CN115430885A - Control method and device of phase-shifted full-bridge circuit and welding machine power supply - Google Patents
Control method and device of phase-shifted full-bridge circuit and welding machine power supply Download PDFInfo
- Publication number
- CN115430885A CN115430885A CN202211201590.5A CN202211201590A CN115430885A CN 115430885 A CN115430885 A CN 115430885A CN 202211201590 A CN202211201590 A CN 202211201590A CN 115430885 A CN115430885 A CN 115430885A
- Authority
- CN
- China
- Prior art keywords
- full
- switching
- phase
- preset
- sampling signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 238000003466 welding Methods 0.000 title claims abstract description 39
- 238000005070 sampling Methods 0.000 claims abstract description 102
- 230000010363 phase shift Effects 0.000 claims abstract description 44
- 230000009467 reduction Effects 0.000 claims description 12
- 230000000295 complement effect Effects 0.000 claims description 7
- 238000001914 filtration Methods 0.000 claims description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 6
- 230000003247 decreasing effect Effects 0.000 claims description 5
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 5
- 230000000712 assembly Effects 0.000 claims description 4
- 238000000429 assembly Methods 0.000 claims description 4
- 230000005669 field effect Effects 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 7
- 239000003990 capacitor Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/10—Other electric circuits therefor; Protective circuits; Remote controls
- B23K9/1006—Power supply
- B23K9/1043—Power supply characterised by the electric circuit
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Inverter Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及焊机电源技术领域,具体地说,涉及一种移相全桥电路的控制方法、装置及焊机电源。The invention relates to the technical field of welding machine power supplies, in particular to a control method and device for a phase-shifting full-bridge circuit and a welding machine power supply.
背景技术Background technique
目前,焊机电源在朝着高频化、小型化的趋势发展,其中应用软开关拓扑的焊机电源依靠其较低的开关损耗能够更容易地实现高频高效率。然而,高频化带来的EMI(Electromagnetic Interference,电磁干扰)问题会严重影响焊机电源的移相全桥电路中数字芯片的控制和采样,不仅如此,上述EMI问题还会导致焊机在轻载时较难实现软开关,而硬开关导致的开关器件电压尖峰在高频时带来的干扰会更加严重。因此,如何解决焊机电源在高频化之后,对移相全桥电路的控制带来的电磁干扰问题,是目前面临的一个问题。At present, the welding power supply is developing towards high frequency and miniaturization, and the welding power supply using soft switching topology can more easily achieve high frequency and high efficiency by virtue of its lower switching loss. However, the EMI (Electromagnetic Interference, electromagnetic interference) problem brought about by high frequency will seriously affect the control and sampling of the digital chip in the phase-shifting full-bridge circuit of the welding machine power supply. Not only that, the above-mentioned EMI problem will also cause the welding machine to It is difficult to realize soft switching under load, and the interference caused by the voltage spike of the switching device caused by hard switching will be more serious at high frequencies. Therefore, how to solve the problem of electromagnetic interference caused by the control of the phase-shifting full-bridge circuit after the high frequency of the welding machine power supply is a problem that is currently faced.
发明内容Contents of the invention
有鉴于此,本发明提供一种移相全桥电路的控制方法、装置及焊机电源,根据输出电流大小动态调整开关频率,实现在负载较小时采用较低的脉宽调制频率控制开关组件,从而减小了电磁干扰。In view of this, the present invention provides a control method and device for a phase-shifted full-bridge circuit, and a welding machine power supply, which dynamically adjusts the switching frequency according to the output current, and realizes the use of a lower pulse width modulation frequency to control the switching component when the load is small. Thereby reducing electromagnetic interference.
根据本发明的一个方面,提供一种移相全桥电路的控制方法,所述移相全桥电路设于焊机电源中,包括至少一全桥变换器模块,每一所述全桥变换器模块包括至少一桥臂,每一桥臂包括多个开关组件;所述控制方法包括以下步骤:According to one aspect of the present invention, a control method of a phase-shifting full-bridge circuit is provided, the phase-shifting full-bridge circuit is arranged in a welding machine power supply, and includes at least one full-bridge converter module, each of the full-bridge converters The module includes at least one bridge arm, and each bridge arm includes a plurality of switch assemblies; the control method includes the following steps:
S110,采样所述移相全桥电路的输出电压和每一所述全桥变换器模块对应的输出电流,分别获得输出电压采样信号和每一所述全桥变换器模块对应的输出电流采样信号;S110, sampling the output voltage of the phase-shifted full-bridge circuit and the output current corresponding to each of the full-bridge converter modules, and obtaining output voltage sampling signals and output current sampling signals corresponding to each of the full-bridge converter modules, respectively ;
S120,根据所述输出电压采样信号和所述输出电流采样信号,计算得到每一所述全桥变换器模块对应的移相角;S120. According to the output voltage sampling signal and the output current sampling signal, calculate and obtain a phase shift angle corresponding to each of the full-bridge converter modules;
S130,将所述输出电流采样信号与预设滞环电流阈值进行比较,根据比较结果,调整所述开关组件对应的开关频率;S130, comparing the output current sampling signal with a preset hysteresis current threshold, and adjusting the switching frequency corresponding to the switching component according to the comparison result;
S140,根据所述移相角和所述开关频率,生成与每一所述开关组件对应的脉宽调制波,以分别控制对应的开关组件导通与断开。S140. Generate a pulse width modulation wave corresponding to each of the switch components according to the phase shift angle and the switch frequency, so as to respectively control the corresponding switch components to be turned on and off.
可选地,所述预设滞环电流阈值包括预设滞环电流下限值;步骤S130包括:Optionally, the preset hysteresis current threshold includes a preset hysteresis current lower limit; step S130 includes:
当所述输出电流采样信号小于所述预设滞环电流下限值时,将所述开关组件对应的开关频率减小至第一预设频率阈值。When the output current sampling signal is smaller than the preset hysteresis current lower limit value, the switching frequency corresponding to the switching component is reduced to a first preset frequency threshold.
可选地,步骤S130还包括:Optionally, step S130 also includes:
当所述输出电流采样信号小于所述预设滞环电流下限值时,获取所述开关组件对应的开关频率减小的比例;When the output current sampling signal is smaller than the preset hysteresis current lower limit value, obtain a reduction ratio of the switching frequency corresponding to the switching component;
根据所述开关组件对应的开关频率减小的比例,获取所述开关组件对应的开关周期增大的比例;Acquiring the increasing ratio of the switching cycle corresponding to the switching component according to the decreasing ratio of the switching frequency corresponding to the switching component;
根据所述开关周期增大的比例,同比例增大各个所述桥臂对应的死区时间。According to the increase ratio of the switching period, the dead time corresponding to each of the bridge arms is increased in the same proportion.
可选地,所述预设滞环电流阈值还包括预设滞环电流上限值;其中,所述预设滞环电流上限值大于所述预设滞环电流下限值;步骤S130还包括:Optionally, the preset hysteresis current threshold further includes a preset hysteresis current upper limit; wherein, the preset hysteresis current upper limit is greater than the preset hysteresis current lower limit; step S130 also include:
当所述输出电流采样信号大于所述预设滞环电流上限值时,将所述开关组件对应的开关频率增大至第二预设频率阈值;其中,所述第二预设频率阈值大于所述第一预设频率阈值。When the output current sampling signal is greater than the preset hysteresis current upper limit value, the switching frequency corresponding to the switch component is increased to a second preset frequency threshold; wherein, the second preset frequency threshold is greater than The first preset frequency threshold.
可选地,步骤S120包括:Optionally, step S120 includes:
根据所述输出电压采样信号和预设电压参考信号,进行电压误差计算,得到第一计算结果;performing voltage error calculation according to the output voltage sampling signal and the preset voltage reference signal to obtain a first calculation result;
对所述第一计算结果进行比例积分计算,得到第二计算结果;performing a proportional integral calculation on the first calculation result to obtain a second calculation result;
利用滤波器对所述第二计算结果进行滤波处理后,得到电流参考信号;Obtaining a current reference signal after filtering the second calculation result by using a filter;
根据所述输出电流采样信号和所述电流参考信号,进行电流误差计算,得到第三计算结果;performing current error calculation according to the output current sampling signal and the current reference signal, to obtain a third calculation result;
对所述第三计算结果进行比例积分计算,得到每一所述全桥变换器模块对应的移相角。Proportional-integral calculation is performed on the third calculation result to obtain a phase shift angle corresponding to each full-bridge converter module.
可选地,步骤S120包括:Optionally, step S120 includes:
将预设电压参考信号与所述输出电压采样信号之间的差值,作为第一计算结果;using the difference between the preset voltage reference signal and the output voltage sampling signal as a first calculation result;
将所述电流参考信号与所述输出电流采样信号之间的差值,作为第三计算结果。The difference between the current reference signal and the output current sampling signal is used as a third calculation result.
可选地,步骤S140包括:Optionally, step S140 includes:
获取每一桥臂对应的占空比;其中,同一桥臂中的开关组件对应的占空比相同;Obtain the duty ratio corresponding to each bridge arm; wherein, the duty ratios corresponding to the switching components in the same bridge arm are the same;
根据所述移相角、所述开关频率以及所述占空比,生成与每一所述开关组件对应的脉宽调制波。According to the phase shift angle, the switching frequency and the duty ratio, a pulse width modulation wave corresponding to each of the switching components is generated.
可选地,每一桥臂包括两个开关组件,且每一桥臂中的开关组件对应的PWM波互补。Optionally, each bridge arm includes two switch components, and the PWM waves corresponding to the switch components in each bridge arm are complementary.
可选地,所述开关组件均为碳化硅场效应晶体管。Optionally, the switch components are silicon carbide field effect transistors.
根据本发明的另一个方面,提供一种移相全桥电路的控制装置,用于实现上述任一控制方法,包括:According to another aspect of the present invention, a control device for a phase-shifted full-bridge circuit is provided, which is used to implement any of the above control methods, including:
信号采样模块,采样所述移相全桥电路的输出电压和每一所述全桥变换器模块对应的输出电流,分别获得输出电压采样信号和每一所述全桥变换器模块对应的输出电流采样信号;The signal sampling module samples the output voltage of the phase-shifted full-bridge circuit and the output current corresponding to each of the full-bridge converter modules, and obtains the output voltage sampling signal and the output current corresponding to each of the full-bridge converter modules sampling signal;
移相角计算模块,根据所述输出电压采样信号和所述输出电流采样信号,计算得到每一所述全桥变换器模块对应的移相角;The phase-shift angle calculation module calculates the phase-shift angle corresponding to each full-bridge converter module according to the output voltage sampling signal and the output current sampling signal;
开关频率调整模块,将所述输出电流采样信号与预设滞环电流阈值进行比较,根据比较结果,调整所述开关组件对应的开关频率;The switching frequency adjustment module compares the output current sampling signal with a preset hysteresis current threshold, and adjusts the switching frequency corresponding to the switching component according to the comparison result;
脉宽调制波生成模块,根据所述移相角和所述开关频率,生成与每一所述开关组件对应的脉宽调制波,以分别控制对应的开关组件导通与断开。The pulse width modulation wave generating module generates a pulse width modulation wave corresponding to each of the switching components according to the phase shift angle and the switching frequency, so as to respectively control the corresponding switching components to be turned on and off.
可选地,所述预设滞环电流阈值包括预设滞环电流下限值;所述开关频率调整模块用于:Optionally, the preset hysteresis current threshold includes a preset hysteresis current lower limit; the switching frequency adjustment module is used for:
当所述输出电流采样信号小于所述预设滞环电流下限值时,将所述开关组件对应的开关频率减小至第一预设频率阈值。When the output current sampling signal is smaller than the preset hysteresis current lower limit value, the switching frequency corresponding to the switching component is reduced to a first preset frequency threshold.
可选地,所述开关频率调整模块还用于:Optionally, the switching frequency adjustment module is also used for:
当所述输出电流采样信号小于所述预设滞环电流下限值时,获取所述开关组件对应的开关频率减小的比例;When the output current sampling signal is smaller than the preset hysteresis current lower limit value, obtain a reduction ratio of the switching frequency corresponding to the switching component;
根据所述开关组件对应的开关频率减小的比例,获取所述开关组件对应的开关周期增大的比例;Acquiring the increasing ratio of the switching cycle corresponding to the switching component according to the decreasing ratio of the switching frequency corresponding to the switching component;
根据所述开关周期增大的比例,同比例增大各个所述桥臂对应的死区时间。According to the increase ratio of the switching period, the dead time corresponding to each of the bridge arms is increased in the same proportion.
可选地,所述移相角计算模块包括:Optionally, the phase shift angle calculation module includes:
电压误差计算单元,根据所述输出电压采样信号和预设电压参考信号,进行电压误差计算,得到第一计算结果;The voltage error calculation unit performs voltage error calculation according to the output voltage sampling signal and the preset voltage reference signal to obtain a first calculation result;
第一比例积分计算单元,对所述第一计算结果进行比例积分计算,得到第二计算结果;The first proportional-integral calculation unit performs proportional-integral calculation on the first calculation result to obtain a second calculation result;
电流参考信号获取单元,利用滤波器对所述第二计算结果进行滤波处理后,得到电流参考信号;The current reference signal acquisition unit obtains the current reference signal after filtering the second calculation result by using a filter;
电流误差计算单元,根据所述输出电流采样信号和所述电流参考信号,进行电流误差计算,得到第三计算结果;The current error calculation unit performs current error calculation according to the output current sampling signal and the current reference signal to obtain a third calculation result;
第二比例积分计算单元,对所述第三计算结果进行比例积分计算,得到每一所述全桥变换器模块对应的移相角。The second proportional-integral calculation unit performs proportional-integral calculation on the third calculation result to obtain a phase shift angle corresponding to each full-bridge converter module.
根据本发明的另一个方面,提供一种焊机电源,包括上述任一移相全桥电路的控制装置。According to another aspect of the present invention, there is provided a welding machine power supply, including a control device for any phase-shifting full-bridge circuit described above.
本发明与现有技术相比的有益效果在于:The beneficial effect of the present invention compared with prior art is:
本发明提供的移相全桥电路的控制方法、装置及焊机电源通过结合输出电压采样信号和输出电流采样信号,生成同一桥臂中各开关组件对应的脉宽调制波的移相角,根据输出电流大小动态调整开关频率,实现在负载较小时采用较低的脉宽调制频率,结合上述移相角和脉宽调制频率控制开关组件,从而达到了减小电磁干扰的目的,提高了移相全桥电路的电磁兼容性。The control method and device of the phase-shifting full-bridge circuit provided by the present invention, and the power supply of the welding machine generate the phase-shifting angle of the pulse width modulation wave corresponding to each switch component in the same bridge arm by combining the output voltage sampling signal and the output current sampling signal, according to The magnitude of the output current dynamically adjusts the switching frequency to realize the use of a lower PWM frequency when the load is small. Combined with the above-mentioned phase shift angle and PWM frequency control switch components, the purpose of reducing electromagnetic interference is achieved and the phase shift is improved. Electromagnetic Compatibility of Full Bridge Circuits.
附图说明Description of drawings
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments consistent with the invention and together with the description serve to explain the principles of the invention. Apparently, the drawings in the following description are only some embodiments of the present invention, and those skilled in the art can obtain other drawings according to these drawings without creative efforts.
图1为本发明一实施例公开的一种移相全桥电路的结构示意图;FIG. 1 is a schematic structural diagram of a phase-shifted full-bridge circuit disclosed in an embodiment of the present invention;
图2为本发明一实施例公开的一种移相全桥电路的控制方法的流程示意图;2 is a schematic flowchart of a control method for a phase-shifted full-bridge circuit disclosed in an embodiment of the present invention;
图3为本发明另一实施例公开的移相全桥电路的控制方法中步骤S120的流程示意图;3 is a schematic flowchart of step S120 in the control method of the phase-shifted full-bridge circuit disclosed in another embodiment of the present invention;
图4为本发明一实施例公开的移相全桥电路工作时主电路以及控制信号的主要波形。FIG. 4 shows the main waveforms of the main circuit and control signals when the phase-shifted full-bridge circuit is working according to an embodiment of the present invention.
图5为不同开关频率下同一桥臂不同晶体管的脉宽调制波形的对比示意图;Fig. 5 is a comparative schematic diagram of pulse width modulation waveforms of different transistors of the same bridge arm under different switching frequencies;
图6为移相全桥电路中晶体管进行频率变换的具体实现方式示意图;6 is a schematic diagram of a specific implementation of frequency conversion by transistors in a phase-shifted full-bridge circuit;
图7为本发明另一实施例公开的一种移相全桥电路的控制方法的流程示意图;7 is a schematic flowchart of a control method for a phase-shifted full-bridge circuit disclosed in another embodiment of the present invention;
图8为本发明另一实施例公开的一种移相全桥电路的结构示意图;FIG. 8 is a schematic structural diagram of a phase-shifted full-bridge circuit disclosed in another embodiment of the present invention;
图9为本发明一实施例公开的一种移相全桥电路的控制装置的示意图;9 is a schematic diagram of a control device for a phase-shifted full-bridge circuit disclosed in an embodiment of the present invention;
图10为本发明一实施例公开的移相全桥电路的控制装置的工作原理示意图;Fig. 10 is a schematic diagram of the working principle of the control device of the phase-shifted full-bridge circuit disclosed in an embodiment of the present invention;
图11为本发明一实施例公开的移相全桥电路的控制装置中移相角计算模块的结构示意图;11 is a schematic structural diagram of a phase-shift angle calculation module in a control device of a phase-shift full-bridge circuit disclosed in an embodiment of the present invention;
图12为本发明一实施例公开的一种焊机电源的结构示意图。Fig. 12 is a schematic structural diagram of a welding power source disclosed by an embodiment of the present invention.
具体实施方式detailed description
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式。相反,提供这些实施方式使得本发明将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本公开的实施方式的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而没有所述特定细节中的一个或更多,或者可以采用其它的方法、材料、装置等。在其它情况下,不详细示出或描述公知技术方案以避免模糊本公开的各方面。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。Example embodiments will now be described more fully with reference to the accompanying drawings. Example embodiments may, however, be embodied in many forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the example embodiments to those skilled in the art. The described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided in order to give a thorough understanding of embodiments of the present disclosure. However, one skilled in the art will appreciate that the technical solutions of the present disclosure may be practiced without one or more of the specific details, or that other methods, materials, devices, etc. may be employed. In other instances, well-known technical solutions have not been shown or described in detail to avoid obscuring aspects of the present disclosure. The same reference numerals in the drawings denote the same or similar structures, and thus their detailed descriptions will be omitted.
用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等;用语“包括”、“具有”以及“设有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等。The terms "a", "an", "the", "said" and "at least one" are used to indicate the presence of one or more elements/components/etc.; the terms "comprising", "having" and "having" is used in an open, inclusive sense and means that additional elements/components/etc. may be present in addition to the listed elements/components/etc.
本发明公开了一种移相全桥电路的控制方法。上述移相全桥电路设于焊机电源中,包括至少一全桥变换器模块。每一上述全桥变换器模块包括至少一桥臂。每一桥臂包括多个开关组件。The invention discloses a control method of a phase-shifting full-bridge circuit. The above-mentioned phase-shifting full-bridge circuit is set in the power supply of the welding machine and includes at least one full-bridge converter module. Each of the aforementioned full-bridge converter modules includes at least one bridge arm. Each bridge arm includes a plurality of switch assemblies.
如图1所示,本发明一实施例公开了一种移相全桥电路。该电路仅包括一个全桥变换器模块。该全桥变换器模块中包括两个桥臂。每个桥臂包括两个开关组件。本实施例中,上述开关组件为MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金属-氧化物半导体场效应晶体管)管。在其他实施例中,该开关组件还可以为其他的器件,本申请对此不作限制。As shown in FIG. 1 , an embodiment of the present invention discloses a phase-shifted full-bridge circuit. The circuit consists of only one full-bridge converter block. The full bridge converter module includes two bridge arms. Each bridge arm includes two switch assemblies. In this embodiment, the switch component is a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor, Metal-Oxide Semiconductor Field-Effect Transistor) tube. In other embodiments, the switch component may also be other devices, which is not limited in the present application.
进一步地,本实施例中,上述开关组件为碳化硅(SiC)MOSFET管。具体而言,由于特种工艺要求,焊机电源需要大电流、大功率,目前普遍采用硅整流和晶闸管整流式电源,可靠性较好,技术上也比较成熟,但设备体积庞大、笨重、能耗低、效率低,且由于结构其原因,动静态特性方面也不够理想。而当前市场上对焊接电源的焊接性能,体积和效率提出了新的要求。Further, in this embodiment, the above switch component is a silicon carbide (SiC) MOSFET tube. Specifically, due to special process requirements, welding machine power supplies require high current and high power. At present, silicon rectifier and thyristor rectifier power supplies are generally used, which have good reliability and relatively mature technology, but the equipment is bulky, heavy and energy-consuming. Low, low efficiency, and because of the structure, the dynamic and static characteristics are not ideal. However, the current market puts forward new requirements for welding performance, volume and efficiency of welding power sources.
SiC作为第三代宽禁带半导体材料,其优越的性能和极高的效率已经得到了检验。SiC功率器件极低的开关损耗利于焊机电源实现高频化。较高的频率意味着更好的焊接性能和更高的功率密度。由于输出电流纹波的减小,其输出电感感量也相应的减小,输出电流的动态响应更快,因此相比普通焊机能够达到更为精细的控制。而更小的电容和电感量也为焊机小型化提供了便利条件。因此,本实施例中,采用碳化硅材质的MOSFET管利于焊机电源实现高频化和小型化。As the third-generation wide-bandgap semiconductor material, SiC has been verified for its superior performance and extremely high efficiency. The extremely low switching loss of SiC power devices is conducive to the high frequency of welding power supplies. Higher frequency means better welding performance and higher power density. Due to the reduction of the output current ripple, the output inductance is also correspondingly reduced, and the dynamic response of the output current is faster, so it can achieve more fine control than ordinary welding machines. The smaller capacitance and inductance also provide convenience for the miniaturization of the welding machine. Therefore, in this embodiment, the MOSFET tube made of silicon carbide is used to facilitate the realization of high frequency and miniaturization of the power supply of the welding machine.
参考图1,本实施例中,每一个桥臂中的开关组件对应的PWM(pulse widthmodulation,脉宽调制)波互补。全桥变换器模块中包括第一晶体管S1、第二晶体管S2、第三晶体管S3以及第四晶体管S4。其中,第一晶体管S1和第三晶体管S3串联,构成了第一桥臂。第一晶体管S1和第三晶体管S3互补导通。第二晶体管S2和第四晶体管S4串联,构成了第二桥臂。第二晶体管S2和第四晶体管S4互补导通。并且,第一桥臂的开通时刻超前于第二桥臂。Referring to FIG. 1 , in this embodiment, the PWM (pulse width modulation, pulse width modulation) waves corresponding to the switching components in each bridge arm are complementary. The full-bridge converter module includes a first transistor S1 , a second transistor S2 , a third transistor S3 and a fourth transistor S4 . Wherein, the first transistor S1 and the third transistor S3 are connected in series to form a first bridge arm. The first transistor S1 and the third transistor S3 are turned on complementary. The second transistor S2 and the fourth transistor S4 are connected in series to form a second bridge arm. The second transistor S2 and the fourth transistor S4 are turned on complementary. Moreover, the turn-on time of the first bridge arm is ahead of the second bridge arm.
继续参考图1,上述移相全桥电路还包括第一电感Lr1、变压器T1、第一互感器CT1、第一电容C1、第一二极管D1、第二二极管D2以及第二电感L2、第三二极管Q1、第四二极管Q2、第五二极管Q3、第六二极管Q4以及第二互感器CS1。第一二极管D1和第二二极管D2串联。第三二极管Q1和第五二极管Q3串联。第四二极管Q2和第六二极管Q4串联。第二电感L2的第一端连接于第一晶体管S1和第三晶体管S3之间。第一电容C1连接于第二电感L2的第二端和第一互感器CT1之间。第一互感器CT1连接于变压器T1的原边。变压器T1的原边还连接于第二晶体管S2和第四晶体管S4之间。变压器T1的副边分别连接于第三二极管Q1和第五二极管Q3之间,以及第四二极管Q2和第六二极管Q4之间。Continuing to refer to FIG. 1 , the above-mentioned phase-shifted full-bridge circuit further includes a first inductor L r1 , a transformer T 1 , a first transformer CT 1 , a first capacitor C 1 , a first diode D 1 , and a second diode D 2 and the second inductor L 2 , the third diode Q 1 , the fourth diode Q 2 , the fifth diode Q 3 , the sixth diode Q 4 and the second transformer CS 1 . The first diode D1 and the second diode D2 are connected in series. The third diode Q1 and the fifth diode Q3 are connected in series. The fourth diode Q2 and the sixth diode Q4 are connected in series. A first terminal of the second inductor L2 is connected between the first transistor S1 and the third transistor S3. The first capacitor C1 is connected between the second terminal of the second inductor L2 and the first transformer CT1. The first transformer CT 1 is connected to the primary side of the transformer T 1 . The primary side of the transformer T1 is also connected between the second transistor S2 and the fourth transistor S4. The secondary side of the transformer T1 is respectively connected between the third diode Q1 and the fifth diode Q3 , and between the fourth diode Q2 and the sixth diode Q4 .
该移相全桥电路的输入端与焊机电源的PFC电路的输出端连接,该移相全桥电路的输出端的正极VO +与负极VO-之间设有焊接工件N1。上述移相全桥电路中的各个元器件之间的连接关系可参考图1所示,本实施例不再赘述。The input end of the phase-shifting full-bridge circuit is connected to the output end of the PFC circuit of the welding machine power supply, and the welding workpiece N1 is arranged between the positive pole V O + and the negative pole V O- of the output end of the phase-shifting full-bridge circuit. The connection relationship between the various components in the above-mentioned phase-shifting full-bridge circuit can be referred to as shown in FIG. 1 , which will not be repeated in this embodiment.
如图2所示,本发明一实施例公开了一种移相全桥电路的控制方法。上述控制方法包括以下步骤:As shown in FIG. 2 , an embodiment of the present invention discloses a control method for a phase-shifted full-bridge circuit. Above-mentioned control method comprises the following steps:
S110,采样移相全桥电路的输出电压和每一全桥变换器模块对应的输出电流,分别获得输出电压采样信号和每一全桥变换器模块对应的输出电流采样信号。S110, sampling the output voltage of the phase-shifted full-bridge circuit and the corresponding output current of each full-bridge converter module, and obtaining the output voltage sampling signal and the corresponding output current sampling signal of each full-bridge converter module.
具体而言,以图1为例进行说明,移相全桥电路的输出电压即为输出端的正极与负极之间的电压。由于图1中的移相全桥电路仅具有一个全桥变换器模块,所以上述输出电流即为该全桥变换器模块的输出电流。上述输出电流和输出电压的采样可以通过差分采样实现,采样的具体实施过程可参考现有技术实现,本实施例不再赘述。Specifically, taking FIG. 1 as an example for illustration, the output voltage of the phase-shifted full-bridge circuit is the voltage between the positive pole and the negative pole of the output terminal. Since the phase-shifted full-bridge circuit in FIG. 1 has only one full-bridge converter module, the above output current is the output current of the full-bridge converter module. The sampling of the above output current and output voltage can be realized by differential sampling, and the specific implementation process of sampling can be realized by referring to the existing technology, and will not be repeated in this embodiment.
当移相全桥电路具有两个或两个以上的全桥变换器模块时,那么对于每一个全桥变换器模块的输出电流分别进行采样,对应获得关联每一个全桥变换器模块的输出电流采样信号。When the phase-shifted full-bridge circuit has two or more full-bridge converter modules, the output current of each full-bridge converter module is sampled separately, and the corresponding output current of each full-bridge converter module is obtained sample signal.
S120,根据上述输出电压采样信号和上述输出电流采样信号,计算得到每一上述全桥变换器模块对应的移相角。S120. According to the above-mentioned output voltage sampling signal and the above-mentioned output current sampling signal, calculate and obtain the phase shift angle corresponding to each of the above-mentioned full-bridge converter modules.
具体实施时,如图3所示,步骤S120包括:During specific implementation, as shown in Figure 3, step S120 includes:
S121,根据上述输出电压采样信号和预设电压参考信号,进行电压误差计算,得到第一计算结果。其中,该步骤将预设电压参考信号与上述输出电压采样信号之间的差值,作为第一计算结果。也即上述电压误差计算为计算预设电压参考信号和输出电压采样信号之间的差值。S121. Perform voltage error calculation according to the output voltage sampling signal and the preset voltage reference signal to obtain a first calculation result. Wherein, in this step, the difference between the preset voltage reference signal and the above-mentioned output voltage sampling signal is taken as the first calculation result. That is, the above voltage error is calculated as the difference between the preset voltage reference signal and the output voltage sampling signal.
S122,对上述第一计算结果进行比例积分计算,得到第二计算结果。S122. Perform proportional integral calculation on the first calculation result to obtain a second calculation result.
S123,利用滤波器对上述第二计算结果进行滤波处理后,得到电流参考信号。S123. Obtain a current reference signal after filtering the above-mentioned second calculation result by using a filter.
S124,根据上述输出电流采样信号和上述电流参考信号,进行电流误差计算,得到第三计算结果。其中,该步骤将上述电流参考信号与上述输出电流采样信号之间的差值,作为第三计算结果。也即电流误差计算为计算电流参考信号与上述输出电流采样信号之间的差值。S124. Perform current error calculation according to the output current sampling signal and the current reference signal to obtain a third calculation result. Wherein, in this step, the difference between the above-mentioned current reference signal and the above-mentioned output current sampling signal is used as the third calculation result. That is, the current error is calculated as the difference between the calculated current reference signal and the above-mentioned output current sampling signal.
S125,对上述第三计算结果进行比例积分计算,得到每一上述全桥变换器模块对应的移相角。S125. Perform proportional-integral calculation on the third calculation result to obtain a phase shift angle corresponding to each full-bridge converter module.
上述步骤S122即为对预设电压参考信号和输出电压采样信号之间的差值进行PI(proportional integral,比例积分)计算。然后可以对第二计算结果利用一阶低通滤波器进行滤波,得到电流参考信号。其中,由于同一个全桥变换器模块的输出电流是一样的,因此同一个全桥变换器模块计算得到的移相角也是一样的。同一个全桥变换器模块中各个桥臂对应的移相角是一样的。移相角即为后续生成的同一桥臂下各个晶体管对应的PWM波之间的相位的差。The above step S122 is to perform PI (proportional integral, proportional integral) calculation on the difference between the preset voltage reference signal and the output voltage sampling signal. Then, the second calculation result may be filtered by a first-order low-pass filter to obtain a current reference signal. Wherein, since the output current of the same full-bridge converter module is the same, the phase shift angle calculated by the same full-bridge converter module is also the same. The phase shift angles corresponding to each bridge arm in the same full-bridge converter module are the same. The phase shift angle is the phase difference between the PWM waves corresponding to the respective transistors under the same bridge arm generated subsequently.
因此,步骤S120即为先进行电压环PI计算,然后进行电流环PI计算。其中,PI计算的具体实施过程可参考现有技术实现,本实施例不再赘述。Therefore, step S120 is to first calculate the voltage loop PI, and then perform the current loop PI calculation. Wherein, the specific implementation process of PI calculation can be implemented with reference to the prior art, and will not be repeated in this embodiment.
S130,将上述输出电流采样信号与预设滞环电流阈值进行比较,根据比较结果,调整上述开关组件对应的开关频率。其中,同一个全桥变换器模块中所有开关组件的开关频率相同。上述预设滞环电流阈值包括预设滞环电流上限值和预设滞环电流下限值。其中,上述预设滞环电流上限值大于上述预设滞环电流下限值。S130, comparing the output current sampling signal with a preset hysteresis current threshold, and adjusting the switching frequency corresponding to the switching component according to the comparison result. Wherein, the switching frequency of all switching components in the same full-bridge converter module is the same. The aforementioned preset hysteresis current threshold includes a preset hysteresis current upper limit and a preset hysteresis current lower limit. Wherein, the preset upper limit value of the hysteresis current is greater than the preset lower limit value of the hysteresis current.
该步骤中,当上述输出电流采样信号小于上述预设滞环电流下限值时,将上述开关组件对应的开关频率减小至第一预设频率阈值。输出电流采样信号小于上述预设滞环电流下限值时,说明焊机处于轻载状态。当焊机空载运行时,其也处于轻载状态。In this step, when the output current sampling signal is smaller than the preset hysteresis current lower limit value, the switching frequency corresponding to the switch assembly is reduced to a first preset frequency threshold. When the output current sampling signal is less than the preset hysteresis current lower limit, it means that the welding machine is in a light-load state. When the welding machine is running without load, it is also in a light load state.
轻载下降频能够带来很多好处。一方面,降频后能够允许更长的死区时间,从而增大软开的功率范围。另一方面,降频后晶体管单位时间内产生的噪声会变少,这大大降低了硬开关时造成的电磁干扰,提高了移相全桥电路的电磁兼容性。Downclocking at light loads can bring many benefits. On the one hand, a longer dead time can be allowed after frequency reduction, thereby increasing the power range of soft-on. On the other hand, after the frequency is reduced, the noise generated by the transistor per unit time will be reduced, which greatly reduces the electromagnetic interference caused by hard switching, and improves the electromagnetic compatibility of the phase-shifted full-bridge circuit.
示例性地,上述第一预设频率阈值可以为75kHz,预设滞环电流下限值可以为100A,本申请对此不作限制。Exemplarily, the above-mentioned first preset frequency threshold may be 75kHz, and the preset lower limit value of hysteresis current may be 100A, which is not limited in the present application.
具体而言,图4示出了移相全桥电路工作时主电路以及控制信号的主要波形。参考图4,iL表示变压器的原边的振荡电流,uh1表示变压器的原边电压,uh2表示变压器的副边电压。图4中uh2的阴影部分表示对应时间段内并未输出电压。图4中示出的控制信号波形是用于控制各个晶体管的PWM波对应的脉宽调制波形。其中,Uin表示移相全桥电路的输入电压。K表示变压器原边和副边的匝比。Uin/K表示Uin与K之间的比值。Specifically, FIG. 4 shows the main waveforms of the main circuit and control signals when the phase-shifted full-bridge circuit is working. Referring to Fig. 4, i L represents the oscillating current of the primary side of the transformer, u h1 represents the primary voltage of the transformer, and u h2 represents the secondary voltage of the transformer. The shaded part of u h2 in Fig. 4 indicates that no voltage is output in the corresponding time period. The control signal waveform shown in FIG. 4 is a pulse width modulation waveform corresponding to a PWM wave for controlling each transistor. Among them, U in represents the input voltage of the phase-shifted full-bridge circuit. K represents the turns ratio of the primary and secondary sides of the transformer. U in /K represents the ratio between U in and K.
在t0到t1时间段,晶体管S1关断,原边谐振电流对晶体管S1体电容充电,同时对晶体管S3体电容放电,直至晶体管S3的漏极和源极之间的电压下降至零。这一过程必须在死区时间内完成,否则会导致晶体管S3零电压开通失败,从而产生开通损耗。也即,电容充放电需要时间,只有在规定的死区时间内完成电容充放电才能软开。因此,若要实现软开关,就需要加快电容充放电时间,和/或延长死区时间。其中,死区时间是指同一桥臂的两个晶体管同时处于断开状态的时间段。During the period from t 0 to t 1 , transistor S1 is turned off, and the primary side resonant current charges the bulk capacitance of transistor S1, and at the same time discharges the bulk capacitance of transistor S3 until the voltage between the drain and source of transistor S3 drops to zero. This process must be completed within the dead time, otherwise it will lead to zero-voltage turn-on failure of transistor S3, resulting in turn-on loss. In other words, it takes time to charge and discharge the capacitor, and soft opening can only be performed when the capacitor is charged and discharged within the specified dead time. Therefore, to achieve soft switching, it is necessary to speed up the charging and discharging time of the capacitor, and/or extend the dead time. Wherein, the dead time refers to a time period during which two transistors of the same bridge arm are in an off state at the same time.
由此可知,原边电流和死区的大小对移相全桥电路是否能完成软开关有很大影响。功率越大,原边电流越大,开关管体电容充放电越快,则变换器越容易完成软开。而死区时间越大,其允许电容充放电的时间越长,软开也越容易实现。It can be seen that the size of the primary current and dead zone has a great influence on whether the phase-shifted full-bridge circuit can complete soft switching. The greater the power, the greater the primary current, and the faster the charge and discharge of the switch body capacitance, the easier it is for the converter to complete soft opening. The longer the dead time is, the longer it allows the capacitor to charge and discharge, and the easier it is to realize soft opening.
因此,在功率较小,即输出电流较小时,需增大死区时间以扩大软开的功率范围,而过大的死区时间会导致有效占空比丢失,空载电压过低会增大引弧失败的概率。而如果将开关周期与死区时间以相同比例增大,则死区导致的占空比丢失在不同开关频率下都能保持一样,因此在轻载时降低开关频率则能够有效地解决这一问题。Therefore, when the power is small, that is, when the output current is small, it is necessary to increase the dead time to expand the power range of soft-on, and an excessively large dead time will cause the loss of the effective duty cycle, and the low no-load voltage will increase Probability of arc ignition failure. However, if the switching cycle is increased in the same proportion as the dead time, the loss of duty cycle caused by the dead time will remain the same at different switching frequencies, so reducing the switching frequency at light loads can effectively solve this problem .
开关电源追求高频主要是为了减小电感、电容参数,从而减小变换器即移相全桥电路的尺寸,提高功率密度,利于实现开关电源的小型化。在较小的电感电容参数下,降低开关频率会增大电路中电流与电压的纹波,从而导致开关管应力增大、磁性元件饱和等问题。而在焊机处于轻载状态下降频则不会产生该问题,由于焊机电源本身功率较小,即使纹波增大也不会超过安全范围。The main purpose of switching power supply to pursue high frequency is to reduce the parameters of inductance and capacitance, thereby reducing the size of the converter, that is, the phase-shifting full-bridge circuit, increasing the power density, and helping to realize the miniaturization of switching power supply. Under the smaller inductance and capacitance parameters, reducing the switching frequency will increase the current and voltage ripple in the circuit, which will lead to problems such as increased stress on the switch tube and saturation of magnetic components. However, this problem will not occur when the welding machine is under light load. Since the power of the welding machine itself is small, even if the ripple increases, it will not exceed the safe range.
图5示出了不同开关频率下同一桥臂脉宽调制波形的对比。分别示出了第一桥臂中的第一晶体管S1和第三晶体管S3在75kHz频率下的脉宽调制波形,以及在150kHz频率下的脉宽调制波形。图5的横坐标表示时间t。Fig. 5 shows the comparison of the pulse width modulation waveforms of the same bridge arm under different switching frequencies. The pulse width modulation waveforms of the first transistor S1 and the third transistor S3 in the first bridge arm at a frequency of 75 kHz and the pulse width modulation waveforms of a frequency of 150 kHz are respectively shown. The abscissa in FIG. 5 represents time t.
图6示出了晶体管的开关频率的切换实现示意图。为了保证移相全桥电路能够稳定运行,本实施例中,频率切换时采取滞环控制。并以输出电流的大小作为切换条件。当输出电流i大于滞环上限Iup_lim即预设滞环电流上限值时,由低频即第一预设频率阈值切换为高频即第二预设频率阈值;比如由低频75kHz切换为高频150kHz。当输出电流i小于滞环下限Ilow_lim即预设滞环电流下限值时,由高频150kHz切换为低频75kHz。Imax表示该电路输出电流的最大值。图6还示出了频率变换后对应生成的脉宽调制波形的变化情况。FIG. 6 shows a schematic diagram of implementing the switching of the switching frequency of the transistor. In order to ensure the stable operation of the phase-shifted full-bridge circuit, in this embodiment, hysteresis control is adopted during frequency switching. And take the magnitude of the output current as the switching condition. When the output current i is greater than the hysteresis upper limit I up_lim , which is the preset hysteresis current upper limit, switch from low frequency, which is the first preset frequency threshold, to high frequency, which is the second preset frequency threshold; for example, switch from low frequency 75kHz to high frequency 150kHz. When the output current i is less than the hysteresis lower limit I low_lim , that is, the preset lower limit of the hysteresis current, the high frequency 150kHz is switched to the low frequency 75kHz. I max represents the maximum value of the output current of the circuit. FIG. 6 also shows the change of the corresponding generated pulse width modulation waveform after the frequency conversion.
S140,根据上述移相角和上述开关频率,生成与每一上述开关组件对应的脉宽调制波,以分别控制对应的开关组件导通与断开。具体实施时,该步骤可以包括:S140. Generate a pulse width modulation wave corresponding to each of the switching components according to the phase shift angle and the switching frequency, so as to respectively control the corresponding switching components to be turned on and off. During specific implementation, this step may include:
获取每一桥臂对应的占空比。其中,同一桥臂中的开关组件对应的占空比相同。然后根据上述移相角、开关频率以及上述占空比,生成与每一上述开关组件对应的脉宽调制波。Obtain the duty cycle corresponding to each bridge arm. Wherein, the duty ratios corresponding to the switching components in the same bridge arm are the same. Then according to the above-mentioned phase shift angle, switching frequency and above-mentioned duty cycle, a pulse width modulation wave corresponding to each of the above-mentioned switching components is generated.
其中,上述占空比可以为预设生成,比如为50%。开关频率即为PWM波的频率。此时该步骤即为:根据移相角、开关频率以及预设占空比,生成脉宽调制波。Wherein, the above-mentioned duty cycle may be generated by preset, for example, it is 50%. The switching frequency is the frequency of the PWM wave. In this case, the step is: generate a pulse width modulated wave according to the phase shift angle, the switching frequency and the preset duty cycle.
本实施例中,该步骤计算生成两路控制信号,每一路控制信号包括两个互补PWM波。每一路控制信号用于控制同一个桥臂中的两个晶体管。每一个脉宽调制波用于控制一个晶体管导通或断开。In this embodiment, this step calculates and generates two control signals, and each control signal includes two complementary PWM waves. Each control signal is used to control two transistors in the same bridge arm. Each PWM wave is used to control a transistor to turn on or off.
在其他实施例中,步骤S130中,当上述输出电流采样信号大于上述预设滞环电流上限值时,将上述开关组件对应的开关频率增大至第二预设频率阈值。其中,上述第二预设频率阈值大于上述第一预设频率阈值。In other embodiments, in step S130, when the output current sampling signal is greater than the preset hysteresis current upper limit, the switching frequency corresponding to the switching component is increased to a second preset frequency threshold. Wherein, the above-mentioned second preset frequency threshold is greater than the above-mentioned first preset frequency threshold.
在一些实施例中,当输出电流采样信号位于预设滞环电流下限值和预设滞环电流上限值之间时,对应的开关频率可以保持不变,或者也切换至上述第二预设频率阈值。In some embodiments, when the output current sampling signal is between the preset hysteresis current lower limit value and the preset hysteresis current upper limit value, the corresponding switching frequency can remain unchanged, or switch to the above-mentioned second preset value. Set the frequency threshold.
示例性地,上述第二预设频率阈值可以为150kHz,预设滞环电流下限值可以为100A,预设滞环电流上限值可以为150A,本申请对此不作限制。Exemplarily, the second preset frequency threshold may be 150kHz, the preset lower limit of hysteresis current may be 100A, and the preset upper limit of hysteresis current may be 150A, which is not limited in the present application.
在本申请的另一实施例中,公开了移相全桥电路的另一种控制方法。如图7所示,该方法在上述图2对应实施例的基础上,步骤S130还包括:In another embodiment of the present application, another control method of a phase-shifted full-bridge circuit is disclosed. As shown in Figure 7, on the basis of the above-mentioned embodiment corresponding to Figure 2, step S130 further includes:
S131,当上述输出电流采样信号小于预设滞环电流下限值时,减小开关组件对应的开关频率,并获取开关频率减小的比例。S131. When the output current sampling signal is smaller than the preset lower limit value of the hysteresis current, reduce the switching frequency corresponding to the switching component, and acquire a reduction ratio of the switching frequency.
S132,根据上述开关组件对应的开关频率减小的比例,获取开关组件对应的开关周期增大的比例。S132. According to the reduction ratio of the switching frequency corresponding to the above-mentioned switching component, obtain the increasing ratio of the switching period corresponding to the switching component.
S133,根据上述开关周期增大的比例,同比例增大各个桥臂对应的死区时间。S133. Increase the dead time corresponding to each bridge arm in the same proportion according to the above-mentioned increasing ratio of the switching period.
也即,将各个桥臂对应的死区时间以与开关周期增大的比例相同的比例进行增大。That is, the dead time corresponding to each bridge arm is increased by the same ratio as the switching period.
下面进行举例说明,比如当晶体管的开关频率由高频150kHz切换为低频75kHz时,那么减小的比例就为1/2。那么开关周期增大的比例就是1/2的相反数,也即为2。因此,该电路中各个桥臂对应的死区时间也增大至2倍。An example is given below, for example, when the switching frequency of the transistor is switched from a high frequency of 150kHz to a low frequency of 75kHz, the reduction ratio is 1/2. Then the ratio of the switching cycle increase is the opposite number of 1/2, which is 2. Therefore, the dead time corresponding to each bridge arm in the circuit is also doubled.
因为过大的死区时间会导致有效占空比丢失,会出现空载电压过低从而增大引弧失败的概率的问题。本实施例将开关周期与死区时间以相同比例增大,则死区导致的占空比丢失在不同开关频率下都能保持一样,从而解决了上述问题。Because the excessive dead time will lead to the loss of effective duty ratio, there will be a problem that the no-load voltage is too low, which will increase the probability of arc ignition failure. In this embodiment, the switching cycle and the dead time are increased by the same ratio, so that the loss of duty cycle caused by the dead time can be kept the same at different switching frequencies, thereby solving the above-mentioned problem.
如图8所示,本发明另一实施例公开了一种移相全桥电路以及连接的PFC(PowerFactor Corrector,功率因子校正)电路。该电路中包括两个并联的全桥变换器模块,也即为第一全桥变换器模块81和第二全桥变换器模块82并联。其中,第一全桥变换器模块81和第二全桥变换器模块82的具体结构可参考图8所示,本实施例不再赘述。As shown in FIG. 8 , another embodiment of the present invention discloses a phase-shifted full-bridge circuit and a connected PFC (PowerFactor Corrector, power factor correction) circuit. The circuit includes two parallel full-bridge converter modules, that is, the first full-
该图中的移相全桥电路在应用上述实施例公开的控制方法进行控制时,需要针对两个全桥变换器模块81分别采样输出电流,生成各自对应的输出电流采样信号,然后针对两个全桥变换器模块81分别计算对应的移相角。然后得到各自对应的脉宽调制波。计算过程中,两个全桥变换器模块81对应参考的输出电压采样信号是相同的。When the phase-shifted full-bridge circuit in this figure is controlled by the control method disclosed in the above-mentioned embodiments, it is necessary to sample the output current for the two full-
如图9所示,本发明另一实施例公开了一种移相全桥电路的控制装置。该装置包括:As shown in FIG. 9 , another embodiment of the present invention discloses a control device for a phase-shifted full-bridge circuit. The unit includes:
信号采样模块91,采样上述移相全桥电路的输出电压和每一上述全桥变换器模块对应的输出电流,分别获得输出电压采样信号和每一上述全桥变换器模块对应的输出电流采样信号。The
移相角计算模块92,根据上述输出电压采样信号和上述输出电流采样信号,计算得到每一上述全桥变换器模块对应的移相角。The phase-shift
开关频率调整模块93,将上述输出电流采样信号与预设滞环电流阈值进行比较,根据比较结果,调整上述开关组件对应的开关频率。The switching
脉宽调制波生成模块94,根据上述移相角和上述开关频率,生成与每一上述开关组件对应的脉宽调制波,以分别控制对应的开关组件导通与断开。The pulse width modulation
具体而言,以图1为例进行说明,移相全桥电路的输出电压即为输出端的正极与负极之间的电压。由于图1中的移相全桥电路仅具有一个全桥变换器模块,所以上述输出电流即为该全桥变换器模块的输出电流。上述输出电流和输出电压的采样可以通过差分采样实现,采样的具体实施过程可参考现有技术实现,本实施例不再赘述。Specifically, taking FIG. 1 as an example for illustration, the output voltage of the phase-shifted full-bridge circuit is the voltage between the positive pole and the negative pole of the output terminal. Since the phase-shifted full-bridge circuit in FIG. 1 has only one full-bridge converter module, the above output current is the output current of the full-bridge converter module. The sampling of the above output current and output voltage can be realized by differential sampling, and the specific implementation process of sampling can be realized by referring to the existing technology, and will not be repeated in this embodiment.
移相角计算模块先根据输出电压采样信号进行电压环PI计算,然后根据输出电流采样信号进行电流环PI计算。其中,PI计算的具体实施过程可参考现有技术实现,本实施例不再赘述。The phase shift angle calculation module first performs voltage loop PI calculation according to the output voltage sampling signal, and then performs current loop PI calculation according to the output current sampling signal. Wherein, the specific implementation process of PI calculation can be implemented with reference to the prior art, and will not be repeated in this embodiment.
当移相全桥电路具有两个或两个以上的全桥变换器模块时,那么对于每一个全桥变换器模块的输出电流分别进行采样,对应获得关联每一个全桥变换器模块的输出电流采样信号。When the phase-shifted full-bridge circuit has two or more full-bridge converter modules, the output current of each full-bridge converter module is sampled separately, and the corresponding output current of each full-bridge converter module is obtained sample signal.
其中,同一个全桥变换器模块中所有开关组件的开关频率相同。上述预设滞环电流阈值包括预设滞环电流上限值和预设滞环电流下限值。其中,上述预设滞环电流上限值大于上述预设滞环电流下限值。Wherein, the switching frequency of all switching components in the same full-bridge converter module is the same. The aforementioned preset hysteresis current threshold includes a preset hysteresis current upper limit and a preset hysteresis current lower limit. Wherein, the preset upper limit value of the hysteresis current is greater than the preset lower limit value of the hysteresis current.
当上述输出电流采样信号小于上述预设滞环电流下限值时,开关频率调整模块将上述开关组件对应的开关频率减小至第一预设频率阈值。输出电流采样信号小于上述预设滞环电流下限值时,说明焊机处于轻载状态。当焊机空载运行时,其也处于轻载状态。When the output current sampling signal is smaller than the preset hysteresis current lower limit, the switching frequency adjustment module reduces the switching frequency corresponding to the switching component to a first preset frequency threshold. When the output current sampling signal is less than the preset hysteresis current lower limit, it means that the welding machine is in a light-load state. When the welding machine is running without load, it is also in a light load state.
轻载下降频能够带来很多好处。一方面,降频后能够允许更长的死区时间,从而增大软开的功率范围。另一方面,降频后晶体管单位时间内产生的噪声会变少,这大大降低了硬开关时造成的电磁干扰,提高了移相全桥电路的电磁兼容性。Downclocking at light loads can bring many benefits. On the one hand, a longer dead time can be allowed after frequency reduction, thereby increasing the power range of soft-on. On the other hand, after the frequency is reduced, the noise generated by the transistor per unit time will be reduced, which greatly reduces the electromagnetic interference caused by hard switching, and improves the electromagnetic compatibility of the phase-shifted full-bridge circuit.
示例性地,上述第一预设频率阈值可以为75kHz,预设滞环电流下限值可以为100A,本申请对此不作限制。Exemplarily, the above-mentioned first preset frequency threshold may be 75kHz, and the preset lower limit value of hysteresis current may be 100A, which is not limited in the present application.
针对仅具有一个全桥变换器模块的移相全桥电路,脉宽调制波生成模块计算生成两路控制信号,每一路控制信号包括两个互补PWM波。每一路控制信号用于控制同一个桥臂中的两个晶体管。每一个脉宽调制波用于控制一个晶体管导通或断开。For a phase-shifted full-bridge circuit with only one full-bridge converter module, the PWM wave generation module calculates and generates two control signals, and each control signal includes two complementary PWM waves. Each control signal is used to control two transistors in the same bridge arm. Each PWM wave is used to control a transistor to turn on or off.
可以理解的是,本发明的移相全桥电路的控制装置还包括其他支持移相全桥电路的控制装置运行的现有功能模块。图9显示的移相全桥电路的控制装置仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。It can be understood that the control device for the phase-shifted full-bridge circuit of the present invention also includes other existing functional modules that support the operation of the control device for the phase-shifted full-bridge circuit. The control device of the phase-shifted full-bridge circuit shown in FIG. 9 is only an example, and should not impose any limitation on the functions and application scope of the embodiments of the present invention.
本实施例中的移相全桥电路的控制装置用于实现上述的移相全桥电路的控制的方法,因此对于移相全桥电路的控制装置的具体实施步骤可以参照上述对移相全桥电路的控制的方法的描述,此处不再赘述。The control device of the phase-shifted full-bridge circuit in this embodiment is used to realize the method for controlling the above-mentioned phase-shifted full-bridge circuit, so the specific implementation steps of the control device of the phase-shifted full-bridge circuit can refer to the above-mentioned phase-shifted full-bridge The description of the circuit control method will not be repeated here.
在一些实施例中,在上述图9对应实施例的基础上,上述开关频率调整模块包括:In some embodiments, on the basis of the above-mentioned embodiment corresponding to FIG. 9 , the above-mentioned switching frequency adjustment module includes:
第一比例获取单元,当上述输出电流采样信号小于上述预设滞环电流下限值时,获取上述开关组件对应的开关频率减小的比例。The first ratio acquiring unit is configured to acquire a ratio of reduction of the switching frequency corresponding to the switching component when the output current sampling signal is smaller than the preset lower limit value of the hysteresis current.
第二比例获取单元,根据上述开关组件对应的开关频率减小的比例,获取上述开关组件对应的开关周期增大的比例。The second ratio acquiring unit is configured to acquire, according to the ratio of decreasing switching frequency corresponding to the switching component, the ratio of increasing the switching period corresponding to the switching component.
死区时间增大单元,根据上述开关周期增大的比例,同比例增大各个上述桥臂对应的死区时间。The dead-time increasing unit increases the dead-time corresponding to each of the above-mentioned bridge arms in the same proportion according to the ratio of the above-mentioned increase in the switching period.
下面进行举例说明,比如当晶体管的开关频率由高频150kHz切换为低频75kHz时,那么减小的比例就为1/2。那么开关周期增大的比例就是1/2的相反数,也即为2。因此,该电路中各个桥臂对应的死区时间也增大至2倍。An example is given below, for example, when the switching frequency of the transistor is switched from a high frequency of 150kHz to a low frequency of 75kHz, the reduction ratio is 1/2. Then the ratio of the switching cycle increase is the opposite number of 1/2, which is 2. Therefore, the dead time corresponding to each bridge arm in the circuit is also doubled.
因为过大的死区时间会导致有效占空比丢失,会出现空载电压过低从而增大引弧失败的概率的问题。本实施例将开关周期与死区时间同比例增大,则死区导致的占空比丢失在不同开关频率下都能保持一样,从而解决了上述问题。Because the excessive dead time will lead to the loss of effective duty ratio, there will be a problem that the no-load voltage is too low, which will increase the probability of arc ignition failure. In this embodiment, the switching cycle is increased in the same proportion as the dead time, so that the loss of duty cycle caused by the dead time can be kept the same at different switching frequencies, thereby solving the above-mentioned problem.
在其他实施例中,当上述输出电流采样信号大于上述预设滞环电流上限值时,将上述开关组件对应的开关频率增大至第二预设频率阈值。其中,上述第二预设频率阈值大于上述第一预设频率阈值。In other embodiments, when the output current sampling signal is greater than the preset hysteresis current upper limit, the switching frequency corresponding to the switch component is increased to a second preset frequency threshold. Wherein, the above-mentioned second preset frequency threshold is greater than the above-mentioned first preset frequency threshold.
在一些实施例中,当输出电流采样信号位于预设滞环电流下限值和预设滞环电流上限值之间时,对应的开关频率可以保持不变,或者也切换至上述第二预设频率阈值。In some embodiments, when the output current sampling signal is between the preset hysteresis current lower limit value and the preset hysteresis current upper limit value, the corresponding switching frequency can remain unchanged, or switch to the above-mentioned second preset value. Set the frequency threshold.
示例性地,上述第二预设频率阈值可以为150kHz,预设滞环电流上限值可以为150A,本申请对此不作限制。Exemplarily, the second preset frequency threshold may be 150kHz, and the preset hysteresis current upper limit may be 150A, which is not limited in the present application.
图10示出了上述移相全桥电路的控制装置的工作原理。如图10所示,计算预设电压参考信号Vref和输出电压采样信号Vo之间的差值,然后对预设电压参考信号Vref和输出电压采样信号Vo之间的差值进行PI(proportional integral,比例积分)计算。然后可以对第二计算结果利用一阶低通滤波器进行滤波,得到电流参考信号Iref。计算电流参考信号Iref与上述输出电流采样信号Io之间的差值。对电流参考信号Iref与上述输出电流采样信号Io之间的差值进行PI比例积分计算,得到每一上述全桥变换器模块对应的移相角,传输给脉宽调制波生成模块。脉宽调制波生成模块根据上述移相角和上述开关频率,生成与每一上述开关组件对应的脉宽调制波,以分别控制对应的开关组件导通与断开。FIG. 10 shows the working principle of the control device of the phase-shifted full-bridge circuit. As shown in Figure 10, calculate the difference between the preset voltage reference signal V ref and the output voltage sampling signal V o , and then perform PI on the difference between the preset voltage reference signal V ref and the output voltage sampling signal V o (proportional integral, proportional integral) calculation. Then the second calculation result can be filtered by a first-order low-pass filter to obtain the current reference signal I ref . The difference between the current reference signal I ref and the above-mentioned output current sampling signal I o is calculated. Perform PI proportional integral calculation on the difference between the current reference signal I ref and the above-mentioned output current sampling signal I o to obtain the phase shift angle corresponding to each of the above-mentioned full-bridge converter modules, and transmit it to the pulse width modulation wave generation module. The pulse width modulation wave generation module generates a pulse width modulation wave corresponding to each of the above switch components according to the phase shift angle and the switch frequency, so as to respectively control the corresponding switch components to be turned on and off.
参考图10,脉宽调制波生成模块生成了PWM波,分别对应控制晶体管S1至S4。Referring to FIG. 10 , the pulse width modulation wave generation module generates PWM waves, corresponding to control transistors S1 to S4 respectively.
图11示出了一移相全桥电路的控制装置中移相角计算模块的结构。Fig. 11 shows the structure of a phase-shift angle calculation module in the control device of a phase-shift full-bridge circuit.
该实施例中,上述移相角计算模块92包括:In this embodiment, the above-mentioned phase shift
电压误差计算单元921,根据上述输出电压采样信号和预设电压参考信号,进行电压误差计算,得到第一计算结果。The voltage
第一比例积分计算单元922,对上述第一计算结果进行比例积分计算,得到第二计算结果。The first proportional-
电流参考信号获取单元923,利用滤波器对上述第二计算结果进行滤波处理后,得到电流参考信号。The current reference
电流误差计算单元924,根据上述输出电流采样信号和上述电流参考信号,进行电流误差计算,得到第三计算结果。The current
第二比例积分计算单元925,对上述第三计算结果进行比例积分计算,得到每一上述全桥变换器模块对应的移相角。The second proportional-
如图12所示,本发明一实施例公开了一种焊机电源。该焊机电源包括上述任一实施例公开的移相全桥电路的控制装置33。移相全桥电路的控制装置的详细结构特征和优势可参照上述实施例的描述,此处不再赘述。As shown in Fig. 12, an embodiment of the present invention discloses a welding machine power supply. The power supply of the welding machine includes the
参考图12,该焊机电源还包括EM抑制模块31、PFC电路25、PFC控制装置26、移相全桥电路32、高频变压器34、整流模块35、辅助电源36和风扇37。其中,EMI抑制模块接入电网,整流模块连接焊机负载。EMI抑制模块、PFC电路、PFC控制装置、移相全桥逆变电路、移相全桥电路的控制装置、高频变压器、整流模块、辅助电源以及风扇之间的连接关系可参考图12,本实施例不再赘述。Referring to FIG. 12 , the welding power supply also includes an
综上,本发明的移相全桥电路的控制方法、装置及焊机电源至少具有如下优势:To sum up, the control method, device and welding machine power supply of the present invention have at least the following advantages:
本发明实施例公开的移相全桥电路的控制方法、装置及焊机电源通过结合输出电压采样信号和输出电流采样信号,生成同一桥臂中各开关组件对应的脉宽调制波的移相角,根据输出电流大小动态调整开关频率,实现在负载较小时采用较低的脉宽调制频率,结合上述移相角和脉宽调制频率控制开关组件,从而达到了减小电磁干扰的目的,提高了移相全桥电路的电磁兼容性。The control method and device of the phase-shifting full-bridge circuit disclosed in the embodiment of the present invention, and the power supply of the welding machine generate the phase-shifting angle of the pulse width modulation wave corresponding to each switch component in the same bridge arm by combining the output voltage sampling signal and the output current sampling signal , dynamically adjust the switching frequency according to the output current, realize the use of lower PWM frequency when the load is small, and combine the above-mentioned phase shift angle and PWM frequency control switch components, so as to achieve the purpose of reducing electromagnetic interference and improve the Electromagnetic compatibility of phase-shifted full-bridge circuits.
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。The above content is a further detailed description of the present invention in conjunction with specific preferred embodiments, and it cannot be assumed that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field of the present invention, without departing from the concept of the present invention, some simple deduction or replacement can be made, which should be regarded as belonging to the protection scope of the present invention.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211201590.5A CN115430885A (en) | 2022-09-29 | 2022-09-29 | Control method and device of phase-shifted full-bridge circuit and welding machine power supply |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211201590.5A CN115430885A (en) | 2022-09-29 | 2022-09-29 | Control method and device of phase-shifted full-bridge circuit and welding machine power supply |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115430885A true CN115430885A (en) | 2022-12-06 |
Family
ID=84250924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211201590.5A Pending CN115430885A (en) | 2022-09-29 | 2022-09-29 | Control method and device of phase-shifted full-bridge circuit and welding machine power supply |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115430885A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115765488A (en) * | 2022-12-16 | 2023-03-07 | 杭州锐健医疗科技有限公司 | Radio frequency ablation power supply circuit and control method thereof |
CN117792106A (en) * | 2023-12-26 | 2024-03-29 | 广东浦立电气股份有限公司 | Phase-shifting full-bridge circuit control method, device, computer equipment and storage medium |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015127824A1 (en) * | 2014-02-26 | 2015-09-03 | 联合汽车电子有限公司 | Double-loop control circuit of phase-shift full-bridge synchronous rectification circuit |
CN106787760A (en) * | 2016-12-30 | 2017-05-31 | 珠海英搏尔电气股份有限公司 | Full-bridge resonance DC/DC converter and its control method |
CN108377101A (en) * | 2018-03-19 | 2018-08-07 | 青岛美凯麟科技股份有限公司 | Three-phase AC/DC current hysteresis-band control circuit |
CN108777545A (en) * | 2018-04-28 | 2018-11-09 | 西安中车永电电气有限公司 | A kind of guide rail car phase-shifting full-bridge charger transformer bias inhibition control method |
CN109951082A (en) * | 2019-03-01 | 2019-06-28 | 合肥工业大学 | Virtual current deadbeat control method for dual active bridge DC converters |
CN111478600A (en) * | 2020-04-07 | 2020-07-31 | 北京理工大学 | A control method for dual active bridge single-stage AC-DC converter |
CN113872451A (en) * | 2021-12-02 | 2021-12-31 | 杭州禾迈电力电子股份有限公司 | Control method, controller and converter of resonant dual active bridge converter circuit |
-
2022
- 2022-09-29 CN CN202211201590.5A patent/CN115430885A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015127824A1 (en) * | 2014-02-26 | 2015-09-03 | 联合汽车电子有限公司 | Double-loop control circuit of phase-shift full-bridge synchronous rectification circuit |
CN106787760A (en) * | 2016-12-30 | 2017-05-31 | 珠海英搏尔电气股份有限公司 | Full-bridge resonance DC/DC converter and its control method |
CN108377101A (en) * | 2018-03-19 | 2018-08-07 | 青岛美凯麟科技股份有限公司 | Three-phase AC/DC current hysteresis-band control circuit |
CN108777545A (en) * | 2018-04-28 | 2018-11-09 | 西安中车永电电气有限公司 | A kind of guide rail car phase-shifting full-bridge charger transformer bias inhibition control method |
CN109951082A (en) * | 2019-03-01 | 2019-06-28 | 合肥工业大学 | Virtual current deadbeat control method for dual active bridge DC converters |
CN111478600A (en) * | 2020-04-07 | 2020-07-31 | 北京理工大学 | A control method for dual active bridge single-stage AC-DC converter |
CN113872451A (en) * | 2021-12-02 | 2021-12-31 | 杭州禾迈电力电子股份有限公司 | Control method, controller and converter of resonant dual active bridge converter circuit |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115765488A (en) * | 2022-12-16 | 2023-03-07 | 杭州锐健医疗科技有限公司 | Radio frequency ablation power supply circuit and control method thereof |
CN117792106A (en) * | 2023-12-26 | 2024-03-29 | 广东浦立电气股份有限公司 | Phase-shifting full-bridge circuit control method, device, computer equipment and storage medium |
CN117792106B (en) * | 2023-12-26 | 2024-06-04 | 广东浦立电气股份有限公司 | Phase-shifting full-bridge circuit control method, device, computer equipment and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110943606B (en) | Control method based on double-active-bridge rectifier no-current sampling power factor correction | |
CN101247072B (en) | Voltage regulating circuit | |
CN107493015B (en) | A kind of two-way DC converter and its Poewr control method of dual transformer structure | |
CN110380613B (en) | A PWM plus phase-shift control method for realizing four-tube converter ZVS | |
WO2023098216A1 (en) | Input-energy-storage-inductor-free isolated resonant soft switching type three-phase pfc converter and control method therefor | |
CN111800031B (en) | Three-phase inverter and control method thereof | |
CN111478600B (en) | A control method for dual active bridge single-stage AC-DC converter | |
CN102263517B (en) | AC-DC converter | |
CN106655785A (en) | Bidirectional hybrid bridge DC-DC converter and half-cycle volt-second area balance control method | |
CN115430885A (en) | Control method and device of phase-shifted full-bridge circuit and welding machine power supply | |
CN111555605B (en) | Control method for reducing critical mode three-level converter switching frequency range | |
CN105591558B (en) | A kind of monopole High Power Factor recommends double forward converters and design method | |
CN114448033A (en) | A control method and device for a wireless bidirectional charging and discharging system | |
CN110649821A (en) | Bidirectional SCC type LLC resonant converter, circuit and control method thereof | |
CN103929065A (en) | Bidirectional Isolated DC/DC Converter Based on Three-winding Transformer | |
CN112260531B (en) | Step-down PFC circuit based on resonant switch capacitor converter | |
CN115811241B (en) | Mixed control method for single-stage bridgeless staggered parallel Boost-LLC AC-DC converter | |
CN116914827A (en) | Current source dual active bridge microinverter, modulation, control method and system | |
CN107196547B (en) | Symmetrical full-period modulation method for three-phase double-buck grid-connected inverter | |
CN116865573A (en) | Novel single-stage LLC PFC resonance conversion device and control method thereof | |
CN114257073B (en) | A zero-crossing current spike suppression method and device for an interleaved parallel totem pole PFC circuit | |
CN116667509A (en) | charger | |
CN114640255A (en) | Series resonant converter and control method thereof | |
CN109742957A (en) | A kind of bicyclic complex resonance type soft switch transducer | |
CN1336715A (en) | Mixed bridge-type zero-voltage and zero-current switch three level DC converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |