CN115475744A - 一种超疏水仿生纳米复合涂层的制备方法 - Google Patents

一种超疏水仿生纳米复合涂层的制备方法 Download PDF

Info

Publication number
CN115475744A
CN115475744A CN202211267796.8A CN202211267796A CN115475744A CN 115475744 A CN115475744 A CN 115475744A CN 202211267796 A CN202211267796 A CN 202211267796A CN 115475744 A CN115475744 A CN 115475744A
Authority
CN
China
Prior art keywords
super
hydrophobic
medium
preparation
mixed solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211267796.8A
Other languages
English (en)
Inventor
夏勇
唐正勇
李日胜
韩琦
杨宗有
凌珏
黄钰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou Stronkin Electronic Co Ltd
Original Assignee
Taizhou Stronkin Electronic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou Stronkin Electronic Co Ltd filed Critical Taizhou Stronkin Electronic Co Ltd
Priority to CN202211267796.8A priority Critical patent/CN115475744A/zh
Publication of CN115475744A publication Critical patent/CN115475744A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)

Abstract

本发明提供一种超疏水仿生纳米复合涂层的制备方法,涉及超疏水仿生纳米复合涂层领域。该超疏水仿生纳米复合涂层的制备方法,包括以下步骤S1:采用蒸汽冷凝法,在低压的Ar、He等惰性气体中加热物质(如金属等),使其蒸发汽化,利用半导体制冷器与吹风机对蒸发汽化的介质进行快速降温然后在气体介质中冷凝后形成5‑100nm的纳米微粒;S2:将形成的纳米微粒与超疏水剂进行混合搅拌,混合完毕的纳米微粒与超疏水进行排放,利用除沫器可将搅拌产生的泡沫进行去除;S3:对排放的纳米微粒与超疏水混合液进行筛分,将烷基硅氧烷加入筛分好的混合液中搅拌反应。通过半导体制冷器与吹风机可提高介质的冷却效率,从而可加快介质形成纳米微粒的效率。

Description

一种超疏水仿生纳米复合涂层的制备方法
技术领域
本发明涉及双目视觉三维测量技术领域,具体为一种超疏水仿生纳米复合涂层的制备方法。
背景技术
仿生超疏水表面因具有良好的自清洁、流体减阻、防腐蚀、防冰以及防污损性能,在工业上展示出了较强的应用潜力,引起了人们的广泛研究。超疏水表面的润湿性由以下两个因素共同决定:较低的表面能,以及表面的粗糙结构,研究表明在目前已知极低表面能物质的光滑固体表面,液滴的接触角最高仅达到120°,远达不到超疏水性的要求。然而引入微观结构可显著地提高固体表面非润湿性能,表观接触角可达150°甚至更高。因此制备超疏水表面的关键是在固体表面构筑合适尺寸的微观结构,目前随着技术的不断发展,出现了许多种在固体表面构建微观结构的方法,例如细微加工技术、等离子体刻蚀技术、化学或者物理气相沉积技术、化学刻蚀技术、溶胶凝胶技术、静电纺丝技术及喷涂技术等。
现有的超疏水仿生纳米复合涂层在使用时,介质冷却效率较低,导致纳米微粒在形成时效率较低,同时混合液在搅拌时容易产生大量的泡沫,使其容易影响超疏水仿生纳米复合涂层制备质量。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了一种超疏水仿生纳米复合涂层的制备方法,解决了纳米微粒形成效率与制备质量的问题。
(二)技术方案
为实现以上目的,本发明通过以下技术方案予以实现:一种超疏水仿生纳米复合涂层的制备方法,包括以下步骤:
S1:采用蒸汽冷凝法,在低压的Ar、He等惰性气体中加热物质(如金属等),使其蒸发汽化,利用半导体制冷器与吹风机对蒸发汽化的介质进行快速降温然后在气体介质中冷凝后形成5-100nm的纳米微粒;
S2:将形成的纳米微粒与超疏水剂进行混合搅拌,混合完毕的纳米微粒与超疏水进行排放,利用除沫器可将搅拌产生的泡沫进行去除;
S3:对排放的纳米微粒与超疏水混合液进行筛分,将烷基硅氧烷加入筛分好的混合液中搅拌反应;
S4:反应后的混合液可通过浸泡的方式对混合液进行浸泡,将浸泡后的混合液涂抹基材的表面进行加热;
S5:对涂抹混合液的基材进行烘干,造成超疏水仿生纳米复合涂层的制备。
优选的,所述S3中混合液搅拌下55℃反应3-7h,获得构建微纳低表面能粗糙层的悬浮液。
优选的,所述S4中基材75℃加热一小时。
优选的,所述S1中吹风机位于半导体的前方,使其加快介质冷却效率。
优选的,所述S2中除沫器可在罐体内上下移动对罐体内的泡沫进行去除。
(三)有益效果
本发明提供了一种超疏水仿生纳米复合涂层的制备方法。具备以下有益效果:
1、本发明可通过半导体制冷器与吹风机可提高介质的冷却效率,从而可加快介质形成纳米微粒的效率。
2、本发明可利用除沫器将搅拌产生的泡沫进行去除,从而可提高超疏水仿生纳米复合涂层制备质量。
具体实施方式
本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例:
本发明实施例提供一种超疏水仿生纳米复合涂层的制备方法,包括以下步骤:
S1:采用蒸汽冷凝法,在低压的Ar、He等惰性气体中加热物质(如金属等),使其蒸发汽化,利用半导体制冷器与吹风机对蒸发汽化的介质进行快速降温然后在气体介质中冷凝后形成5-100nm的纳米微粒,吹风机位于半导体的前方,使其加快介质冷却效率,使介质可较好的进行冷却。
S2:将形成的纳米微粒与超疏水剂进行混合搅拌,混合完毕的纳米微粒与超疏水进行排放,利用除沫器可将搅拌产生的泡沫进行去除,除沫器可在罐体内上下移动对罐体内的泡沫进行去除,可减少混合液搅拌时发生的泡沫。
S3:对排放的纳米微粒与超疏水混合液进行筛分,将烷基硅氧烷加入筛分好的混合液中搅拌反应,混合液搅拌下55℃反应3-7h,获得构建微纳低表面能粗糙层的悬浮液,可对纳米微粒与超疏水剂进行搅拌过筛。
S4:反应后的混合液可通过浸泡的方式对混合液进行浸泡,将浸泡后的混合液涂抹基材的表面进行加热,基材75℃加热一小时,方便对超疏水仿生纳米复合涂层进行制备。
S5:对涂抹混合液的基材进行烘干,造成超疏水仿生纳米复合涂层的制备。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (5)

1.一种超疏水仿生纳米复合涂层的制备方法,其特征在于,包括以下步骤:
S1:采用蒸汽冷凝法,在低压的Ar、He等惰性气体中加热物质(如金属等),使其蒸发汽化,利用半导体制冷器与吹风机对蒸发汽化的介质进行快速降温然后在气体介质中冷凝后形成5-100nm的纳米微粒;
S2:将形成的纳米微粒与超疏水剂进行混合搅拌,混合完毕的纳米微粒与超疏水进行排放,利用除沫器可将搅拌产生的泡沫进行去除;
S3:对排放的纳米微粒与超疏水混合液进行筛分,将烷基硅氧烷加入筛分好的混合液中搅拌反应;
S4:反应后的混合液可通过浸泡的方式对混合液进行浸泡,将浸泡后的混合液涂抹基材的表面进行加热;
S5:对涂抹混合液的基材进行烘干,造成超疏水仿生纳米复合涂层的制备。
2.根据权利要求1所述的一种超疏水仿生纳米复合涂层的制备方法,其特征在于:所述S3中混合液搅拌下55℃反应3-7h,获得构建微纳低表面能粗糙层的悬浮液。
3.根据权利要求1所述的一种超疏水仿生纳米复合涂层的制备方法,其特征在于:所述S4中基材75℃加热一小时。
4.根据权利要求1所述的一种超疏水仿生纳米复合涂层的制备方法,其特征在于:所述S1中吹风机位于半导体的前方,使其加快介质冷却效率。
5.根据权利要求1所述的一种超疏水仿生纳米复合涂层的制备方法,其特征在于:所述S2中除沫器可在罐体内上下移动对罐体内的泡沫进行去除。
CN202211267796.8A 2022-10-17 2022-10-17 一种超疏水仿生纳米复合涂层的制备方法 Pending CN115475744A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211267796.8A CN115475744A (zh) 2022-10-17 2022-10-17 一种超疏水仿生纳米复合涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211267796.8A CN115475744A (zh) 2022-10-17 2022-10-17 一种超疏水仿生纳米复合涂层的制备方法

Publications (1)

Publication Number Publication Date
CN115475744A true CN115475744A (zh) 2022-12-16

Family

ID=84395269

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211267796.8A Pending CN115475744A (zh) 2022-10-17 2022-10-17 一种超疏水仿生纳米复合涂层的制备方法

Country Status (1)

Country Link
CN (1) CN115475744A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102615289A (zh) * 2011-01-28 2012-08-01 杭州华纳塔器科技有限公司 蒸发-冷凝制备超细金属粉末的方法
CN104690281A (zh) * 2013-12-09 2015-06-10 青岛平度市旧店金矿 一种基于等离子体加热的蒸发-纳米金属粉末工艺
CN107418266A (zh) * 2017-08-08 2017-12-01 伍淼 超疏水涂层及其制备方法
CN209071887U (zh) * 2018-12-18 2019-07-05 北京明科电通电力设备有限公司 快速散热的配电箱
CN214680179U (zh) * 2020-12-30 2021-11-12 河北化工医药职业技术学院 氨分离器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102615289A (zh) * 2011-01-28 2012-08-01 杭州华纳塔器科技有限公司 蒸发-冷凝制备超细金属粉末的方法
CN104690281A (zh) * 2013-12-09 2015-06-10 青岛平度市旧店金矿 一种基于等离子体加热的蒸发-纳米金属粉末工艺
CN107418266A (zh) * 2017-08-08 2017-12-01 伍淼 超疏水涂层及其制备方法
CN209071887U (zh) * 2018-12-18 2019-07-05 北京明科电通电力设备有限公司 快速散热的配电箱
CN214680179U (zh) * 2020-12-30 2021-11-12 河北化工医药职业技术学院 氨分离器

Similar Documents

Publication Publication Date Title
Zhuang et al. Transparent superhydrophobic PTFE films via one-step aerosol assisted chemical vapor deposition
Milionis et al. Liquid repellent nanocomposites obtained from one-step water-based spray
Chen et al. Effect of solution concentration on splat formation and coating microstructure using the solution precursor plasma spray process
Xu et al. Control of the hydrophobicity of rare earth oxide coatings deposited by solution precursor plasma spray by hydrocarbon adsorption
US20060246297A1 (en) Process for structuring self-cleaning glass surfaces
US20110252799A1 (en) Condenser tube having increased hydrophobicity, production method and use thereof
Sun et al. Electrochemical fabrication of superhydrophobic Zn surfaces
CN106319601B (zh) 一种超疏水型多孔金属涂层的制备方法
Zheng et al. Superhydrophilic Coating Induced Temporary Conductivity for Low‐Cost Coating and Patterning of Insulating Surfaces
Seo et al. Superhydrophobic carbon fiber surfaces prepared by growth of carbon nanostructures and polydimethylsiloxane coating
Wang et al. Beetle-like droplet-jumping superamphiphobic coatings for enhancing fog collection of sheet arrays
Xiao et al. Thermal stability of typical superhydrophobic surfaces
Fanelli et al. Preparation of multifunctional superhydrophobic nanocomposite coatings by aerosol-assisted atmospheric cold plasma deposition
Li et al. Super-Hydrophobic surface prepared by lanthanide oxide ceramic deposition through PS-PVD process
Porto et al. Easy plasma nano-texturing of PTFE surface: From pyramid to unusual spherules-on-pyramid features
Kuo et al. Carbon-free SiOx ultrathin film using atmospheric pressure plasma jet for enhancing the corrosion resistance of magnesium alloys
Yasmeen et al. Preparation of a hydrophobic cerium oxide nanoparticle coating with polymer binder via a facile solution route
CN100549217C (zh) 生产涂覆超亲水性薄膜的金属产品的方法及涂覆超亲水性薄膜的金属产品
CN115475744A (zh) 一种超疏水仿生纳米复合涂层的制备方法
Liu et al. Fog collection efficiency of superhydrophobic surfaces with different water adhesion prepared by laser grid texturing
Song et al. Hierarchically branched siloxane brushes for efficient harvesting of atmospheric water
Shi et al. Fabrication of superhydrophobic micro-nanostructured aluminum alloy surface via a cost-effective processing using an ultra-low concentration of fluoroalkylsilane
Xiao et al. Dip-coating of superhydrophobic surface on irregular substrates for dropwise condensation
Wan et al. Fabrication and properties of super-hydrophobic microstructures on magnesium alloys by laser–chemical etching
EP2463403B1 (en) Method for fabricating product having functional layer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20221216

RJ01 Rejection of invention patent application after publication