CN115433998A - 系列碱土金属硫属(硒属)化合物及其非线性光学晶体及其制备方法及其用途 - Google Patents

系列碱土金属硫属(硒属)化合物及其非线性光学晶体及其制备方法及其用途 Download PDF

Info

Publication number
CN115433998A
CN115433998A CN202211258128.9A CN202211258128A CN115433998A CN 115433998 A CN115433998 A CN 115433998A CN 202211258128 A CN202211258128 A CN 202211258128A CN 115433998 A CN115433998 A CN 115433998A
Authority
CN
China
Prior art keywords
molar ratio
follows
hgs
hgcl
ges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211258128.9A
Other languages
English (en)
Inventor
俞洪伟
张星宇
吴红萍
胡章贵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN202211258128.9A priority Critical patent/CN115433998A/zh
Publication of CN115433998A publication Critical patent/CN115433998A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/10Single-crystal growth directly from the solid state by solid state reactions or multi-phase diffusion
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/12Salt solvents, e.g. flux growth
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3551Crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • G02F1/392Parametric amplification

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及系列碱土金属硫属(硒属)化合物和系列碱土金属硫属(硒属)非线性光学晶体及其制备方法及其用途,其分子通式均为AEⅡIVQ4,其中AE=Sr,Ba;Ⅱ=Cd,Hg;IV=Si,Ge;Q=S,Se。其化学式分别为BaHgSiS4、SrHgSiS4、BaHgGeS4、SrHgGeS4、SrCdSiSe4,均属正交晶系,空间群Ama2,α=β=γ=90°,Z=4。系列碱土金属硫属(硒属)化合物采用真空高温固相反应法合成,系列碱土金属硫属(硒属)晶体采用高温溶液法或布里奇曼法(坩埚下降法)生长。该材料可用于制造二次谐波发生器,上、下频率转换器,光参量振荡器等。

Description

系列碱土金属硫属(硒属)化合物及其非线性光学晶体及其制 备方法及其用途
技术领域
本发明涉及一种新型系列碱土金属硫属(硒属)化合物及其非线性光学晶体,系列碱土金属硫属(硒属)化合物及其晶体的分子通式均为AEⅡIVQ4,其中AE=Sr,Ba;Ⅱ=Cd,Hg;IV=Si,Ge;Q=S,Se,化学式分别为BaHgSiS4、SrHgSiS4、BaHgGeS4、SrHgGeS4、SrCdSiSe4其非线性光学晶体及化合物的制备方法,属于光学技术和晶体材料科技领域。
背景技术
近些年中远红外倍频效应大、透过波段宽、光损伤阈值大、物化性能稳定的新型非线性光学晶体材料的研究逐渐变为热点话题。目前主要非线性光学材料有:β-BaB2O4(BBO)晶体、LiB3O5(LBO)晶体、CsB3O5(CBO)晶体、CsLiB6O10(CLBO)晶体、KBe2BO3F2(KBBF)晶体、AgGaS2(AGS)晶体、AgGaSe2(AGSe)晶体和ZnGeP2(ZGP)晶体。虽然这些材料的晶体生长技术已日趋成熟,但仍存在着明显的不足之处:如晶体易潮解、生长周期长、层状生长习性严重、价格昂贵、激光损伤阈值小以及双光子吸收等。因此,寻找新的非线性光学晶体材料仍然是一个非常重要而艰巨的工作。
系列碱土金属硫属(硒属)晶体是重要的半导体材料、中红外材料,其性能受到广泛的关注,在照明、显示、军事安全保卫及激光医疗等领域有较为广泛的应用。由于其较好的综合性能,利于获得较强的非线性光学效应,是新型中远红外非线性光学晶体的理想选择。
发明内容
本发明的目的之一是提供系列碱土金属硫属(硒属)化合物。
本发明的目的之二是提供系列碱土金属硫属(硒属)化合物的制备方法。
本发明的目的之三是提供系列碱土金属硫属(硒属)红外非线性光学晶体。
本发明的目的之四是提供系列碱土金属硫属(硒属)红外非线性光学晶体的制备方法。
本发明的目的之五是提供系列碱土金属硫属(硒属)红外非线性光学晶体的应用。
本发明的目的之一是这样实现的:
本发明目的在于提供一种新型系列碱土金属硫属(硒属)化合物,其特征在于该系列碱土金属硫属(硒属)化合物的分子通式为AEⅡIVQ4,其中AE=Sr,Ba;Ⅱ=Cd,Hg;IV=Si,Ge;Q=S,Se,其化学式分别为BaHgSiS4、SrHgSiS4、BaHgGeS4、SrHgGeS4、SrCdSiSe4,不具有对称中心,正交晶系,空间群Ama2,晶胞参数为
Figure BDA0003889077430000011
Figure BDA0003889077430000012
α=β=γ=90°,Z=4,单胞体积
Figure BDA0003889077430000013
Figure BDA0003889077430000014
本发明的目的之二是这样实现的:
本发明提供的系列碱土金属硫属(硒属)化合物,其采用真空高温固相反应法按下列化学反应式制备系列碱土金属硫属(硒属)化合物:
1)Ba+Hg+Si+4S→BaHgSiS4
2)BaS+Hg+Si+3S→BaHgSiS4
3)Ba+HgS+Si+3S→BaHgSiS4
4)BaS+HgS+Si+2S→BaHgSiS4
5)Ba+0.5HgS+0.5Hg+Si+3.5S→BaHgSiS4
6)BaS+0.5HgS+0.5Hg+Si+2.5S→BaHgSiS4
7)0.5Ba+0.5BaS+Hg+Si+3.5S→BaHgSiS4
8)0.5Ba+0.5BaS+HgS+Si+2.5S→BaHgSiS4
9)0.5Ba+0.5BaS+0.5HgS+0.5Hg+Si+2.5S→BaHgSiS4
10)Sr+Hg+Si+4S→SrHgSiS4
11)SrS+Hg+Si+3S→SrHgSiS4
12)Sr+HgS+Si+3S→SrHgSiS4
13)SrS+HgS+Si+2S→SrHgSiS4
14)Sr+0.5HgS+0.5Hg+Si+3.5S→SrHgSiS4
15)SrS+0.5HgS+0.5Hg+Si+2.5S→SrHgSiS4
16)0.5Sr+0.5SrS+Hg+Si+3.5S→SrHgSiS4
17)0.5Sr+0.5SrS+HgS+Si+2.5S→SrHgSiS4
18)0.5Sr+0.5SrS+0.5HgS+0.5Hg+Si+2.5S→SrHgSiS4
19)Ba+Hg+Ge+4S→BaHgGeS4
20)BaS+Hg+Ge+3S→BaHgGeS4
21)Ba+HgS+Ge+3S→BaHgGeS4
22)BaS+HgS+Ge+2S→BaHgGeS4
23)Ba+0.5HgS+0.5Hg+Ge+3.5S→BaHgGeS4
24)BaS+0.5HgS+0.5Hg+Ge+2.5S→BaHgGeS4
25)0.5Ba+0.5BaS+Hg+Ge+3.5S→BaHgGeS4
26)0.5Ba+0.5BaS+HgS+Ge+2.5S→BaHgGeS4
27)0.5Ba+0.5BaS+0.5HgS+0.5Hg+Ge+3S→BaHgGeS4
29)BaS+Hg+GeS2+S→BaHgGeS4
30)Ba+Hg+GeS2+2S→BaHgGeS4
31)Ba+HgS+GeS2+S→BaHgGeS4
32)BaS+HgS+GeS2→BaHgGeS4
33)Ba+0.5HgS+0.5Hg+GeS2+1.5S→BaHgGeS4
34)BaS+0.5HgS+0.5Hg+GeS2+0.5S→BaHgGeS4
35)0.5Ba+0.5BaS+0.5HgS+0.5Hg+GeS2+S→BaHgGeS4
36)Sr+Hg+Ge+4S→SrHgGeS4
37)SrS+Hg+Ge+3S→SrHgGeS4
38)Sr+HgS+Ge+3S→SrHgGeS4
39)SrS+HgS+Ge+2S→SrHgGeS4
40)Sr+0.5HgS+0.5Hg+Ge+3.5S→SrHgGeS4
41)SrS+0.5HgS+0.5Hg+Ge+2.5S→SrHgGeS4
42)0.5Sr+0.5SrS+Hg+Ge+3.5S→SrHgGeS4
43)0.5Sr+0.5SrS+HgS+Ge+2.5S→SrHgGeS4
44)0.5Sr+0.5SrS+0.5HgS+0.5Hg+Ge+3S→SrHgGeS4
45)SrS+Hg+GeS2+S→SrHgGeS4
46)Sr+Hg+GeS2+2S→SrHgGeS4
47)Sr+HgS+GeS2+S→SrHgGeS4
48)SrS+HgS+GeS2→SrHgGeS4
49)Sr+0.5HgS+0.5Hg+GeS2+1.5S→SrHgGeS4
50)SrS+0.5HgS+0.5Hg+GeS2+0.5S→SrHgGeS4
51)0.5Sr+0.5SrS+0.5HgS+0.5Hg+GeS2+S→SrHgGeS4
52)Sr+Cd+Si+4Se→SrCdSiSe4
53)SrSe+Cd+Si+3Se→SrCdSiSe4
54)Sr+CdSe+Si+3Se→SrCdSiSe4
55)SrSe+CdSe+Si+2Se→SrCdSiSe4
56)Sr+0.5CdSe+0.5Cd+Si+3.5Se→SrCdSiSe4
57)SrSe+0.5CdSe+0.5Cd+Si+2.5Se→SrCdSiSe4
58)0.5Sr+0.5SrSe+Cd+Si+3.5Se→SrCdSiSe4
59)0.5Sr+0.5SrSe+CdSe+Si+2.5Se→SrCdSiSe4
60)0.5Sr+0.5SrSe+0.5CdSe+0.5Cd+Si+2.5Se→SrCdSiSe4
本发明的目的之三是这样实现的:
本发明目的在于提供一种系列碱土金属硫属(硒属)非线性光学晶体,其特征在于该系列碱土金属硫属(硒属)非线性光学晶体的分子通式为AEⅡIVQ4,其中AE=Sr,Ba;Ⅱ=Cd,Hg;IV=Si,Ge;Q=S,Se,其化学式分别为BaHgSiS4、SrHgSiS4、BaHgGeS4、SrHgGeS4、SrCdSiSe4,不具有对称中心,正交晶系,空间群Ama2,晶胞参数为
Figure BDA0003889077430000031
Figure BDA0003889077430000032
α=β=γ=90°,Z=4,单胞体积
Figure BDA0003889077430000033
Figure BDA0003889077430000034
本发明的目的之四是这样实现的:
本发明提供的系列碱土金属硫属(硒属)非线性光学晶体的制备方法,采用高温溶液法或者布里奇曼法(坩埚下降法)生长系列碱土金属硫属(硒属)非线性光学晶体,具体操作按下列步骤进行:
在水含量和氧气含量为0.01-0.1ppm的气密容器为充有惰性气体氩气的手套箱内将系列碱土金属硫属(硒属)化合物单相多晶粉末与助熔剂均匀混合放入干净的石墨坩埚中,装入密闭的反应容器中,将装有原料的密闭反应容器在真空度为10-5-10-1Pa的条件下抽真空后封口,以10-40℃/h的速率从室温升至500-600℃,保温10-120小时,再以温度5-40℃/h升温至700-950℃,保温10-120小时,得到混合熔液,以温度1-10℃/h的速率冷却降至室温;或将上述装有混合物抽真空后封口的密闭反应容器置于管式下降炉中缓慢升温至500-600℃并恒温加热10-120小时,再升温至700-50℃并恒温加热10-120小时,此时坩埚按照下降速率为0.36-2mm/h,然后用10小时降温至室温,关闭炉子。待样品冷却后,即得系列碱土金属硫属(硒属)非线性光学晶体。其中系列碱土金属硫属(硒属)化合物单相多晶粉末与助熔剂的摩尔比为0.9:2-9.5。
或在水含量和氧气含量为0.01-0.1ppm的气密容器为充有惰性气体氩气的手套箱内直接将含AE=Sr,Ba化合物、含Ⅱ=Cd,Hg化合物中元素Ⅱ、含IV=Si,Ge化合物中元素IV和含Q=S,Se化合物的混合物或含AE=Sr,Ba化合物、含Ⅱ=Cd,Hg化合物中元素II、含IV=Si,Ge化合物中元素IV和含Q=S,Se化合物与助熔剂的混合物放入干净的石墨坩埚中,装入密闭的反应容器中,将装有原料的密闭反应容器在真空度为10-5-10-1Pa的条件下抽真空后封口,以10-40℃/h的速率从室温升至400-500℃,保温10-120小时,再以温度5-40℃/h升温至700-950℃,保温10-120小时,得到混合熔液,以温度1-10℃/h的速率冷却降至室温;或将上述装有混合物抽真空后封口的密闭反应容器置于管式下降炉中缓慢升温至400-500℃并恒温加热10-120小时,再升温至700-850℃并恒温加热10-120小时,此时坩埚按照下降速率为0.36-2mm/h,然后用10小时降温至室温,关闭炉子。待样品冷却后,即得系列碱土金属硫属(硒属)非线性光学晶体。其中含AE=Sr,Ba化合物、含Ⅱ=Cd,Hg化合物中元素Ⅱ、含IV=Si,Ge化合物中元素IV和含Q=S,Se化合物与助熔剂的摩尔比为0.9-1.2:4-7.5;
所述助熔剂主要有自助熔剂,比如Se、S、Ba、Ge、锶盐、钡盐、锗盐中的一种或多种,复合助熔剂包括Sr(Ba)-Cd、Sr(Ba)-Ge、Sr(Ba)-GeCl4、Sr(Ba)-GeF4、Sr(Ba)-GeS2、Sr(Ba)-Hg、Sr(Ba)-Hg2F2、Sr(Ba)-HgCl2、Sr(Ba)-HgF2、Sr(Ba)-HgS、Sr(Ba)-S、Sr(Ba)-Si、Sr(Ba)Cl2-Cd、Sr(Ba)Cl2-Ge、Sr(Ba)Cl2-GeCl4、Sr(Ba)Cl2-GeF4、Sr(Ba)Cl2-GeS2、Sr(Ba)Cl2-Hg、Sr(Ba)Cl2-Hg2F2、Sr(Ba)Cl2-HgCl2、Sr(Ba)Cl2-HgF2、Sr(Ba)Cl2-HgS、Sr(Ba)Cl2-S、Sr(Ba)Cl2-Si、Sr(Ba)F2-Cd、Sr(Ba)F2-Ge、Sr(Ba)F2-GeCl4、Sr(Ba)F2-GeF4、Sr(Ba)F2-GeS2、Sr(Ba)F2-Hg、Sr(Ba)F2-Hg2F2、Sr(Ba)F2-HgCl2、Sr(Ba)F2-HgF2、Sr(Ba)F2-HgS、Sr(Ba)F2-S、Sr(Ba)F2-Si、Sr(Ba)S-Ge、Sr(Ba)S-GeCl4、Sr(Ba)S-GeF4、Sr(Ba)S-GeS2、Sr(Ba)S-Hg、Sr(Ba)S-Hg2F2、Sr(Ba)S-HgCl2、Sr(Ba)S-HgF2、Sr(Ba)S-HgS、Sr(Ba)S-S、Sr(Ba)S-Si、SrSe-Cd、Sr-Cd-Se、Sr(Ba)-S-Si、Sr(Ba)-Ge-HgS、Sr(Ba)-S-HgS、Sr(Ba)-GeCl4-HgF2、Sr(Ba)-S-HgF2、Sr(Ba)-GeS2-HgCl2、Sr(Ba)-S-HgCl2、Sr(Ba)-S-Hg2F2、Sr(Ba)-Si-Hg、Sr(Ba)-S-Hg、Sr(Ba)-S-GeS2、Sr(Ba)-S-GeF4、Sr(Ba)-S-GeCl4、Sr(Ba)-S-Ge、Sr(Ba)Cl2-S-Si、Sr(Ba)Cl2-Ge-HgS、Sr(Ba)Cl2-S-HgS、Sr(Ba)Cl2-GeCl4-HgF2、Sr(Ba)Cl2-S-HgF2、Sr(Ba)Cl2-GeS2-HgCl2、Sr(Ba)Cl2-S-HgCl2、Sr(Ba)Cl2-S-Hg2F2、Sr(Ba)Cl2-Si-Hg、Sr(Ba)Cl2-S-Hg、Sr(Ba)Cl2-S-GeS2、Sr(Ba)Cl2-S-GeF4、Sr(Ba)Cl2-S-GeCl4、Sr(Ba)Cl2-S-Ge、Sr(Ba)F2-S-Si、Sr(Ba)F2-Ge-HgS、Sr(Ba)F2-S-HgS、Sr(Ba)F2-GeCl4-HgF2、Sr(Ba)F2-S-HgF2、Sr(Ba)F2-GeS2-HgCl2、Sr(Ba)F2-S-HgCl2、Sr(Ba)F2-S-Hg2F2、Sr(Ba)F2-Si-Hg、Sr(Ba)F2-S-Hg、Sr(Ba)F2-S-GeS2、Sr(Ba)F2-S-GeF4、Sr(Ba)F2-S-GeCl4、Sr(Ba)F2-S-Ge、Sr(Ba)S-Ge-HgS、Sr(Ba)S-GeCl4-HgF2、Sr(Ba)S-GeS2-HgCl2、Sr(Ba)S-Si-Hg、SrCl2-Cd-Se、SrF2-Cd-Se、SrSe-Cd-Se中的一种或多种。
所用的助熔剂Sr(Ba)-Cd体系中Sr(Ba)与Cd摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)-Ge体系中Sr(Ba)与Ge摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)-GeCl4体系中Sr(Ba)与GeCl4摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)-GeF4体系中Sr(Ba)与GeF4摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)-GeS2体系中Sr(Ba)与GeS2摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)-Hg体系中Sr(Ba)与Hg摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)-Hg2F2体系中Sr(Ba)与Hg2F2摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)-HgCl2体系中Sr(Ba)与HgCl2摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)-HgF2体系中Sr(Ba)与HgF2摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)-HgS体系中Sr(Ba)与HgS摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)-S体系中Sr(Ba)与S摩尔比为:0.9-1.2:4-5.5、Sr(Ba)-Si体系中Sr(Ba)与Si摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)Cl2-Cd体系中Sr(Ba)Cl2与Cd摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)Cl2-Ge体系中Sr(Ba)Cl2与Ge摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)Cl2-GeCl4体系中Sr(Ba)Cl2与GeCl4摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)Cl2-GeF4体系中Sr(Ba)Cl2与GeF4摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)Cl2-GeS2体系中Sr(Ba)Cl2与GeS2摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)Cl2-Hg体系中Sr(Ba)Cl2与Hg摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)Cl2-Hg2F2体系中Sr(Ba)Cl2与Hg2F2摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)Cl2-HgCl2体系中Sr(Ba)Cl2与HgCl2摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)Cl2-HgF2体系中Sr(Ba)Cl2与HgF2摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)Cl2-HgS体系中Sr(Ba)Cl2与HgS摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)Cl2-S体系中Sr(Ba)Cl2与S摩尔比为:0.9-1.2:4-5.5、Sr(Ba)Cl2-Si体系中Sr(Ba)Cl2与Si摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)F2-Cd体系中Sr(Ba)F2与Cd摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)F2-Ge体系中Sr(Ba)F2与Ge摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)F2-GeCl4体系中Sr(Ba)F2与GeCl4摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)F2-GeF4体系中Sr(Ba)F2与GeF4摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)F2-GeS2体系中Sr(Ba)F2与GeS2摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)F2-Hg体系中Sr(Ba)F2与Hg摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)F2-Hg2F2体系中Sr(Ba)F2与Hg2F2摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)F2-HgCl2体系中Sr(Ba)F2与HgCl2摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)F2-HgF2体系中Sr(Ba)F2与HgF2摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)F2-HgS体系中Sr(Ba)F2与HgS摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)F2-S体系中Sr(Ba)F2与S摩尔比为:0.9-1.2:4-5.5、Sr(Ba)F2-Si体系中Sr(Ba)F2与Si摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)S-Ge体系中Sr(Ba)S与Ge摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)S-GeCl4体系中Sr(Ba)S与GeCl4摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)S-GeF4体系中Sr(Ba)S与GeF4摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)S-GeS2体系中Sr(Ba)S与GeS2摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)S-Hg体系中Sr(Ba)S与Hg摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)S-Hg2F2体系中Sr(Ba)S与Hg2F2摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)S-HgCl2体系中Sr(Ba)S与HgCl2摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)S-HgF2体系中Sr(Ba)S与HgF2摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)S-HgS体系中Sr(Ba)S与HgS摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)S-S体系中Sr(Ba)S与S摩尔比为:0.9-1.2:4-5.5、Sr(Ba)S-Si体系中Sr(Ba)S与Si摩尔比为:0.9-1.2:0.9-1.2、SrSe-Cd体系中SrSe与Cd摩尔比为:4-5.5:0.9-1.39、Sr-Cd-Se体系中Sr与Cd与Se摩尔比为:0.9-1.2:0.9-1.3:4-5.5、Sr(Ba)-S-Si体系中Sr(Ba)与S与Si摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)-Ge-HgS体系中Sr(Ba)与Ge与HgS摩尔比为:0.9-1.2:0.9-1.3:0.9-1.3、Sr(Ba)-S-HgS体系中Sr(Ba)与S与HgS摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)-GeCl4-HgF2体系中Sr(Ba)与GeCl4与HgF2摩尔比为:0.9-1.2:0.9-1.2:0.9-1.3、Sr(Ba)-S-HgF2体系中Sr(Ba)与S与HgF2摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)-GeS2-HgCl2体系中Sr(Ba)与GeS2与HgCl2摩尔比为:0.9-1.2:0.9-1.3:0.9-1.3、Sr(Ba)-S-HgCl2体系中Sr(Ba)与S与HgCl2摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)-S-Hg2F2体系中Sr(Ba)与S与Hg2F2摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)-Si-Hg体系中Sr(Ba)与Si与Hg摩尔比为:0.9-1.2:0.9-1.2:0.9-1.2、Sr(Ba)-S-Hg体系中Sr(Ba)与S与Hg摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)-S-GeS2体系中Sr(Ba)与S与GeS2摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)-S-GeF4体系中Sr(Ba)与S与GeF4摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)-S-GeCl4体系中Sr(Ba)与S与GeCl4摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)-S-Ge体系中Sr(Ba)与S与Ge摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)Cl2-S-Si体系中Sr(Ba)Cl2与S与Si摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)Cl2-Ge-HgS体系中Sr(Ba)Cl2与Ge与HgS摩尔比为:0.9-1.2:0.9-1.3:0.9-1.3、Sr(Ba)Cl2-S-HgS体系中Sr(Ba)Cl2与S与HgS摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)Cl2-GeCl4-HgF2体系中Sr(Ba)Cl2与GeCl4与HgF2摩尔比为:0.9-1.2:0.9-1.2:0.9-1.3、Sr(Ba)Cl2-S-HgF2体系中Sr(Ba)Cl2与S与HgF2摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)Cl2-GeS2-HgCl2体系中Sr(Ba)Cl2与GeS2与HgCl2摩尔比为:0.9-1.2:0.9-1.3:0.9-1.3、Sr(Ba)Cl2-S-HgCl2体系中Sr(Ba)Cl2与S与HgCl2摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)Cl2-S-Hg2F2体系中Sr(Ba)Cl2与S与Hg2F2摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)Cl2-Si-Hg体系中Sr(Ba)Cl2与Si与Hg摩尔比为:0.9-1.2:0.9-1.2:0.9-1.2、Sr(Ba)Cl2-S-Hg体系中Sr(Ba)Cl2与S与Hg摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)Cl2-S-GeS2体系中Sr(Ba)Cl2与S与GeS2摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)Cl2-S-GeF4体系中Sr(Ba)Cl2与S与GeF4摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)Cl2-S-GeCl4体系中Sr(Ba)Cl2与S与GeCl4摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)Cl2-S-Ge体系中Sr(Ba)Cl2与S与Ge摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)F2-S-Si体系中Sr(Ba)F2与S与Si摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)F2-Ge-HgS体系中Sr(Ba)F2与Ge与HgS摩尔比为:0.9-1.2:0.9-1.3:0.9-1.3、Sr(Ba)F2-S-HgS体系中Sr(Ba)F2与S与HgS摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)F2-GeCl4-HgF2体系中Sr(Ba)F2与GeCl4与HgF2摩尔比为:0.9-1.2:0.9-1.2:0.9-1.3、Sr(Ba)F2-S-HgF2体系中Sr(Ba)F2与S与HgF2摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)F2-GeS2-HgCl2体系中Sr(Ba)F2与GeS2与HgCl2摩尔比为:0.9-1.2:0.9-1.3:0.9-1.3、Sr(Ba)F2-S-HgCl2体系中Sr(Ba)F2与S与HgCl2摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)F2-S-Hg2F2体系中Sr(Ba)F2与S与Hg2F2摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)F2-Si-Hg体系中Sr(Ba)F2与Si与Hg摩尔比为:0.9-1.2:0.9-1.2:0.9-1.2、Sr(Ba)F2-S-Hg体系中Sr(Ba)F2与S与Hg摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)F2-S-GeS2体系中Sr(Ba)F2与S与GeS2摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)F2-S-GeF4体系中Sr(Ba)F2与S与GeF4摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)F2-S-GeCl4体系中Sr(Ba)F2与S与GeCl4摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)F2-S-Ge体系中Sr(Ba)F2与S与Ge摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)S-Ge-HgS体系中Sr(Ba)S与Ge与HgS摩尔比为:0.9-1.2:0.9-1.3:0.9-1.3、Sr(Ba)S-GeCl4-HgF2体系中Sr(Ba)S与GeCl4与HgF2摩尔比为:0.9-1.2:0.9-1.2:0.9-1.3、Sr(Ba)S-GeS2-HgCl2体系中Sr(Ba)S与GeS2与HgCl2摩尔比为:0.9-1.2:0.9-1.3:0.9-1.3、Sr(Ba)S-Si-Hg体系中Sr(Ba)S与Si与Hg摩尔比为:0.9-1.2:0.9-1.2:0.9-1.2、SrCl2-Cd-Se体系中SrCl2与Cd与Se摩尔比为:0.9-1.2:0.9-1.3:4-5.5、SrF2-Cd-Se体系中SrF2与Cd与Se摩尔比为:0.9-1.2:0.9-1.3:4-5.5、SrSe-Cd-Se体系中SrSe与Cd与Se摩尔比为:0.9-1.2:0.9-1.3:4-5.5。
本发明的目的之五是这样实现的:
前述系列碱土金属硫属(硒属)红外非线性光学晶体适用于中远红外波段激光倍频晶体、红外通讯器件、红外激光制导器件中,也可用于制备倍频发生器、上或下频率转换器或光参量振荡器。
附图说明
图1为是本发明中制备的化合物BaHgSiS4晶体的理论X射线光谱图;
图2为本发明BaHgSiS4晶体结构图;
图3为系列碱土金属硫属(硒属)红外非线性光学晶体作为倍频晶体应用时的非线性光学效应示意图。其中1是反射镜,2是调Q开关,3是偏振片,4是Nd:YAG,5是OPO输入镜,6是KTP晶体,7是OPO输出镜及1064nm波长的光全反射镜,8是2.1μm波长的光反射镜,9是经晶体后处理及光学加工的AEⅡIVQ4,其中AE=Sr,Ba;Ⅱ=Cd,Hg;IV=Si,Ge;Q=S,Se,其化学式分别为BaHgSiS4、SrHgSiS4、BaHgGeS4、SrHgGeS4、SrCdSiSe4的非线性光学晶体,10是所产生的出射激光束。
具体实施方式:
以下结合附图和实施实例对本发明进行详细说明,但不仅限于所述的实施例。
实施例1
按反应式:BaS+HgS+Si+2S→BaHgSiS4,合成BaHgSiS4化合物:
在水含量和氧气含量分别为0.01ppm、充有惰性气体氩气的手套箱内按BaS:HgS:Si:S的摩尔比为1:1:1:5.5称量起始原料,将所称原料混合均匀后并放置在研钵中仔细研磨,之后放入干净的石墨坩埚中,在把石墨坩埚放入石英管中,并将石英管抽真空至10-1Pa并进行熔化封结,将封好的石英管放入井式马弗炉中,以40℃/h的速率升到400℃,保温10h,再以5℃/h的速率升到700℃,保温120h,然后以10℃/h的速率降温至室温,得到化合物BaHgSiS4单相多晶粉末,对该产物进行X射线分析,所得X射线谱图与BaHgSiS4单晶结构得到的X射线谱图是一致的。
将上述单相多晶粉末在研钵中仔细研磨,之后放入干净的石墨坩埚中,再把石墨坩埚放入石英管中,并将石英管抽真空至10-1Pa并进行熔化封结,将封好的石英管放入井式马弗炉中,以10℃/h的速率升到400℃,保温10h,再以5℃/h的速率升到750℃,保温120h,然后以10℃/h的速率降温至室温,得到BaHgSiS4晶体。
实施例2
按反应式:Ba+HgS+Si+3S→BaHgSiS4,合成BaHgSiS4化合物:
在水含量和氧气含量分别为0.1ppm、充有惰性气体氩气的手套箱内将Ba、HgS、Si和S按摩尔比1:1:1:4直接称取原料,将称取的原料与助熔剂Ba-S按摩尔比0.9:4进行混配,其中Ba与S的摩尔比为1.9:8,混合均匀后放入干净的石墨坩埚中,再把石墨坩埚放入石英管中,并将石英管抽真空至10-5Pa并进行熔化封结,将封好的石英管放入井式马弗炉中,以10℃/h的速率升到500℃,保温120h,再以40℃/h的速率升到950℃,保温10h,然后以1℃/h的速率降温至室温,得到BaHgSiS4晶体。
实施例3
按反应式:Ba+0.5HgS+0.5Hg+Si+3.5S→BaHgSiS4,合成BaHgSiS4化合物:
在水含量和氧气含量分别为0.05ppm、充有惰性气体氩气的手套箱内按Ba:HgS:Hg:S的摩尔比为1:0.5:0.5:1:3.5称量起始原料,将所称原料混合均匀后并放置在研钵中仔细研磨,之后放入干净的石墨坩埚中,在把石墨坩埚放入石英管中,并将石英管抽真空至10-2Pa并进行熔化封结,将封好的石英管放入井式马弗炉中,以20℃/h的速率升到400℃,保温20h,再以40℃/h的速率升到750℃,保温80h,然后以8℃/h的速率降温至室温,得到BaHgSiS4多晶粉末,对该产物进行X射线分析,所得X射线谱图与BaHgSiS4单晶结构得到的X射线谱图是一致的。
将上述多晶粉末装入石墨坩锅中,用药匙将其压紧加盖,放入石英安瓿中,经过4小时抽真空后,石英安瓿内部压强约为0.1Pa时,用氢氧焰封管后置于生长炉中缓慢升温至400℃并恒温加热10小时,然后再升温至800℃并恒温加热120小时,此时坩埚按照下降速率为0.36mm/h,然后用10小时降温至室温,关闭炉子。待样品冷却后,即得BaHgSiS4晶体。
实施例4
按反应式:BaS+0.5HgS+0.5Hg+Si+2.5S→BaHgSiS4,合成BaHgSiS4化合物:
在水含量和氧气含量分别为0.05ppm、充有惰性气体氩气的手套箱内将BaS、HgS、Hg、Si、S按摩尔比1:0.5:0.5:1:2.5直接称取原料,将称取的原料与助熔剂Ba-HgS按摩尔比1:3进行混配,其中Ba与HgS的摩尔比为2:1,混合均匀后放入干净的石墨坩埚中,再把石墨坩埚放入放入石英安瓿中,经过6小时抽真空后,石英安瓿内部压强约为10-5Pa时,用氢氧焰封管后置于生长炉中缓慢升温至600℃并恒温加热120小时,然后再升温至850℃并恒温加热10小时,此时坩埚按照下降速率为2mm/h,然后用10小时降温至室温,关闭炉子。待样品冷却后,即得BaHgSiS4晶体。
实施例5
按反应式:0.5Ba+0.5BaS+Hg+Si+3.5S→BaHgSiS4,合成BaHgSiS4化合物:
在水含量和氧气含量分别为0.05ppm、充有惰性气体氩气的手套箱内按Ba:BaS:Hg:Si:S的摩尔比为0.5:0.5:1:1:3.5称量起始原料,将所称原料混合均匀后并放置在研钵中仔细研磨,之后放入干净的石墨坩埚中,在把石墨坩埚放入石英管中,并将石英管抽真空至10-2Pa并进行熔化封结,将封好的石英管放入井式马弗炉中,以20℃/h的速率升到400℃,保温20h,再以40℃/h的速率升到709℃,保温80h,然后以8℃/h的速率降温至室温,得到BaHgSiS4多晶粉末。对该产物进行X射线分析,所得X射线谱图与BaHgSiS4单晶结构得到的X射线谱图是一致的。
将上述单相多晶粉末与助熔剂Ba-Si-S按摩尔比1:1.1:5进行混配,其中Ba与S的摩尔比为1:5,之后放入干净的石墨坩埚中,再把石墨坩埚放入石英管中,并将石英管抽真空至10-2Pa并进行熔化封结,将封好的石英管放入井式马弗炉中,以15℃/h的速率升到400℃,保温20h,再以40℃/h的速率升到750℃,保温100h,然后以3℃/h的速率降温至室温,得到BaHgSiS4晶体。
实施例6
按反应式:0.5Ba+0.5BaS+0.5HgS+0.5Hg+Si+2.5S→BaHgSiS4,合成BaHgSiS4化合物:
在水含量和氧气含量分别为0.05ppm、充有惰性气体氩气的手套箱内将Ba、BaS、HgS、Hg、Si、S按摩尔比0.5:0.5:0.5:0.5:1:2.5直接称取原料,将称取的原料混合均匀后放入干净的石墨坩埚中,再把石墨坩埚放入石英管中,并将石英管抽真空至10-5Pa并进行熔化封结,将封好的石英管放入井式马弗炉中,以20℃/h的速率升到500℃,保温70h,再以10℃/h的速率升到750℃,保温100h,然后以5℃/h的速率降温至室温,得到BaHgSiS4晶体。
实施例7
将所得任意的系列碱土金属硫属(硒属)红外非线性光学晶体经过加工处理后置于图3所示装置中的9的位置,在室温下,用调Q Nd:YAG激光外加OPO做输入光源,入射波长为2100nm,通过光电倍增管接收1050nm的倍频光输出。

Claims (10)

1.系列碱土金属硫属(硒属)化合物,分子式分别为BaHgSiS4、SrHgSiS4、BaHgGeS4、SrHgGeS4、SrCdSiSe4,分子量为444.55-543.95。
2.根据权利要求1所述的系列碱土金属硫属(硒属)化合物的制备方法,其特征在于按以下步骤进行:在水含量和氧气含量为0.01-0.1ppm的气密容器为充有惰性气体氩气的手套箱内将AE=Sr,Ba化合物中元素AE、含Ⅱ=Cd,Hg化合物中元素Ⅱ、含IV=Si,Ge化合物中元素IV和含Q=S,Se化合物中元素Q的摩尔比为0.9-1.2:0.9-1.2:0.9-1.3:4-5.5的混合物研磨后放入干净的石墨坩埚中,装入密闭的反应容器中,将装有原料的密闭反应容器抽真空后封口,放入马弗炉中,煅烧后冷却至室温;取出样品放入研钵中捣碎并研磨,即得到系列碱土金属硫属(硒属)化合物多晶粉末。
3.根据权利要求2所述的系列碱土金属硫属(硒属)化合物的制备方法,其特征在于:
所述含Sr,Ba化合物包括锶单质以及硫化锶中的至少一种,钡单质及硫化钡中的一种;
所述含锗化合物为锗单质及锗盐中的至少一种;锗盐包括一硫化锗及二硫化锗中的至少一种;
所述含硅化合物为硅单质;
所述含镉化合物为镉单质及硒化镉中的至少一种;
所述含汞化合物为汞单质及硫化亚汞中的至少一种;
所述含S,Se化合物包括硫单质,硒单质及硫属化合物中的至少一种;硫属化合物包括硫化锶、硫化钡,硒化锶、硒化镉、一硫化锗、二硫化锗及硫化亚汞中的至少一种。
4.系列碱土金属硫属(硒属)非线性光学晶体,其特征在于该系列晶体分子通式均为AEⅡIVQ4,其中AE=Sr,Ba;Ⅱ=Cd,Hg;IV=Si,Ge;Q=S,Se,化学式分别为BaHgSiS4、SrHgSiS4、BaHgGeS4、SrHgGeS4、SrCdSiSe4,不具有对称中心,正交晶系,空间群Ama2,晶胞参数为
Figure FDA0003889077420000011
α=β=γ=90°,Z=4,单胞体积
Figure FDA0003889077420000012
5.权利要求4所述的系列碱土金属硫属(硒属)非线性光学晶体的制备方法,其特征在于,采用高温熔液法或者布里奇曼法(坩埚下降法)生长系列碱土金属硫属(硒属)非线性光学晶体。
6.根据权利要求5所述的系列碱土金属硫属(硒属)非线性光学晶体的制备方法,其特征在于,具体操作按下列步骤进行:
所述坩埚下降法制备系列碱土金属硫属(硒属)非线性光学晶体的具体操作如下:在水含量和氧气含量为0.01-0.1ppm的气密容器为充有惰性气体氩气的手套箱内将权利要求1中所得的系列碱土金属硫属(硒属)化合物单相多晶粉末或权利要求1中所得的系列碱土金属硫属(硒属)化合物单相多晶粉末与助熔剂的混合物放入干净的石墨坩埚中,或在水含量和氧气含量为0.01-0.1ppm的气密容器为充有惰性气体氩气的手套箱内直接将含AE=Sr,Ba化合物中元素AE、含Ⅱ=Cd,Hg化合物中元素Ⅱ、含IV=Si,Ge化合物中元素IV和含Q=S,Se化合物中元素Q化合物的混合物或AE=Sr,Ba化合物中元素AE、含Ⅱ=Cd,Hg化合物中元素Ⅱ、含IV=Si,Ge化合物中元素IV和含Q=S,Se化合物中元素Q与助熔剂的混合物,装入密闭的反应容器中,将装有原料的密闭反应容器抽真空后封口,将封结好的密闭反应容器放入井式马弗炉中升温至熔化得到混合熔液,降温或恒温生长,制备系列碱土金属硫属(硒属)化合物;或将盛有上述混合物的密闭反应容器置入管式下降炉中,缓慢地下降,使其通过一个具有一定温度梯度的加热炉,控制炉温略高于化合物的熔点附近;选择合适的加热区,坩埚在通过加热区域时,坩埚中的混合物被熔融,当坩埚持续下降时,坩埚底部的温度先下降到熔点以下,并开始结晶,晶体随坩埚下降而持续长大,制备得到系列碱土金属硫属(硒属)非线性光学晶体;
所述高温熔液法制备系列碱土金属硫属(硒属)非线性光学晶体的具体操作如下:在水含量和氧气含量为0.01-0.1ppm的气密容器为充有惰性气体氩气的手套箱内将权利要求1中所得的系列碱土金属硫属(硒属)化合物单相多晶粉末或权利要求1中所得的系列碱土金属硫属(硒属)化合物单相多晶粉末与助熔剂的混合物放入干净的石墨坩埚中,或在水含量和氧气含量为0.01-0.1ppm的气密容器为充有惰性气体氩气的手套箱内直接将含AE=Sr,Ba化合物中元素AE、含Ⅱ=Cd,Hg化合物中元素Ⅱ、含IV=Si,Ge化合物中元素IV和含Q=S,Se化合物中元素Q化合物的混合物或AE=Sr,Ba化合物中元素AE、含Ⅱ=Cd,Hg化合物中元素Ⅱ、含IV=Si,Ge化合物中元素IV和含Q=S,Se化合物中元素Q与助熔剂的混合物,直接升温至熔化得到混合熔液,降温或恒温生长,制备系列碱土金属硫属(硒属)非线性光学晶体。
7.根据权利要求6所述的系列碱土金属硫属(硒属)非线性光学晶体的制备方法,其特征在于其中系列碱土金属硫属(硒属)化合物单相多晶粉末与助熔剂的摩尔比为1:0.1-1:7;或者其中将含AE=Sr,Ba化合物中元素AE、含Ⅱ=Cd,Hg化合物中元素Ⅱ、含IV=Si,Ge化合物中元素IV和含Q=S,Se化合物中元素Q与助熔剂的摩尔比为0.9-1.2:0.9-1.3:0.9-1.2:4-5.5;助熔剂包括单一助熔剂或复合助熔剂,其中单一助熔剂包括Se、S、Ba、Ge、锶盐、钡盐、锗盐中的至少一种,复合助熔剂包括Sr(Ba)-Cd、Sr(Ba)-Ge、Sr(Ba)-GeCl4、Sr(Ba)-GeF4、Sr(Ba)-GeS2、Sr(Ba)-Hg、Sr(Ba)-Hg2F2、Sr(Ba)-HgCl2、Sr(Ba)-HgF2、Sr(Ba)-HgS、Sr(Ba)-S、Sr(Ba)-Si、Sr(Ba)Cl2-Cd、Sr(Ba)Cl2-Ge、Sr(Ba)Cl2-GeCl4、Sr(Ba)Cl2-GeF4、Sr(Ba)Cl2-GeS2、Sr(Ba)Cl2-Hg、Sr(Ba)Cl2-Hg2F2、Sr(Ba)Cl2-HgCl2、Sr(Ba)Cl2-HgF2、Sr(Ba)Cl2-HgS、Sr(Ba)Cl2-S、Sr(Ba)Cl2-Si、Sr(Ba)F2-Cd、Sr(Ba)F2-Ge、Sr(Ba)F2-GeCl4、Sr(Ba)F2-GeF4、Sr(Ba)F2-GeS2、Sr(Ba)F2-Hg、Sr(Ba)F2-Hg2F2、Sr(Ba)F2-HgCl2、Sr(Ba)F2-HgF2、Sr(Ba)F2-HgS、Sr(Ba)F2-S、Sr(Ba)F2-Si、Sr(Ba)S-Ge、Sr(Ba)S-GeCl4、Sr(Ba)S-GeF4、Sr(Ba)S-GeS2、Sr(Ba)S-Hg、Sr(Ba)S-Hg2F2、Sr(Ba)S-HgCl2、Sr(Ba)S-HgF2、Sr(Ba)S-HgS、Sr(Ba)S-S、Sr(Ba)S-Si、SrSe-Cd、Sr-Cd-Se、Sr(Ba)-S-Si、Sr(Ba)-Ge-HgS、Sr(Ba)-S-HgS、Sr(Ba)-GeCl4-HgF2、Sr(Ba)-S-HgF2、Sr(Ba)-GeS2-HgCl2、Sr(Ba)-S-HgCl2、Sr(Ba)-S-Hg2F2、Sr(Ba)-Si-Hg、Sr(Ba)-S-Hg、Sr(Ba)-S-GeS2、Sr(Ba)-S-GeF4、Sr(Ba)-S-GeCl4、Sr(Ba)-S-Ge、Sr(Ba)Cl2-S-Si、Sr(Ba)Cl2-Ge-HgS、Sr(Ba)Cl2-S-HgS、Sr(Ba)Cl2-GeCl4-HgF2、Sr(Ba)Cl2-S-HgF2、Sr(Ba)Cl2-GeS2-HgCl2、Sr(Ba)Cl2-S-HgCl2、Sr(Ba)Cl2-S-Hg2F2、Sr(Ba)Cl2-Si-Hg、Sr(Ba)Cl2-S-Hg、Sr(Ba)Cl2-S-GeS2、Sr(Ba)Cl2-S-GeF4、Sr(Ba)Cl2-S-GeCl4、Sr(Ba)Cl2-S-Ge、Sr(Ba)F2-S-Si、Sr(Ba)F2-Ge-HgS、Sr(Ba)F2-S-HgS、Sr(Ba)F2-GeCl4-HgF2、Sr(Ba)F2-S-HgF2、Sr(Ba)F2-GeS2-HgCl2、Sr(Ba)F2-S-HgCl2、Sr(Ba)F2-S-Hg2F2、Sr(Ba)F2-Si-Hg、Sr(Ba)F2-S-Hg、Sr(Ba)F2-S-GeS2、Sr(Ba)F2-S-GeF4、Sr(Ba)F2-S-GeCl4、Sr(Ba)F2-S-Ge、Sr(Ba)S-Ge-HgS、Sr(Ba)S-GeCl4-HgF2、Sr(Ba)S-GeS2-HgCl2、Sr(Ba)S-Si-Hg、SrCl2-Cd-Se、SrF2-Cd-Se、SrSe-Cd-Se中的一种或多种。
8.根据权利要求7所述方法,其特征在于,所述复合助熔剂Sr(Ba)-Cd体系中Sr(Ba)与Cd摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)-Ge体系中Sr(Ba)与Ge摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)-GeCl4体系中Sr(Ba)与GeCl4摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)-GeF4体系中Sr(Ba)与GeF4摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)-GeS2体系中Sr(Ba)与GeS2摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)-Hg体系中Sr(Ba)与Hg摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)-Hg2F2体系中Sr(Ba)与Hg2F2摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)-HgCl2体系中Sr(Ba)与HgCl2摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)-HgF2体系中Sr(Ba)与HgF2摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)-HgS体系中Sr(Ba)与HgS摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)-S体系中Sr(Ba)与S摩尔比为:0.9-1.2:4-5.5、Sr(Ba)-Si体系中Sr(Ba)与Si摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)Cl2-Cd体系中Sr(Ba)Cl2与Cd摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)Cl2-Ge体系中Sr(Ba)Cl2与Ge摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)Cl2-GeCl4体系中Sr(Ba)Cl2与GeCl4摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)Cl2-GeF4体系中Sr(Ba)Cl2与GeF4摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)Cl2-GeS2体系中Sr(Ba)Cl2与GeS2摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)Cl2-Hg体系中Sr(Ba)Cl2与Hg摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)Cl2-Hg2F2体系中Sr(Ba)Cl2与Hg2F2摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)Cl2-HgCl2体系中Sr(Ba)Cl2与HgCl2摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)Cl2-HgF2体系中Sr(Ba)Cl2与HgF2摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)Cl2-HgS体系中Sr(Ba)Cl2与HgS摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)Cl2-S体系中Sr(Ba)Cl2与S摩尔比为:0.9-1.2:4-5.5、Sr(Ba)Cl2-Si体系中Sr(Ba)Cl2与Si摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)F2-Cd体系中Sr(Ba)F2与Cd摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)F2-Ge体系中Sr(Ba)F2与Ge摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)F2-GeCl4体系中Sr(Ba)F2与GeCl4摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)F2-GeF4体系中Sr(Ba)F2与GeF4摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)F2-GeS2体系中Sr(Ba)F2与GeS2摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)F2-Hg体系中Sr(Ba)F2与Hg摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)F2-Hg2F2体系中Sr(Ba)F2与Hg2F2摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)F2-HgCl2体系中Sr(Ba)F2与HgCl2摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)F2-HgF2体系中Sr(Ba)F2与HgF2摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)F2-HgS体系中Sr(Ba)F2与HgS摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)F2-S体系中Sr(Ba)F2与S摩尔比为:0.9-1.2:4-5.5、Sr(Ba)F2-Si体系中Sr(Ba)F2与Si摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)S-Ge体系中Sr(Ba)S与Ge摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)S-GeCl4体系中Sr(Ba)S与GeCl4摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)S-GeF4体系中Sr(Ba)S与GeF4摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)S-GeS2体系中Sr(Ba)S与GeS2摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)S-Hg体系中Sr(Ba)S与Hg摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)S-Hg2F2体系中Sr(Ba)S与Hg2F2摩尔比为:0.9-1.2:0.9-1.2、Sr(Ba)S-HgCl2体系中Sr(Ba)S与HgCl2摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)S-HgF2体系中Sr(Ba)S与HgF2摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)S-HgS体系中Sr(Ba)S与HgS摩尔比为:0.9-1.2:0.9-1.3、Sr(Ba)S-S体系中Sr(Ba)S与S摩尔比为:0.9-1.2:4-5.5、Sr(Ba)S-Si体系中Sr(Ba)S与Si摩尔比为:0.9-1.2:0.9-1.2、SrSe-Cd体系中SrSe与Cd摩尔比为:4-5.5:0.9-1.39、Sr-Cd-Se体系中Sr与Cd与Se摩尔比为:0.9-1.2:0.9-1.3:4-5.5、Sr(Ba)-S-Si体系中Sr(Ba)与S与Si摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)-Ge-HgS体系中Sr(Ba)与Ge与HgS摩尔比为:0.9-1.2:0.9-1.3:0.9-1.3、Sr(Ba)-S-HgS体系中Sr(Ba)与S与HgS摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)-GeCl4-HgF2体系中Sr(Ba)与GeCl4与HgF2摩尔比为:0.9-1.2:0.9-1.2:0.9-1.3、Sr(Ba)-S-HgF2体系中Sr(Ba)与S与HgF2摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)-GeS2-HgCl2体系中Sr(Ba)与GeS2与HgCl2摩尔比为:0.9-1.2:0.9-1.3:0.9-1.3、Sr(Ba)-S-HgCl2体系中Sr(Ba)与S与HgCl2摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)-S-Hg2F2体系中Sr(Ba)与S与Hg2F2摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)-Si-Hg体系中Sr(Ba)与Si与Hg摩尔比为:0.9-1.2:0.9-1.2:0.9-1.2、Sr(Ba)-S-Hg体系中Sr(Ba)与S与Hg摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)-S-GeS2体系中Sr(Ba)与S与GeS2摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)-S-GeF4体系中Sr(Ba)与S与GeF4摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)-S-GeCl4体系中Sr(Ba)与S与GeCl4摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)-S-Ge体系中Sr(Ba)与S与Ge摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)Cl2-S-Si体系中Sr(Ba)Cl2与S与Si摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)Cl2-Ge-HgS体系中Sr(Ba)Cl2与Ge与HgS摩尔比为:0.9-1.2:0.9-1.3:0.9-1.3、Sr(Ba)Cl2-S-HgS体系中Sr(Ba)Cl2与S与HgS摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)Cl2-GeCl4-HgF2体系中Sr(Ba)Cl2与GeCl4与HgF2摩尔比为:0.9-1.2:0.9-1.2:0.9-1.3、Sr(Ba)Cl2-S-HgF2体系中Sr(Ba)Cl2与S与HgF2摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)Cl2-GeS2-HgCl2体系中Sr(Ba)Cl2与GeS2与HgCl2摩尔比为:0.9-1.2:0.9-1.3:0.9-1.3、Sr(Ba)Cl2-S-HgCl2体系中Sr(Ba)Cl2与S与HgCl2摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)Cl2-S-Hg2F2体系中Sr(Ba)Cl2与S与Hg2F2摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)Cl2-Si-Hg体系中Sr(Ba)Cl2与Si与Hg摩尔比为:0.9-1.2:0.9-1.2:0.9-1.2、Sr(Ba)Cl2-S-Hg体系中Sr(Ba)Cl2与S与Hg摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)Cl2-S-GeS2体系中Sr(Ba)Cl2与S与GeS2摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)Cl2-S-GeF4体系中Sr(Ba)Cl2与S与GeF4摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)Cl2-S-GeCl4体系中Sr(Ba)Cl2与S与GeCl4摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)Cl2-S-Ge体系中Sr(Ba)Cl2与S与Ge摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)F2-S-Si体系中Sr(Ba)F2与S与Si摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)F2-Ge-HgS体系中Sr(Ba)F2与Ge与HgS摩尔比为:0.9-1.2:0.9-1.3:0.9-1.3、Sr(Ba)F2-S-HgS体系中Sr(Ba)F2与S与HgS摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)F2-GeCl4-HgF2体系中Sr(Ba)F2与GeCl4与HgF2摩尔比为:0.9-1.2:0.9-1.2:0.9-1.3、Sr(Ba)F2-S-HgF2体系中Sr(Ba)F2与S与HgF2摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)F2-GeS2-HgCl2体系中Sr(Ba)F2与GeS2与HgCl2摩尔比为:0.9-1.2:0.9-1.3:0.9-1.3、Sr(Ba)F2-S-HgCl2体系中Sr(Ba)F2与S与HgCl2摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)F2-S-Hg2F2体系中Sr(Ba)F2与S与Hg2F2摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)F2-Si-Hg体系中Sr(Ba)F2与Si与Hg摩尔比为:0.9-1.2:0.9-1.2:0.9-1.2、Sr(Ba)F2-S-Hg体系中Sr(Ba)F2与S与Hg摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)F2-S-GeS2体系中Sr(Ba)F2与S与GeS2摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)F2-S-GeF4体系中Sr(Ba)F2与S与GeF4摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)F2-S-GeCl4体系中Sr(Ba)F2与S与GeCl4摩尔比为:0.9-1.2:4-5.5:0.9-1.2、Sr(Ba)F2-S-Ge体系中Sr(Ba)F2与S与Ge摩尔比为:0.9-1.2:4-5.5:0.9-1.3、Sr(Ba)S-Ge-HgS体系中Sr(Ba)S与Ge与HgS摩尔比为:0.9-1.2:0.9-1.3:0.9-1.3、Sr(Ba)S-GeCl4-HgF2体系中Sr(Ba)S与GeCl4与HgF2摩尔比为:0.9-1.2:0.9-1.2:0.9-1.3、Sr(Ba)S-GeS2-HgCl2体系中Sr(Ba)S与GeS2与HgCl2摩尔比为:0.9-1.2:0.9-1.3:0.9-1.3、Sr(Ba)S-Si-Hg体系中Sr(Ba)S与Si与Hg摩尔比为:0.9-1.2:0.9-1.2:0.9-1.2、SrCl2-Cd-Se体系中SrCl2与Cd与Se摩尔比为:0.9-1.2:0.9-1.3:4-5.5、SrF2-Cd-Se体系中SrF2与Cd与Se摩尔比为:0.9-1.2:0.9-1.3:4-5.5、SrSe-Cd-Se体系中SrSe与Cd与Se摩尔比为:0.9-1.2:0.9-1.3:4-5.5。
9.一种非线性光学器件,包含将至少一束入射电磁辐射通过至少一块非线性光学晶体后产生至少一束频率不同于入射电磁辐射的输出辐射的装置,其特征在于:其中的非线性光学晶体为系列碱土金属硫属(硒属)非线性光学晶体。
10.根据权利要求4所述的系列碱土金属硫属(硒属)非线性光学晶体的用途,其特征在于,该系列碱土金属硫属(硒属)非线性光学晶体用于制备倍频发生器、上频率转换器、下频率转换器或光参量振荡器等。
CN202211258128.9A 2022-10-13 2022-10-13 系列碱土金属硫属(硒属)化合物及其非线性光学晶体及其制备方法及其用途 Pending CN115433998A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211258128.9A CN115433998A (zh) 2022-10-13 2022-10-13 系列碱土金属硫属(硒属)化合物及其非线性光学晶体及其制备方法及其用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211258128.9A CN115433998A (zh) 2022-10-13 2022-10-13 系列碱土金属硫属(硒属)化合物及其非线性光学晶体及其制备方法及其用途

Publications (1)

Publication Number Publication Date
CN115433998A true CN115433998A (zh) 2022-12-06

Family

ID=84250625

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211258128.9A Pending CN115433998A (zh) 2022-10-13 2022-10-13 系列碱土金属硫属(硒属)化合物及其非线性光学晶体及其制备方法及其用途

Country Status (1)

Country Link
CN (1) CN115433998A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106757362A (zh) * 2016-11-14 2017-05-31 中国工程物理研究院化工材料研究所 硒锗镉锶化合物及其制备方法、硒锗镉锶晶体及其制备方法和应用
CN114411260A (zh) * 2022-01-25 2022-04-29 天津理工大学 化合物硒铟钠及其非线性光学晶体及其制备方法和用途

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106757362A (zh) * 2016-11-14 2017-05-31 中国工程物理研究院化工材料研究所 硒锗镉锶化合物及其制备方法、硒锗镉锶晶体及其制备方法和应用
CN114411260A (zh) * 2022-01-25 2022-04-29 天津理工大学 化合物硒铟钠及其非线性光学晶体及其制备方法和用途

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Chalkogenogermanate der Übergangselemente mit unedlen Metallen", 《ERLANGUNG DES DOKTORGRADES DER MATHEMATISCH-NATURWISSENSCHAFTLICHEN FAKULTÄT DER HEINRICH-HEINE-UNIVERSITÄT DÜSSELDORF》, pages 105 *
KUI WU ET AL.: "Li2HgMS4 (M = Si, Ge, Sn): New Quaternary Diamond-Like Semiconductors for Infrared Laser Frequency Conversion", 《CRYSTALS》 *
MARKUS TAMPIER AUS MENDEN: "Chalkogenogermanate der Übergangselemente mit unedlen Metallen"", 《ERLANGUNG DES DOKTORGRADES DER MATHEMATISCH-NATURWISSENSCHAFTLICHEN FAKULTÄT DER HEINRICH-HEINE-UNIVERSITÄT DÜSSELDORF》, pages 105 *

Similar Documents

Publication Publication Date Title
CN116240633A (zh) 化合物正交相硒镓钡和正交相硒镓钡非线性光学晶体及其制备方法和用途
CN107021462A (zh) 硒镓锌钡化合物、硒镓锌钡红外非线性光学晶体及其制备方法和用途
CN107399722B (zh) 硒硅银钡和硒硅银钡中远红外非线性光学晶体及制备方法和用途
CN102094245A (zh) 硒稼铝钡化合物、硒稼铝钡非线性光学晶体及制法和用途
CN102230225A (zh) 非线性光学晶体硒化镓锗钡及其生长方法与用途
CN102383196A (zh) 新型非线性光学晶体硫化镓锗钡及其生长方法与用途
CN103058266A (zh) BaGa2GeS6化合物、BaGa2GeS6非线性光学晶体及制法和用途
CN114411260A (zh) 化合物硒铟钠及其非线性光学晶体及其制备方法和用途
CN110777434B (zh) 一种混合阴离子红外非线性光学晶体/粉末及其制备方法
CN103290480A (zh) Li2In2SiS6化合物、Li2In2SiS6非线性光学晶体及制法和用途
CN103290478A (zh) Li2In2GeS6化合物、Li2In2GeS6非线性光学晶体及制法和用途
CN103060917B (zh) BaGa2SiS6化合物、BaGa2SiS6非线性光学晶体及制法和用途
CN107557867B (zh) 硫锡锌钠和硫锡锌钠中远红外非线性光学晶体及制备方法和应用
CN117602589A (zh) 化合物硒镓镁钙和硒镓镁钙红外非线性光学晶体及制备方法和应用
CN103030146B (zh) BaGa2SiSe6化合物、BaGa2SiSe6非线性光学晶体及制法和用途
CN108588840B (zh) 硼硫化钡中远红外非线性光学晶体及制备方法和应用
CN115433998A (zh) 系列碱土金属硫属(硒属)化合物及其非线性光学晶体及其制备方法及其用途
CN114134575B (zh) 含碱土金属缺陷黄铜矿类型化合物和红外非线性光学晶体及制备方法和应用
CN116121871B (zh) 系列碱金属镁基硫属(硒属)化合物及其非线性光学晶体及其制备方法和用途
CN115536025B (zh) 系列碱土金属氧硫属(硒属)化合物及其非线性光学晶体及其制备方法及其用途
CN114622280A (zh) 化合物氟化硫属锗酸钡和氟化硫属锗酸钡非线性光学晶体及制备方法和用途
CN116240634A (zh) 化合物单斜相硒镓钡和单斜相硒镓钡非线性光学晶体及其制备方法和用途
CN115535972B (zh) 碱土金属锌镓锡硫属化合物及碱土金属锌镓锡硫属非线性光学晶体及其制备方法和用途
CN115557472B (zh) 银镁基硫属(硒属)化合物及银镁基硫属(硒属)非线性光学晶体及其制备方法和用途
CN116121872B (zh) 系列碱土金属硫代(硒代)锗酸盐化合物及其非线性光学晶体及其制备方法及其用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20221206