行T2加权磁共振成像扫描。
结果如图6所示,随着细胞外钾离子浓度提高,T2加权磁共振成像信号基本没有变化,说明该探针能够进行细胞外T2加权磁共振成像,并且成像效果不受钾离子浓度影响。
应用例3:钾离子选择性荧光/磁共振双模态探针用于肿瘤良恶性诊断
动物模型建立:分别构建BALB/c小鼠4T1细胞原位乳腺癌模型和人子宫肌瘤移植模型。
尾静脉注射钾离子选择性荧光/磁共振双模态探针(100mg/kg),在给药前和给药1h后分别进行荧光成像和磁共振成像。结果如图7所示,给药后,良性肿瘤和恶性肿瘤部位磁共振信号均有所提高,而仅有恶性乳腺癌部位荧光信号显著增强,良性子宫肌瘤部位荧光信号基本没有变化,由此说明,基于恶性肿瘤微环境[K+]o变化,利用所构建的钾离子选择性双模态探针,有望实现肿瘤良恶性的鉴别。

Claims (1)

1.一种荧光/磁共振双模态成像探针在制备良恶性肿瘤鉴别设备中的应用,其特征在于,所述探针包括钾离子选择性滤膜/磁性介孔纳米复合材料,所述复合材料包括核壳结构磁性介孔纳米粒子和沉积于核壳结构磁性介孔纳米粒子表面的钾离子选择性滤膜,核壳结构磁性介孔纳米粒子包括单分散的磁性纳米粒子内核和介孔二氧化硅外壳;
以及包括吸附在磁性介孔纳米粒子内的钾离子指示剂;
所述磁性纳米粒子内核粒径为10~30nm;所述核壳结构磁性介孔纳米粒子粒径为50~150nm;所述钾离子选择性滤膜厚度为0.5~20nm;
所述钾离子选择性滤膜/磁性介孔纳米复合材料的制备方法包括:
(1)所述磁性氧化铁纳米粒子的制备:通过热分解法,将油酸和油酸铁复合物溶于二十烷溶液中,在300~340℃下反应0.5~1h,用丙酮沉淀洗涤得到氧化铁纳米粒子;
(2)所述磁性介孔纳米粒子的制备:利用十六烷基三甲基溴化铵作为氧化铁纳米粒子的稳定剂和介孔二氧化硅形成的模板,在65~75℃下加入硅酸四乙酯和乙酸乙酯,继续反应0.5~4h;用氯化钠甲醇溶液萃取产物,得到磁性介孔纳米粒子;
(3)将N-苄基水杨酰胺和无水碳酸钾加入到N,N-二甲基甲酰胺中,加热至85~95℃,继续加入1,1,1-三(对甲苯磺酰氧基-甲基)乙烷和2-氨基对苯二甲酸反应,得到钾离子选择性滤膜前体;
(4)所述钾离子选择性滤膜/磁性介孔纳米复合材料的制备:将磁性介孔纳米粒子分散于乙腈溶液中;在剧烈搅拌的条件下,向上述溶液中加入含有滤膜前体的乙腈溶液进行反应,通过原位沉积法将滤膜前体修饰于磁性介孔纳米粒子表面;在室温条件下退火10~15h,得到钾离子选择性滤膜/磁性介孔纳米复合材料;
所述滤膜前体小分子的结构式如式Ⅰ所示:
CN202210091745.8A 2022-01-26 2022-01-26 钾离子选择性滤膜/磁性介孔纳米复合材料、荧光/磁共振双模态成像探针及应用 Active CN115487316B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210091745.8A CN115487316B (zh) 2022-01-26 2022-01-26 钾离子选择性滤膜/磁性介孔纳米复合材料、荧光/磁共振双模态成像探针及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210091745.8A CN115487316B (zh) 2022-01-26 2022-01-26 钾离子选择性滤膜/磁性介孔纳米复合材料、荧光/磁共振双模态成像探针及应用

Publications (2)

Publication Number Publication Date
CN115487316A CN115487316A (zh) 2022-12-20
CN115487316B true CN115487316B (zh) 2024-06-07

Family

ID=84465282

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210091745.8A Active CN115487316B (zh) 2022-01-26 2022-01-26 钾离子选择性滤膜/磁性介孔纳米复合材料、荧光/磁共振双模态成像探针及应用

Country Status (1)

Country Link
CN (1) CN115487316B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109771644A (zh) * 2019-03-04 2019-05-21 浙江大学 一种纳米复合材料及制备方法和应用
CN109876157A (zh) * 2019-02-27 2019-06-14 浙江大学 离子特异性滤膜/介孔硅的复合材料、纳米传感器及其产品和应用
CN110437268A (zh) * 2019-09-04 2019-11-12 南方科技大学 一种钾离子探针及其制备方法和应用
CN111423880A (zh) * 2020-04-25 2020-07-17 华中科技大学 一种磁性荧光介孔二氧化硅复合纳米材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110165089A1 (en) * 2005-03-09 2011-07-07 Japan Science And Technology Agency Complex Compound and MRI Probe Made of Same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109876157A (zh) * 2019-02-27 2019-06-14 浙江大学 离子特异性滤膜/介孔硅的复合材料、纳米传感器及其产品和应用
CN109771644A (zh) * 2019-03-04 2019-05-21 浙江大学 一种纳米复合材料及制备方法和应用
CN110437268A (zh) * 2019-09-04 2019-11-12 南方科技大学 一种钾离子探针及其制备方法和应用
CN111423880A (zh) * 2020-04-25 2020-07-17 华中科技大学 一种磁性荧光介孔二氧化硅复合纳米材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ionic immune suppression within the tumour microenvironment limits T cell effector function;SUMAN KUMAR VODNALA et.al.;《Science》;第363卷(第6434期);第2页第4段 *

Also Published As

Publication number Publication date
CN115487316A (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
CN112028916B (zh) 程序性细胞死亡蛋白受体-1靶向的分子探针和制备
CN102813943B (zh) 造影剂及其制备方法
CN101912623B (zh) 具有靶向功能铁-钆双模式磁共振造影剂的制备及应用
CN105920620A (zh) 磁性荧光多模态纳米生物探针及其制备方法和应用
CN113797357B (zh) 一种给药系统、给药系统的制备方法及应用
CN113956265B (zh) 一种基于丙二醛响应的近红外分子探针、制备方法及其应用
CN114478473A (zh) 一种亮氨酸氨基肽酶化学发光检测试剂的合成及应用
CN109529060A (zh) 磁性复合纳米材料及其制备方法和应用
CN113461588B (zh) 一种胃酸监测用荧光探针及其制备方法和应用
CN115487316B (zh) 钾离子选择性滤膜/磁性介孔纳米复合材料、荧光/磁共振双模态成像探针及应用
CN118203677A (zh) 一种淋巴结靶向性金纳米团簇及其制备方法与应用
CN113797361A (zh) 一种主动靶向型pet/mr双模态影像纳米探针及其制备方法
CN109364246B (zh) 磁共振/激活型荧光双模态成像靶向光热诊疗纳米探针及其合成方法与应用
CN114652858B (zh) 一种用于无创评估乳腺癌前哨淋巴结转移的靶向分子探针
CN115266663B (zh) 一种肠道微环境触发的非侵入式诊断帕金森病的生物探针及其制备方法和应用
CN107522773B (zh) 一种五肽改性罗丹明b化合物及其制备方法和应用
CN104984371A (zh) 一种肿瘤靶向的放射性纳米颗粒及其制备方法
CN105241872B (zh) 检测血液中半乳凝集素-1的方法及所用试剂
CN107349435A (zh) 一种精氨酸稳定的中空泡状硅酸锰纳米粒的制备方法、产品及应用
CN112402628A (zh) 一种仿生靶向巨噬细胞光学成像剂的制备方法及其在巨噬细胞相关疾病诊断的应用
CN114854398B (zh) 一种pH诱导自组装的近红外二区发光金纳米材料及其制备方法与在早期肾病诊断中的应用
CN113943277B (zh) 一种近红外荧光探针及其制备方法与应用
CN105664187B (zh) 聚乙二醇修饰的氧化锰磁共振纳米对比剂的一步制备法
CN111420072A (zh) 一种mri-sers双模式造影剂的制备方法
CN114891508B (zh) 一种兼具有高亮度和稳定性的水溶性InP核壳量子点及其合成方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant