CN115483290A - 一种基于3r相的二硫化钨场效应晶体管及其制备方法 - Google Patents

一种基于3r相的二硫化钨场效应晶体管及其制备方法 Download PDF

Info

Publication number
CN115483290A
CN115483290A CN202211138399.0A CN202211138399A CN115483290A CN 115483290 A CN115483290 A CN 115483290A CN 202211138399 A CN202211138399 A CN 202211138399A CN 115483290 A CN115483290 A CN 115483290A
Authority
CN
China
Prior art keywords
phase
tungsten disulfide
layer
double
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211138399.0A
Other languages
English (en)
Inventor
李学飞
郭琪
史新航
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202211138399.0A priority Critical patent/CN115483290A/zh
Publication of CN115483290A publication Critical patent/CN115483290A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/22Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds
    • H01L29/227Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种基于3R相的二硫化钨场效应晶体管及其制备方法,属于半导体器件技术领域。器件包括:硅衬底、设置在所述硅衬底上的栅介质、设置在所述栅介质上的3R相双层二硫化钨沟道材料及设置在所述3R相双层二硫化钨沟道材料表面的源漏电极。同时还提出了一种基于3R相的二硫化钨场效应晶体管制备方法。本发明制备的基于3R相的二硫化钨场效应晶体管能够提升场效应晶体管的电学性能,有利于未来过渡金属硫属族化合物的大规模器件集成。

Description

一种基于3R相的二硫化钨场效应晶体管及其制备方法
技术领域
本发明属于半导体器件技术领域,更具体地,涉及一种基于3R相的二硫化钨场效应晶体管及其制备方法。
背景技术
二维(2D)过渡金属二硫族化合物(TMDC)由于其在光电子学和10纳米以下晶体管中的潜在应用而成为重点研究的对象。二硫化钨作为过渡金属二硫族化合物材料之一,具有n型传输行为。双层二硫化钨可以超越单层可以提供更好的与金属接触和更少的界面散射,具有更高的载流子迁移率和更小的禁带宽度,同时保持超薄的性质。
现有技术中,2H堆叠作为多种堆叠结构中最稳定的结构,同时也是最容易获得的堆叠结构,一直被认为是沟道材料的主要选择,但是经本发明的研究,现有的场效应晶体管器件的电学性能可待提升。
发明内容
针对现有技术的缺陷和改进需求,本发明提供了一种基于3R相的二硫化钨场效应晶体管及其制备方法,其目的在于提升场效应晶体管的电学性能。
为实现上述目的,按照本发明的一个方面,提供了一种基于3R相的二硫化钨场效应晶体管,包括:
硅衬底、设置在所述硅衬底上的栅介质、设置在所述栅介质上的3R相双层二硫化钨沟道材料及设置在所述3R相双层二硫化钨沟道材料表面的源漏电极。
进一步地,所述3R相双层二硫化钨沟道材料的厚度为1.4纳米。
进一步地,所述栅介质的材料为二氧化硅、氮化硅、碳化硅、氧化铪、氮化镓或砷化镓中的一种。
进一步地,所述源漏电极包括底层接触金属和上层金属;
所述底层接触金属材料为镍、铂、钯中的一种;
所述上层金属材料为金、银、钯、锇、铱、铂、金、钛、铝、铬、锗、钼、镍、钨、铜、钴或铁中的一种。
进一步地,所述底层接触金属材料为10-30纳米厚度的镍,所述上层金属材料为30-60纳米厚度的金。
按照本发明的另一方面,提供了一种如第一方面任意一项所述的基于3R相的二硫化钨场效应晶体管的制备方法,所述方法包括:
步骤S1、清洗硅衬底;
步骤S2、转移制备好的包含3R相与2H相的双层二硫化钨至所述硅衬底上;
步骤S3、对所述3R相与2H相的双层二硫化钨制备标记层;
步骤S4、隔离区域刻蚀,包括:利用标记层定位3R相双层二硫化钨的位置,在所述3R相双层二硫化钨的表面定义有源区和隔离区;
步骤S5、在所述3R相双层二硫化钨表面制备源漏电极。
进一步地,制备所述包含3R相与2H相的双层二硫化钨的过程包括:
步骤S21、清洗蓝宝石衬底,900-1100摄氏度高温退火;
步骤S22、采用盐辅助化学气相沉积生长所述包含3R相与2H相的双层二硫化钨。
进一步地,采用化学气相沉积对所述蓝宝石衬底进行900-1100摄氏度高温退火,退火时间3-5小时,期间通入氩气与氧气。
进一步地,所述盐辅助化学气相沉积的条件参数为:氯化钾质量0~5毫克,二氧化钨质量30~50毫克,硫单质粉末质量为100~300毫克,生长温度850~1050摄氏度,通入90~110标准流量的氩气及8~12标准流量的氢气,生长压强1000~2500帕,生长时间10~20分钟。
进一步地,利用热释放胶带水法转移所述制备好的包含3R相与2H相的双层二硫化钨。
总体而言,通过本发明所构思的以上技术方案,能够取得以下有益效果:
(1)本发明提出了在基于双层二硫化钨来制备场效应晶体管时,定向选择3R相的双层二硫化钨作为沟道材料以提升场效应晶体管的电学性能,并保持器件性能的一致性,弥补了现有技术中针对沟道材料的堆叠结构缺少主观选择的缺陷;同时,现有技术中,双层二硫化钨具有多种堆叠结构,但是化学气相沉积方法获得的双层二硫化钨绝大部分都为0度转角的3R堆叠和60度转角的2H堆叠,其他双层结构由于稳定性差无法可控的得到,2H堆叠作为多种堆叠结构中最稳定的结构,同时也是最容易获得的堆叠结构,一直被认为是沟道材料的主要选择,本发明否定了更稳定的结构代表着更好的电子特性,也否定了层数相同但是堆叠结构不同都具有一致的电子特性这一技术认知,克服了技术偏见,选择使用电学特性更好的3R堆叠作为场效应晶体管的沟道材料,进而提升了场效应晶体管的电学性能,有利于未来过渡金属硫属族化合物的大规模器件集成。
总而言之,本发明的基于3R相的二硫化钨场效应晶体管及其制备方法可以推动对二硫化钨等过渡金属二硫族化合物的研究以及双层二硫化钨在集成电路中的应用。
附图说明
图1为本发明实施例提供的基于3R相的二硫化钨场效应晶体管示意图。
图2为本发明实施例提供的基于2H相的二硫化钨场效应晶体管示意图。
图3为本发明实施例获得的蓝宝石衬底上具有3R和2H堆叠的双层二硫化钨光学显微镜图像。
图4为本发明实施例获得的双层二硫化钨的光致发光光谱数据,其中,图4中的(a)和(b)分别表示2H相和3R相的双层二硫化钨的光致发光光谱数据。
图5为本发明实施例获得的双层二硫化钨的拉曼光谱数据,其中,图5中的(a)和(b)分别表示2H相和3R相的双层二硫化钨的拉曼光谱数据。
图6为本发明实施例制备的场效应晶体管输出特性曲线,其中,图6中的(a)和(b)分别表示基于2H相和3R相的双层二硫化钨场效应晶体管的输出特性曲线。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1
如图1所示,本发明提供的基于3R相的二硫化钨场效应晶体管,从下至上依次包括:硅衬底、设置在硅衬底上的栅介质、设置在栅介质上的3R相双层二硫化钨沟道材料及设置在3R相双层二硫化钨沟道材料表面的源漏电极。
其中,3R相双层二硫化钨沟道材料的厚度为1.4纳米。
栅介质的材料为二氧化硅、氮化硅、碳化硅、氧化铪、氮化镓或砷化镓中的一种;本实施例中,栅介质的材料为二氧化硅。
源漏电极包括底层接触金属和上层金属,其中,底层接触金属材料为镍、铂、钯中的一种,上层金属材料为金、银、钯、锇、铱、铂、金、钛、铝、铬、锗、钼、镍、钨、铜、钴或铁中的一种;本实施例中,源漏电极的底层接触金属材料为镍,上层金属材料为金;其中,镍的厚度为10-30纳米,金的厚度为30-60纳米。
实施例2
本发明实施例提供了一种基于3R相的二硫化钨场效应晶体管制备方法,其中,该场效应晶体管为实施例1中的基于3R相的二硫化钨场效应晶体管,制备方法包括如下步骤:
步骤S1、清洗硅衬底;
步骤S2、转移制备好的3R与2H堆叠的双层二硫化钨至步骤S1中的硅衬底上;
步骤S3、对将步骤S2中转移的双层二硫化钨制备标记层(Mark);
步骤S4、隔离区域刻蚀,利用标记层确定3R相双层二硫化钨的位置,在3R相双层二硫化钨的表面定义有源区和隔离引线金属区;
步骤S5、在3R相双层二硫化钨表面制备源漏电极。
其中,步骤S2中,制备双层二硫化钨的过程包括:
步骤S21、蓝宝石衬底清洗,900-1100摄氏度高温退火;作为优选,衬底为单面抛光的c面蓝宝石衬底,采用化学气相沉积设备对蓝宝石衬底进行高温退火,退火时间3-5小时,期间通入氩气与氧气。
步骤S22、采用盐辅助化学气相沉积生长3R与2H堆叠的双层二硫化钨。作为优选,盐辅助化学气相沉积条件参数为:熔融盐为氯化钾、质量0-5毫克,钨源为二氧化钨、质量30~50毫克,硫源为硫单质粉末、质量为100~300毫克,生长温度850-1050摄氏度,通入90~110标准流量的氩气及8~12标准流量的氢气,生长压强1000~2500帕,生长时间10~20分钟。
具体地,步骤S21中,使用900-1100摄氏度高温退火后的蓝宝石衬底,其表面具有原子级厚度的台阶,有利于二维材料的生长,同时蓝宝石衬底相较于二氧化硅衬底疏水性更强,更易于水法转移获得无破损的材料,从而提升电学性能。作为优选,选择1000摄氏度高温退火,可以让蓝宝石表面出现原子级厚度的定向台阶,可以诱导二硫化钨在生长时晶格对齐,减少二硫化钨晶格中的部分缺陷比如空位、错位等,使得生长的二硫化钨材料质量得到提高。
具体地,步骤S22中氯化钾与二氧化钨混合放置在刚玉舟中,蓝宝石衬底倒扣在其上,生长时刚玉舟位于加热炉中央;硫粉末放置在瓷舟中,生长时瓷舟位于加热炉边缘;加热炉在下游升温,温度达到生长温度后滑到上游进行保温开始生长计时。通过在二氧化钨中加入氯化钾,能够降低反应温度。
作为优选,步骤S22中,氯化钾、二氧化钨及硫单质粉末的质量分别为2毫克、40毫克、300毫克,可以作为稳定的生长条件;作为优选,生长温度采用890摄氏度,生长压强稳定在低压1700帕,生长期间通入105标准流量的氩气与8标准流量的氢气,在优选的生长温度、生长压强、氯化钾/二氧化钨质量比下,熔融氯化钾和二氧化钨的混合物可以达到熔点以获得生长核点,并且满足双层二硫化钨生长需要的同时又不会使得层数超过预期;在优选的二氧化钨和硫粉末质量比下,二硫化钨可以在核点外围不断生长并且达到可观的尺寸,同时保持形貌的规整。
具体地,步骤S2中,制备好3R与2H堆叠的双层二硫化钨后,匀胶,利用热释放胶带水法转移制备好的双层二硫化钨至二氧化硅衬底上,并去胶,去残胶;具体包括:采用热释放胶带水法转移,匀胶后将热释放胶带贴在蓝宝石衬底表面,泡水,转移至二氧化硅衬底,加热进行热释放,浸泡丙酮去胶,高温退火炉去残胶。作为优选,使用聚甲基丙烯酸甲酯(PMMA)光刻胶用作支撑层,释放热释放胶带后,浸泡丙酮去胶,再利用高温退火炉通入氩气去残胶;利用的蓝宝石的疏水性进行水法转移,方法简单高效,可以获得无破损的材料,两次去胶减少了残胶的影响。
作为优选,步骤S4中,隔离区域刻蚀采用反应离子刻蚀。
本实施例中,步骤S1具体包括:在玻璃皿中加入150毫升去离子水,30毫升氨水,放在热板上加热至70摄氏度;然后加入30毫升双氧水,继续加热,7-10分钟后从底部开始冒泡时放入表面为100纳米二氧化硅的硅晶圆,开始计时10分钟;10分钟后取出晶圆浸泡在去离子水中,然后取出硅片用去离子水冲洗,冲洗时将硅晶圆向镊子方向倾斜,去离子水从高的部分流向镊子一端以防止镊子上的脏东西留在硅晶圆上;用氮气枪吹干硅晶圆。
步骤S2具体包括:将生长有二硫化钨的蓝宝石衬底浸泡丙酮20分钟,取出后浸泡异丙醇清洗,氮气枪吹干;在表面滴聚甲基丙烯酸甲酯电子束光刻胶,以3000转每分钟的速度匀胶60秒;在120摄氏度的热板上烘干5分钟;根据蓝宝石衬底形状裁剪热释放胶带,在表面贴上热释放胶带,用棉签轻压实;使贴好热释放胶带的片子漂浮在去离子水面2小时,取出后吹干;撕下热释放胶带,贴在清洗好的100纳米二氧化硅衬底上,用棉签轻压实;在加热至120摄氏度的热板上释放热释放胶带,待胶带自动翘起时取下;将片子浸泡在丙酮中12小时以去除电子束光刻胶,取出后用异丙醇和去离子水清洗;在300摄氏度高温退火炉中退火2小时去残胶,期间通入100标准流量的氩气。
步骤S3具体包括:将转移上二硫化钨硅片表面滴聚甲基丙烯酸甲酯电子束光刻胶,以3000转每分钟的速度匀胶60秒;后在180摄氏度热板上烘干90秒;使用电子束曝光设备(EBL)曝光标记层版图;将硅片浸入甲基异丁基酮(MIBK)与异丙醇(IPA)质量比为1比3的显影液中,显影50秒,后用异丙醇浸泡清洗,氮气枪吹干;电子束蒸发(EBE)设备进行金属沉积,沉积20纳米的镍加40纳米的金;浸泡在50摄氏度的丙酮溶液中30分钟,用针管冲洗直到多余金属全部剥离,后用异丙醇浸泡清洗,氮气枪吹干。
步骤S4具体包括:绘制有源区与隔离区版图,硅片表面滴AR-P617电子束光刻胶,以4000转每分钟的速度匀胶60秒,后在150摄氏度热板上烘干60秒;使用电子束曝光设备曝光隔离区域版图,将硅片浸入甲基异丁基酮显影液中,显影70秒,后用异丙醇浸泡清洗,氮气枪吹干;使用反应离子刻蚀(RIE)设备刻蚀,功率为3瓦,刻蚀时间6分钟;浸入N-甲基吡咯烷酮(NMP)溶液中12小时去胶,后用异丙醇浸泡清洗,氮气枪吹干;使用高温退火炉去残胶,去胶温度为300摄氏度,去胶时间2小时,期间通入100标准毫升的氩气。
步骤S5具体包括:匀胶、电子束曝光和显影工艺同S3标记层一致;电子束蒸发设备进行源漏金属沉积,沉积20纳米的镍加40纳米的金;浸泡在50摄氏度的丙酮溶液中30分钟,用针管冲洗直到多余金属全部剥离,后用异丙醇浸泡清洗,氮气枪吹干,器件制备完毕。
通过上述方法,可以在一硅片上获得了具有3R与2H堆叠的双层二硫化钨,利用光学显微镜、拉曼光谱、光致发光光谱对二硫化钨进行观察与表征,筛选3R堆叠的双层二硫化钨,并在其之上进行背栅场效应晶体管的制备,得到基于3R相的双层二硫化钨场效应管,如图1所示。
同样,在上述制备方法中,在步骤S4、S5中,利用标记层确定2H相双层二硫化钨的位置,在2H相双层二硫化钨表面制备源漏电极,得到的是基于2H相的双层二硫化钨场效应管,如图2所示。
步骤S2中制备的3R与2H堆叠的双层二硫化钨的光学显微镜图像如图3所示,双层区域的颜色比单层区域更深,双层与单层之间没有转角的为3R堆叠结构,双层与单层之间有60度转角的为2H堆叠结构,双层区域的尺寸大多数在40微米左右。
为了对3R与2H堆叠双层二硫化钨进行更好的区别,本实施例中,在100纳米二氧化硅衬底上对两种堆叠的单层区域与双层区域进行光致发光光谱表征与拉曼光谱表征,所用激光为532纳米。
本发明实施例中获得的双层二硫化钨光致发光光谱数据如图4中的(a)和(b)所示,两种堆叠的单层区域禁带宽度均为1.94电子伏特,峰强度高,表现出明显的直接带隙特征;图中将双层的峰强扩大了20倍作图,双层二硫化钨具有两个峰,主峰为直接跃迁峰,次峰为间接跃迁峰;两种堆叠的区别在于双层区域的间接跃迁峰,3R堆叠的间接跃迁禁带宽度为1.69电子伏特,2H堆叠的间接跃迁禁带宽度为1.71电子伏特,3R堆叠的间接跃迁禁带宽度小于2H堆叠。两种堆叠双层的直接禁带宽度都比单层有所减小,3R堆叠为1.92电子伏特,2H堆叠为1.91电子伏特。
本发明实施例中获得的双层二硫化钨的拉曼光谱数据如图5中的(a)和(b)所示,二硫化钨的主要特征峰为353波数处的2LA振动模式与
Figure BDA0003852348070000091
振动模式的混合峰、420波数处的A1g振动模式峰。对多个双层单晶进行表征后比较,两种堆叠的拉曼光谱强度均为单层强于双层,3R堆叠的峰强总体上强于2H堆叠。在单层区域,2H堆叠的2LA振动模式与
Figure BDA0003852348070000092
振动模式的混合峰强度为A1g振动模式峰的5~6倍,而3R堆叠为3~4倍。
通过使用半导体参数分析仪B1500A与低温探针台,对基于2H相的双层二硫化钨场效应管和基于3R相的双层二硫化钨场效应管进行电学性能测试,3R与2H堆叠的双层二硫化钨场效应晶体管的输出电流曲线如图6中的(a)和(b)所示,经实验发现:沟长为1微米,3R堆叠的器件的输出电流为60微安/微米,2H堆叠的器件的输出电流为40微安/微米,比2H堆垛的器件(40微安/微米)高出50%,因此,本发明选择3R堆叠的双层二硫化钨作为沟道材料以制备场效应晶体管。
同时,通过实验还发现,双层二硫化钨相比于单层二硫化钨可以提供更好的金属欧姆接触,达到更大的源漏电流,又比更多层二硫化钨具有更薄的厚度以满足晶体管尺寸不断缩放的需求。
双层二硫化钨中的单层具有三个原子层厚度,表现出三角棱柱形几何形状,其中外部的硫原子与中心钨原子共价键合,层与层之间由范德华力控制,范德华力较弱,允许相邻层间的滑动与转动,产生不同的堆叠结构。材料的电子特性对双层之间的相互作用非常敏感,不同的堆叠结构将改变导带最小值(CBM)与导带最大值(VBM),双层二硫化钨的直接带隙与间接带隙的大小将会有所区分,将会明显影响传输特性,所以堆叠模式可以作为调整电学性能的关键参数。
本发明通过比较制备的3R堆叠场效应晶体管与2H堆叠场效应晶体管的电学测试结果,发现3R堆叠具有更加优异的电学性能。主要表现在基于3R堆叠的双层二硫化钨背栅场效应晶体管的输出电流比2H堆叠的高50%。基于此,本发明通过选择3R堆叠的双层二硫化钨来制备效应晶体管,能够提升效应晶体管的电学性能。
本发明提出了在基于双层二硫化钨来制备场效应晶体管时,定向选择3R相的双层二硫化钨作为沟道材料以提升场效应晶体管的电学性能,并保持器件性能的一致性,弥补了现有技术中针对沟道材料缺少主观选择的缺陷;同时,现有技术中,2H堆叠作为多种堆叠结构中最稳定的结构,同时也是最容易获得的堆叠结构,一直被认为是沟道材料的主要选择,本发明否定了更稳定的结构代表着更好的电子特性,也否定了层数相同但是堆叠结构不同都具有一致的电子特性这一技术认知,克服了技术偏见,选择使用电学特性更好的3R堆叠作为场效应晶体管的沟道材料,进而提升了场效应晶体管的电学性能,有利于未来过渡金属硫属族化合物的大规模器件集成。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于3R相的二硫化钨场效应晶体管,其特征在于,包括:
硅衬底、设置在所述硅衬底上的栅介质、设置在所述栅介质上的3R相双层二硫化钨沟道材料及设置在所述3R相双层二硫化钨沟道材料表面的源漏电极。
2.根据权利要求1所述的基于3R相的二硫化钨场效应晶体管,其特征在于,所述3R相双层二硫化钨沟道材料的厚度为1.4纳米。
3.根据权利要求1所述的基于3R相的二硫化钨场效应晶体管,其特征在于,所述栅介质的材料为二氧化硅、氮化硅、碳化硅、氧化铪、氮化镓或砷化镓中的一种。
4.根据权利要求1所述的基于3R相的二硫化钨场效应晶体管,其特征在于,所述源漏电极包括底层接触金属和上层金属;
所述底层接触金属材料为镍、铂、钯中的一种;
所述上层金属材料为金、银、钯、锇、铱、铂、金、钛、铝、铬、锗、钼、镍、钨、铜、钴或铁中的一种。
5.根据权利要求4所述的基于3R相的二硫化钨场效应晶体管,其特征在于,所述底层接触金属材料为10-30纳米厚度的镍,所述上层金属材料为30-60纳米厚度的金。
6.一种如权利要求1-5任意一项所述的基于3R相的二硫化钨场效应晶体管的制备方法,其特征在于,所述方法包括:
步骤S1、清洗硅衬底;
步骤S2、转移制备好的包含3R相与2H相的双层二硫化钨至所述硅衬底上;
步骤S3、对所述3R相与2H相的双层二硫化钨制备标记层;
步骤S4、隔离区域刻蚀,包括:利用标记层定位3R相双层二硫化钨的位置,在所述3R相双层二硫化钨的表面定义有源区和隔离区;
步骤S5、在所述3R相双层二硫化钨表面制备源漏电极。
7.根据权利要求6所述的制备方法,其特征在于,制备所述包含3R相与2H相的双层二硫化钨的过程包括:
步骤S21、清洗蓝宝石衬底,900-1100摄氏度高温退火;
步骤S22、采用盐辅助化学气相沉积生长所述包含3R相与2H相的双层二硫化钨。
8.根据权利要求7所述的方法,其特征在于,采用化学气相沉积对所述蓝宝石衬底进行900-1100摄氏度高温退火,退火时间3-5小时,期间通入氩气与氧气。
9.根据权利要求7所述的方法,其特征在于,所述盐辅助化学气相沉积的条件参数为:氯化钾质量0~5毫克,二氧化钨质量30~50毫克,硫单质粉末质量为100~300毫克,生长温度850~1050摄氏度,通入90~110标准流量的氩气及8~12标准流量的氢气,生长压强1000~2500帕,生长时间10~20分钟。
10.根据权利要求7-9任意一项所述的方法,其特征在于,利用热释放胶带水法转移所述制备好的包含3R相与2H相的双层二硫化钨。
CN202211138399.0A 2022-09-19 2022-09-19 一种基于3r相的二硫化钨场效应晶体管及其制备方法 Pending CN115483290A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211138399.0A CN115483290A (zh) 2022-09-19 2022-09-19 一种基于3r相的二硫化钨场效应晶体管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211138399.0A CN115483290A (zh) 2022-09-19 2022-09-19 一种基于3r相的二硫化钨场效应晶体管及其制备方法

Publications (1)

Publication Number Publication Date
CN115483290A true CN115483290A (zh) 2022-12-16

Family

ID=84423569

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211138399.0A Pending CN115483290A (zh) 2022-09-19 2022-09-19 一种基于3r相的二硫化钨场效应晶体管及其制备方法

Country Status (1)

Country Link
CN (1) CN115483290A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116081580A (zh) * 2022-12-31 2023-05-09 湘潭大学 一种晶圆级二硫化钨或二硒化钨二维纳米薄膜的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116081580A (zh) * 2022-12-31 2023-05-09 湘潭大学 一种晶圆级二硫化钨或二硒化钨二维纳米薄膜的制备方法

Similar Documents

Publication Publication Date Title
US9761446B2 (en) Methods for the synthesis of arrays of thin crystal grains of layered semiconductors SnS2 and SnS at designed locations
US20220344330A1 (en) Field-Effect Transistors Having Transition Metal Dichalcogenide Channels and Methods of Manufacture
US7566364B2 (en) Method of fabricating orientation-controlled single-crystalline wire and method of fabricating transistor having the same
CN115513294A (zh) 一种基于3R相的p型二硒化钨场效应晶体管及其制备方法
JP3143473B2 (ja) シリコンオンポーラスシリコン;製造方法及び材料
US9991390B2 (en) Thin film transition metal dichalcogenides and methods
KR20160124017A (ko) 반도체 금속 디칼코제나이드의 단층 막, 그것을 만드는 방법, 및 그것의 사용
CN102024768A (zh) 半导体装置及半导体结构的制造方法
CN110663117B (zh) 一种石墨烯场效应晶体管及其制备方法
KR20180058647A (ko) 전구체 기화 농도 조절을 통한 대면적 단분자층 전이금속 디칼코제나이드 이종접합 구조체 제조방법
CN115483290A (zh) 一种基于3r相的二硫化钨场效应晶体管及其制备方法
CN113088922B (zh) 一种晶圆级绝对单层过渡金属硫族化合物的制备方法和应用
CN113401880B (zh) 一种碲纳米片厚度减薄的方法
Qiao et al. Edge‐Assisted Epitaxy of 2D TaSe2‐MoSe2 Metal–Semiconductor Heterostructures and Application to Schottky Diodes
Cho et al. Selectable synthesis of 2-D MoS 2 and its electronic devices: From isolated triangular islands to large-area continuous thin film
Smithe et al. Investigation of monolayer MX 2 as sub-nanometer copper diffusion barriers
Li et al. Key process technologies for stacked double Si0. 7Ge0. 3 channel nanowires fabrication
JP2020021828A (ja) 半導体装置および半導体装置の製造方法
KR19990013304A (ko) 비정질 막을 결정화하는 방법
Ezubchenko et al. High-quality AlN layers grown on Si (111) substrates by metalorganic chemical vapor deposition
CN107768445B (zh) 半导体装置及其制造方法
Zhao et al. Investigation on the formation technique of SiGe Fin for the high mobility channel FinFET device
CN113823555B (zh) 一种在绝缘体上制备锗薄膜的方法
Tao et al. A novel method for in situ growing Ge-rich polycrystalline SiGe thin films on glass at low temperature
CN115354392B (zh) 一种大尺寸单晶二硫化钼的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination