CN115452021A - 一种井下高温复合材料光纤光栅传感器及其制作方法 - Google Patents
一种井下高温复合材料光纤光栅传感器及其制作方法 Download PDFInfo
- Publication number
- CN115452021A CN115452021A CN202211127000.9A CN202211127000A CN115452021A CN 115452021 A CN115452021 A CN 115452021A CN 202211127000 A CN202211127000 A CN 202211127000A CN 115452021 A CN115452021 A CN 115452021A
- Authority
- CN
- China
- Prior art keywords
- composite material
- hot
- temperature
- glass
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 54
- 239000002131 composite material Substances 0.000 title claims abstract description 43
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims abstract description 32
- 239000003365 glass fiber Substances 0.000 claims abstract description 31
- 238000007731 hot pressing Methods 0.000 claims abstract description 31
- 239000011521 glass Substances 0.000 claims abstract description 20
- 239000004642 Polyimide Substances 0.000 claims abstract description 19
- 229920001721 polyimide Polymers 0.000 claims abstract description 19
- 239000000843 powder Substances 0.000 claims abstract description 15
- 238000007789 sealing Methods 0.000 claims abstract description 15
- 238000003466 welding Methods 0.000 claims abstract description 14
- 239000007788 liquid Substances 0.000 claims abstract description 6
- 238000010438 heat treatment Methods 0.000 claims description 13
- 230000003647 oxidation Effects 0.000 claims description 10
- 238000007254 oxidation reaction Methods 0.000 claims description 10
- 238000004140 cleaning Methods 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 7
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 238000000746 purification Methods 0.000 claims description 4
- 238000005245 sintering Methods 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 238000000748 compression moulding Methods 0.000 claims description 3
- 238000001802 infusion Methods 0.000 claims 2
- 239000013307 optical fiber Substances 0.000 abstract description 9
- 239000010410 layer Substances 0.000 abstract description 8
- 239000012528 membrane Substances 0.000 abstract description 8
- 239000011247 coating layer Substances 0.000 abstract description 4
- 229910000679 solder Inorganic materials 0.000 abstract description 4
- 239000011248 coating agent Substances 0.000 abstract description 3
- 238000000576 coating method Methods 0.000 abstract description 3
- 238000005259 measurement Methods 0.000 abstract description 3
- 238000009529 body temperature measurement Methods 0.000 abstract 1
- 239000002585 base Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 5
- 238000012858 packaging process Methods 0.000 description 5
- 238000000137 annealing Methods 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011900 installation process Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920003055 poly(ester-imide) Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/3537—Optical fibre sensor using a particular arrangement of the optical fibre itself
- G01D5/35374—Particular layout of the fiber
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/3537—Optical fibre sensor using a particular arrangement of the optical fibre itself
- G01D5/3538—Optical fibre sensor using a particular arrangement of the optical fibre itself using a particular type of fiber, e.g. fibre with several cores, PANDA fiber, fiber with an elliptic core or the like
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
本发明公开了一种井下高温复合材料光纤光栅传感器及其制作方法。所述制作方法包括如下步骤:将表面涂覆聚酰亚胺的测压光纤光栅放置于热压模具内,然后在测压光纤光栅上逐层平铺玻璃纤维复合材料基板;将热压模具置于热压炉中进行预固化和二次固化;将玻璃粉置于基座进液口处的凹缝内,焊接玻璃纤维复合材料基板与基座、测温光纤光栅与L型悬臂梁;将基座和L型悬臂梁与密封座连接即得。本发明通过采用具有耐高温的聚酰亚胺涂覆层的光纤,并采用飞秒激光透涂覆刻写工艺所得的光纤光栅,保证了在低熔点玻璃焊料焊接时光纤涂覆层不会被烧坏。采用预固化和二次固化工艺封装得到的复合材料膜片满足了井下特殊环境下的测量要求。
Description
技术领域
本发明涉及一种井下高温复合材料光纤光栅传感器及其制作方法,属于光纤传感领域。
背景技术
光纤光栅是一种折射率发生轴向周期性调制而形成的衍射光栅,是一种无源滤波器件,其虽然具有质量轻、体积小、耐腐蚀、抗电磁干扰等优良特性,但是其纤芯直径较小,纤细脆弱,导致其在实际工程应用中容易断裂失活。因此需要对裸栅进行封装处理或性能改进。然而,不同的封装处理或性能改进得到的结果会有很大的差异。当选用高性能参数的封装材料以及合适的封装工艺以期制得性能优良的光纤光栅传感器。
目前较为通用的两种光纤光栅封装形式为细颈管保护式和基片式。前者是将光纤光栅置于细颈不锈钢管的中心轴线处,四周采用环氧树脂等胶体固定保护。这种封装方式工艺复杂、维修困难,同时在不同使用条件下对胶粘剂的性能要求不同,增加了封装工艺操作难度。后者通常采用胶基基片或者刻有凹槽的薄钢板作为基板,随后将光纤光栅粘贴其上,做成基片式传感器。相较而言,光纤光栅基片式封装工艺更加简便,其结构简单,安装简便,方便拆卸,并且应用广泛。
对于基片式保护也有多种封装方式。金属基片式光纤光栅传感器虽然有简单的结构和简便的安装工艺,但金属固有的易腐蚀特性在工程应用中存在一定的局限性和成本问题;同时,当待测结构很小时,表贴的金属基片式光纤光栅传感器相当于加强筋,影响测量结果。树脂基片式光纤光栅传感器虽然具有较好的抗腐蚀性能,但是其强度、模量以及抗剪切能力等性能较低,并且在高温环境中无法使用。
发明内容
本发明的目的是提供一种井下高温复合材料光纤光栅传感器及其制作方法,其目的在于解决现有井下高温高压等特殊环境中传感器的封装问题。
本发明提供的井下高温复合材料光纤光栅传感器的制作方法,包括如下步骤:
S1、将表面涂覆聚酰亚胺的测压光纤光栅放置于热压模具内,然后在所述测压光纤光栅上逐层平铺玻璃纤维复合材料基板;
S2、将所述热压模具置于热压炉中进行预固化;
S3、经步骤S2处理后的所述测压光纤光栅进行二次固化;
S4、将玻璃粉置于基座进液口处的凹缝内,焊接所述玻璃纤维复合材料基板与基座、测温光纤光栅与L型悬臂梁;
S5、将所述基座和所述L型悬臂梁与密封座连接即得。
上述的制作方法中,步骤S1中,涂覆所述聚酰亚胺之前,采用高温退火处理所述测压光纤光栅。
上述的制作方法中,步骤S1中,所述热压模具的材质为镍合金,其大小可根据实际需求设计。
上述的制作方法中,步骤S1中,所述玻璃纤维复合材料基板由玻璃纤维/聚酰亚胺预浸料模压成型得到。
上述的制作方法中,步骤S2中,所述预固化的过程如下:
将所述热压炉抽真空,升温至130~800℃,将所述热压炉加热60~120分钟之后对所述玻璃纤维复合材料基板进行烧结,随后真空辅助灌注室温固化的所述聚酰亚胺,待真空辅助灌注过程结束后经室温自然冷却6~8小时取出;
所述预固化中,所述热压炉的压力为0.5~15MPa,抽真空度为20~100Pa。
上述的制作方法中,步骤S3中,所述二次固化在所述热压炉中进行,在130~135℃下恒温固化90~100分钟。
上述的制作方法中,步骤S4中,所述玻璃粉为低温低熔点玻璃粉;所述基座和所述L型悬臂梁的材质为镍合金。
上述的制作方法中,步骤S4中,采用玻璃焊接的方进行所述焊接,步骤如下:
将所述基座和所述L型悬臂梁的表面按照机械净化、去油、化学或电化学清洗和烘干进行清洁处理;然后进行烧氢处理以及对封接部位作氧化处理;在进行氧化处理时,必须严格控制氧化程度,氧化膜厚度要适中;加入所述玻璃粉后置于加热箱内升温至270~380℃,保持60~70分钟后,自然冷却至室温。
上述的制作方法中,步骤S5中,采用激光焊接的方式进行连接。
本发明通过采用具有耐高温的聚酰亚胺涂覆层的光纤,并采用飞秒激光透涂覆刻写工艺所得的光纤光栅,保证了在低熔点玻璃焊料焊接时光纤涂覆层不会被烧坏。另外,采用玻璃纤维复合材料层合板作为基板,将干态玻纤布覆盖于基板之上,中间真空灌注液态聚酯亚胺。采用上述预固化和二次固化工艺封装得到的复合材料膜片满足了井下特殊环境下的测量要求。
附图说明
图1是本发明井下高温复合材料光纤光栅传感器封装完成的剖面图。
图2是本发明实施例提供的热压模具内部涂覆聚酰亚胺的光纤光栅和玻璃材料复合材料基板的铺设及结构示意图。
图3是本发明实施例提供的一体化封装的光纤光栅复合材料膜片示意图。
其中:1为玻璃纤维复合材料基板,2为基座,3为外盖,4为密封座,5为L型悬臂梁,6为密封座,7为进液口,8为连接头,9为连接头,10为测压光纤光栅,11为测温光纤光栅。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
本发明提供的井下高温复合材料光纤光栅传感器的制作方法,主要包括以下步骤
S1,在测压光纤光栅10的表面涂覆聚酰亚胺;
S2,在设计好的热压模具内放置涂覆聚酰亚胺的测压光纤光栅;
S3,在热压模具内的光栅上逐层平铺玻璃纤维复合材料基板1;
S4,放入真空热压炉中模压成型时采用预固化成型工艺(聚酰亚胺部分固化);
S5,在测压光纤光栅封装完成后进行二次固化,释放残余应力;
S6,将玻璃粉置于基座2进液口7处的凹缝内,采用高温固化工艺焊接玻璃纤维复合材料基板1和基座2以及测温光纤光栅11与L型悬臂梁5;
S7,采用激光焊接方式连接基座2与密封座4、基座2与密封座6、密封座与L型悬臂梁5。
在步骤S1中,测压光纤为PI涂炭光纤。
在步骤S1中,测压光纤光栅采用高温退火处理过的测压光纤光栅。
在步骤S2中,模具为耐高温镍合金,其大小可根据实际需求设计。
在步骤S3中,玻璃纤维复合材料基板1由玻璃纤维/聚酰亚胺预浸料模压成型得到。
在步骤S4中,预固化工艺步骤为:将热压炉抽真空,升温至130~800℃,将热压炉60~120分钟之后对玻璃纤维层状复合材料进行烧结,随后真空辅助灌注室温固化聚酰亚胺,待真空辅助灌注过程结束后玻璃纤维层状复合材料经室温自然冷却6~8小时取出;预固化工艺步骤中的热压炉压力为0.5~15MPa,抽真空度为20~100Pa。
在步骤S5中,二次固化步骤为:将预成型的光纤光栅复合材料膜片置于热压炉中进行二次固化,固化过程中不加外加,使所述膜片在130℃下恒温90分钟后取出并裁剪。
在步骤S6中,基座2和L型悬臂梁5采用耐高温镍合金,其热膨胀系数与光纤、玻璃焊料和复合材料相近。
在步骤S6中,玻璃焊料为低温低熔点玻璃粉。
在步骤S6中,玻璃焊接工艺步骤为:将基座和L型悬臂梁的表面按照机械净化、去油、化学或电化学清洗和烘干进行清洁处理;然后进行烧氢处理以及对封接部位作氧化处理,在进行氧化处理时,必须严格控制氧化程度,氧化膜厚度要适中;最后,根据封接部位的结构特点,选择不同的封接工艺,此处是将玻璃粉置于设计好的凹槽内,随后放入加热箱内升温至270~380℃,保持一段时间后,自然冷却至室温。
在步骤S7中,激光焊接采用连续激光光束完成材料的连接。
实施例1、制作井下高温复合材料光纤光栅传感器
S1、对聚酰亚胺涂层光栅进行退火处理,目的是进一步提高光纤光栅的耐高温性能,按照退火温度为950~1200℃和退火时间1~3h的工艺参数进行,退火之后的光纤光栅最高能承受1200℃。
S2、玻璃纤维复合材料基板的制备:裁剪尺寸为100×100mm的玻璃纤维预浸料和脱模布,预浸料中的玻璃纤维采用正交编织的方式;随后将脱模布整齐铺放于下模板上,其上铺放多层玻璃纤维预浸料,上面再铺放一层脱模布,最后加盖上模板;将上述装置放于硫化机内热压成型,自然冷却得到玻璃纤维复合材料基板(图3所示)。
S3、将上述步骤获得的复合材料基板平铺于测压光纤光栅的上面和下面,如图2所示。然后置于热压模具中,将热压炉抽真空,升温至130~800℃,将热压炉加热60~120分钟之后对玻璃纤维层状复合材料进行烧结,随后真空辅助灌注室温固化聚酰亚胺,待真空辅助灌注过程结束后所述玻璃纤维层状复合材料经室温自然冷却6~8小时取出;随后,将预成型的光纤光栅复合材料膜片置于热压炉中进行二次固化,所述固化过程中不加外加,使膜片在130℃下恒温90分钟后取出并裁剪。
S4、将基座和L型悬臂梁的表面按照机械净化、去油、化学或电化学清洗和烘干进行清洁处理;然后进行烧氢处理以及对封接部位作氧化处理,在进行氧化处理时,必须严格控制氧化程度,氧化膜厚度要适中;最后,根据封接部位的结构特点,选择不同的封接工艺,此处是将玻璃粉置于设计好的凹槽内,随后放入加热箱内升温至270~380℃,保持一段时间后,自然冷却至室温。
S5、将剩下的部件采用激光焊接的方式连接密封。
如图1所示,即为井下高温复合材料光纤光栅传感器封装完成的剖面图,其能够应用于井下高温高压、酸碱侵蚀等恶劣环境中,且具有极好的密闭性以及精确度。
Claims (10)
1.一种井下高温复合材料光纤光栅传感器的制作方法,包括如下步骤:
S1、将表面涂覆聚酰亚胺的测压光纤光栅放置于热压模具内,然后在所述测压光纤光栅上逐层平铺玻璃纤维复合材料基板;
S2、将所述热压模具置于热压炉中进行预固化;
S3、经步骤S2处理后的封装有测压光栅的所述玻璃纤维复合材料基板进行二次固化;
S4、将玻璃粉置于基座进液口处的凹缝内,焊接所述玻璃纤维复合材料基板与基座、测温光纤光栅与L型悬臂梁;
S5、将所述基座和所述L型悬臂梁与密封座连接即得。
2.根据权利要求1所述的制作方法,其特征在于:步骤S1中,涂覆所述聚酰亚胺之前,采用高温退火处理所述测压光纤光栅。
3.根据权利要求1或2所述的制作方法,其特征在于:步骤S1中,所述热压模具的材质为镍合金。
4.根据权利要求1-3中任一项所述的制作方法,其特征在于:步骤S1中,所述玻璃纤维复合材料基板由玻璃纤维/聚酰亚胺预浸料模压成型得到。
5.根据权利要求1-4中任一项所述的制作方法,其特征在于:步骤S2中,所述预固化的过程如下:
将所述热压炉抽真空,升温至130~800℃,将所述热压炉加热60~120分钟之后对所述玻璃纤维复合材料基板进行烧结,随后真空辅助灌注室温固化的所述聚酰亚胺,待真空辅助灌注过程结束后经室温自然冷却6~8小时取出;
所述预固化中,所述热压炉的压力为0.5~15MPa,抽真空度为20~100Pa。
6.根据权利要求1-5中任一项所述的制作方法,其特征在于:步骤S3中,所述二次固化在所述热压炉中进行,固化过程中不外加压力,在130~135℃下恒温固化90~100分钟。
7.根据权利要求1-6中任一项所述的制作方法,其特征在于:步骤S4中,所述玻璃粉为低温低熔点玻璃粉;
所述基座和所述L型悬臂梁的材质均为镍合金。
8.根据权利要求1-7中任一项所述的制作方法,其特征在于:步骤S4中,采用玻璃焊接的方进行所述焊接,步骤如下:
将所述基座和所述L型悬臂梁的表面采用机械净化、去油、化学或电化学清洗和烘干的方式进行清洁处理;然后进行烧氢处理以及对封接部位作氧化处理;加入所述玻璃粉后置于加热箱内升温至270~380℃,保持60~70分钟后,自然冷却至室温。
9.根据权利要求1-8中任一项所述的制作方法,其特征在于:步骤S5中,采用激光焊接的方式进行连接。
10.权利要求1-9中任一项所述方法制作的井下高温复合材料光纤光栅传感器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211127000.9A CN115452021A (zh) | 2022-09-16 | 2022-09-16 | 一种井下高温复合材料光纤光栅传感器及其制作方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211127000.9A CN115452021A (zh) | 2022-09-16 | 2022-09-16 | 一种井下高温复合材料光纤光栅传感器及其制作方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115452021A true CN115452021A (zh) | 2022-12-09 |
Family
ID=84304870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211127000.9A Pending CN115452021A (zh) | 2022-09-16 | 2022-09-16 | 一种井下高温复合材料光纤光栅传感器及其制作方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115452021A (zh) |
-
2022
- 2022-09-16 CN CN202211127000.9A patent/CN115452021A/zh active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106404065B (zh) | 一种复合材料封装的光纤光栅传感器及其制造方法 | |
Li | Embedded sensors in layered manufacturing | |
JP3899017B2 (ja) | ガラスソルダにより金属フィードスルースリーブ内でファイバオプティックライトガイドを密封的にシールする方法及びそれにより製造された密封的なフィードスルー装置 | |
CN108759706B (zh) | 基于内植光纤光栅的三明治构件固化变形监测装置及方法 | |
CN104315990B (zh) | 一种树脂基复合材料热模压固化变形的测试装置及装置的制备和使用方法 | |
CN103390595B (zh) | 加固的光子晶体传感器封装 | |
CN105588673A (zh) | 一种光纤光栅传感器监测模具与构件作用力的方法 | |
CN105628249B (zh) | 用于模压制品检测的光纤光栅传感器嵌件及其制造方法 | |
CN115452021A (zh) | 一种井下高温复合材料光纤光栅传感器及其制作方法 | |
US5604836A (en) | Optical fiber entry strain relief interface for compression-molded structures | |
CN112344843B (zh) | 一种耐高低温聚酰亚胺应变计及其制造方法 | |
RU2630798C1 (ru) | Оснастка для формования изделий из полимерных композиционных материалов и способ ее изготовления | |
CN115816926B (zh) | 一种基于陶瓷瓦的可重复使用防隔热结构及其制备方法 | |
RU2759000C1 (ru) | Соединительные и герметизирующие запрессованные керамические детали | |
EP2558280B1 (en) | Method and apparatus for moulding parts made from composite materials | |
Mohanta et al. | In-situ determination of degree of cure by mapping with strain measured by embedded FBG and conventional sensor during VIM process | |
CN111129764B (zh) | 一种海潜天线罩及其制作方法 | |
CN114200574B (zh) | 基于复合材料制作与封装长周期光纤光栅的方法及装置 | |
CN111320483A (zh) | 一种耐高温碳纤维复合材料及其制备方法 | |
CN114184301A (zh) | 一种超耐高温光纤光栅温度传感器及信号解调方法 | |
CN111505045B (zh) | 一种陶瓷基复合材料基体膨胀系数测量方法和系统 | |
EP2179841B1 (en) | Functionally graded high temperature bonding of fiberglass fibers to steel | |
US9701587B2 (en) | Method for producing inorganic fiber-bonded ceramic material | |
CN114939938B (zh) | 一种低应力复合材料预埋金属件产品的制备方法 | |
CN112477361A (zh) | 一种制备纤维金属层板的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |