CN115403386A - 一种晶须增强碳化硼复合陶瓷及其制备方法 - Google Patents

一种晶须增强碳化硼复合陶瓷及其制备方法 Download PDF

Info

Publication number
CN115403386A
CN115403386A CN202211021192.5A CN202211021192A CN115403386A CN 115403386 A CN115403386 A CN 115403386A CN 202211021192 A CN202211021192 A CN 202211021192A CN 115403386 A CN115403386 A CN 115403386A
Authority
CN
China
Prior art keywords
boron carbide
sintering
whisker
composite ceramic
pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211021192.5A
Other languages
English (en)
Inventor
蒋国强
杨海东
刘朋飞
崔岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Rongjia Technology Development Co ltd
Foshan National Defense Science And Technology Industrial Technology Achievement Industrialization Application And Promotion Center
Original Assignee
Guangdong Rongjia Technology Development Co ltd
Foshan National Defense Science And Technology Industrial Technology Achievement Industrialization Application And Promotion Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Rongjia Technology Development Co ltd, Foshan National Defense Science And Technology Industrial Technology Achievement Industrialization Application And Promotion Center filed Critical Guangdong Rongjia Technology Development Co ltd
Priority to CN202211021192.5A priority Critical patent/CN115403386A/zh
Publication of CN115403386A publication Critical patent/CN115403386A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5276Whiskers, spindles, needles or pins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种晶须增强碳化硼复合陶瓷,包括如下重量份的组分:碳化硼粉体50~99.5份、晶须0.5~20份、烧结助剂0‑10份、增强剂0‑20份;其中:碳化硼粉体的平均粒径为0.3~1.5μm,烧结助剂的平均粒径为0.2~3μm,增强剂的平均粒径为0.2~3μm。本发明通过添加晶须、烧结助剂和增强剂,所制备的晶须增强碳化硼复合陶瓷具有低密度、高硬度、高强度、高韧性和高弹性模量的特点。本发明还提供一种晶须增强碳化硼复合陶瓷的制备方法,该方法采用热压烧结法,以碳化硼为基体,同时添加增韧相陶瓷晶须、低温烧结助剂和增强相陶瓷颗粒。可以完成对晶须增强碳化硼复合陶瓷的低温烧结,并赋予晶须增强碳化硼复合陶瓷更高的致密度、硬度、韧性和强度,同时降低烧结温度,降低生产成本。

Description

一种晶须增强碳化硼复合陶瓷及其制备方法
技术领域
本发明属于陶瓷材料的技术领域,具体涉及一种晶须增强碳化硼复合陶瓷及其制备方法。
背景技术
碳化硼陶瓷有极高的硬度和低密度特点,是公认最优秀的防弹材料之一,尤其在单兵防弹、航空装甲等对重量敏感的领域,有绝对优势。
碳化硼防弹陶瓷的主要制备工艺有:反应烧结、无压烧结和热压烧结。其中,反应烧结和无压烧结制备碳化硼陶瓷,具有力学性能较差、性能不稳定等缺点,整体防弹性能较差,应用较少。市场上碳化硼陶瓷生产方法基本上是热压烧结。热压烧结碳化硼防弹陶瓷致密度、力学性能稳定,但其韧性依然较差,防多弹、重弹性能不够。
中国发明专利200610042047.X中公开了一种“碳化硼基复合防弹陶瓷及其制备方法”,该陶瓷由碳化硼粉体、碳化硅晶须、硅粉、硼化物(硼矸、硼酸、金属硼)组成,采用热压烧结,经过高温反应后,得到碳化硼—六硼化硅—碳化硅复合陶瓷。很明显,此类技术面临着反应不完全,微观结构不均匀,从而导致材料硬度低、可靠性低等问题,很难应用在防弹等高要求领域。
发明内容
(一)要解决的技术问题
为了解决现有技术的上述问题,本发明提供了一种晶须增强碳化硼复合陶瓷,通过添加晶须、烧结助剂和增强剂,所制备的晶须增强碳化硼复合陶瓷具有低密度、高硬度、高强度、高韧性和高弹性模量的特点。本发明还提供了晶须增强碳化硼复合陶瓷的制备方法,该制备方法能够完成对晶须增强碳化硼复合陶瓷的低温烧结,并赋予晶须增强碳化硼复合陶瓷更高的致密度、硬度、韧性和强度,同时降低烧结温度,降低生产成本。
(二)技术方案
为了达到上述目的,本发明采用的主要技术方案包括:
根据本发明的第一方面:一种晶须增强碳化硼复合陶瓷,包括如下重量份的组分:
碳化硼粉体:50~99.5份
晶须:0.5~20份
烧结助剂:0-10份
增强剂:0-20份
其中:
所述碳化硼粉体的平均粒径为0.3~1.5μm,所述烧结助剂的平均粒径为0.2~3μm,所述增强剂的平均粒径为0.2~3μm。
进一步地,包括如下重量份的组分:
碳化硼粉体:70~95份
晶须:5~10份
烧结助剂:0-10份
增强剂:0-20份。
进一步地,所述晶须为SiC、BN和SiBCN中的至少一种,所述晶须的直径为0.3~1.5μm,长径比为5~100。
进一步地,所述烧结助剂为硼粉、碳粉、TiO2、MgO、Al2O3、Y2O3、Ce2O3、Sm2O3中的至少一种。
进一步地,所述增强剂为TiB2、TiN、TiC、Ti(C,N)、ZrB2、WC、SiC和硼化钨中的至少一种。
根据本发明的另一方面,一种用于制备上述的晶须增强碳化硼复合陶瓷的方法,包括下述步骤:
S1:混料:将碳化硼粉体、晶须、烧结助剂和增强剂混匀,得到浆料;
S2:干燥:将浆料喷雾造粒,得到混合粉体;
S3:成型:将混合粉体压制成型,得到素坯;
S4:热压烧结:将素坯进行热压烧结,得到晶须增强碳化硼复合陶瓷。
进一步地,步骤S1中,所述混匀包括如下步骤:
S11:将碳化硼粉体、晶须、烧结助剂和增强剂加入去离子水中,超声分散10分钟,得到混合分散液体;
S12:将混合分散液体和研磨球放入球磨机,球料比为1:1,球磨10小时,得到浆料。
进一步地,步骤S2中,浆料喷雾造粒后的干燥温度为200~300℃,干燥后得到混合粉体。
进一步地,步骤S3中,将混合粉体利用钢模干压成型,获得相应形状的块体,再经过冷等静压成型,得到素坯;
其中,所述钢模干压成型和冷等静压成型的成型压力均为20~200 MPa。
进一步地,步骤S4中,热压烧结的温度为1800-2100℃,热压烧结时间为0.5-2小时,热压烧结压力为20-70MPa,热压烧结气氛为真空、氢气或者惰性气体;
其中:
热压烧结采用传统的热压烧结法或电流辅助烧结法。
(三)有益效果
本发明的有益效果是:
(1)本发明通过添加晶须、烧结助剂和增强剂,所制备的晶须增强碳化硼复合陶瓷具有低密度、高硬度、高强度、高韧性和高弹性模量的特点。与现有技术相比,密度≤2.85g/cm3,维氏硬度Hv>37 GPa,三点抗弯强度>544 MPa,压痕断裂韧性>4.5 MPa·m1/2,弹性模量> 452 GPa。
(2)本发明的晶须增强碳化硼复合陶瓷是理想的防弹材料,能够应用在防弹领域、高温承载件、耐磨件、耐腐蚀件及其它耐高温的关键零部件制备领域中。
(3)本发明的晶须增强碳化硼复合陶瓷的制备方法,该方法采用热压烧结法,以碳化硼为基体,同时添加增韧相陶瓷晶须、低温烧结助剂和增强相陶瓷颗粒,能够完成对晶须增强碳化硼复合陶瓷的低温烧结,并赋予晶须增强碳化硼复合陶瓷更高的致密度、硬度、韧性和强度,同时降低烧结温度,降低生产成本。
具体实施方式
为了更好的解释本发明,以便于理解,下面通过具体实施方式,对本发明作详细描述。
根据本发明的第一方面,一种晶须增强碳化硼复合陶瓷,包括如下重量份的组分:
碳化硼粉体:50~99.5份
晶须:0.5~20份
烧结助剂:0-10份
增强剂:0-20份
其中:
所述碳化硼粉体的平均粒径为0.3~1.5μm,所述烧结助剂的平均粒径为0.2~3μm,所述增强剂的平均粒径为0.2~3μm。
通过本发明的技术方案,第一,采用粒径0.3~1.5μm的碳化硼粉体,可以有效降低烧结温度,提高材料的力学性能;第二,所采用的的烧结助剂、增强剂粒径接近碳化硼粉体的粒径,有利于混合均匀,保证材料的可靠性;第三,在碳化硼粉体中加入晶须,能够利用晶须对裂纹的桥接、偏转等作用,从而显著提高碳化硼陶瓷的韧性、强度和可靠性;第四,通过加入烧结助剂,能够降低材料的烧结温度,降低烧结难度,达到细晶强化,提高碳化硼陶瓷的致密度和力学性能;第五,加入增强剂,利用颗粒的增强效应,不仅能够显著提高碳化硼陶瓷的硬度,且不会影响碳化硼陶瓷的韧性、强度,使其同时具有较高的硬度、韧性、强度。
碳化硼粉体、烧结助剂和增强剂的粒径选择,能够使各材料在混合体系中更好地分散和与其他成分间发生物理及化学作用,进而提升所制备的碳化硼陶瓷的物理化学性能。
进一步地,包括如下重量份的组分:
碳化硼粉体:70~95份
晶须:5~10份
烧结助剂:0-10份
增强剂:0-20份。
优选采用本实施例的配方比例,这也是发明人经常大量实验得出的较优比例。
进一步地,所述晶须为SiC、BN和SiBCN中的至少一种,所述晶须的直径为0.3~1.5μm,长径比为5~100。
本发明中,晶须优选的材料种类、直径和长径比,在与配方中其他材料的物理化学作用中,能够发挥较优的效果,使制备的碳化硼陶瓷具有较优的物理化学性能。当然,对晶须的选择并不限于本实施例中的三类,能够提高碳化硼陶瓷的韧性、强度和可靠性的晶须均可。
进一步地,所述烧结助剂为硼粉、碳粉、TiO2、MgO、Al2O3、Y2O3、Ce2O3、Sm2O3中的至少一种。
本发明中优选采用低温烧结助剂,不仅能够降低材料的烧结温度,而且能够降低烧结难度,达到细晶强化,提高碳化硼陶瓷的致密度和力学性能。且烧结助剂的选择并不限于本发明中的类别,能够降低烧结温度和提高碳化硼陶瓷性能的烧结助剂均可。
进一步地,所述增强剂为TiB2、TiN、TiC、Ti(C,N)、ZrB2、WC、SiC和硼化钨中的至少一种。
本发明中的增强剂具有较优的增强作用,利用颗粒增强效应,不仅可显著提高碳化硼陶瓷的硬度,且不会影响碳化硼陶瓷的韧性、强度,使其同时具有较高的硬度、韧性、强度。增强剂的选择并不限于本发明中的种类,能够发挥增强作用的增强剂均可。
根据本发明的另一方面,一种用于制备上述的晶须增强碳化硼复合陶瓷的方法,包括下述步骤:
S1:混料:将碳化硼粉体、晶须、烧结助剂和增强剂混匀,得到浆料;
S2:干燥:将浆料喷雾造粒,得到混合粉体;
S3:成型:将混合粉体压制成型,得到素坯;
S4:热压烧结:将素坯进行热压烧结,得到晶须增强碳化硼复合陶瓷。
通过本发明的制备方法,采用热压烧结法,以碳化硼为基体,同时添加增韧相陶瓷晶须、低温烧结助剂和增强相陶瓷颗粒,能够完成对晶须增强碳化硼复合陶瓷的低温烧结,并赋予晶须增强碳化硼复合陶瓷更高的致密度、硬度、韧性和强度,同时降低烧结温度,降低生产成本。
进一步地,步骤S1中,所述混匀包括如下步骤:
S11:将碳化硼粉体、晶须、烧结助剂和增强剂加入到去离子水中,超声分散10分钟,得到混合分散液体;
S12:将混合分散液体和研磨球放入球磨机,球料比为1:1,球磨10小时,得到浆料。
混料中,通过将各材料加入到去离子水中并超声分散,能够使各材料在超声的作用下,在去离子水中形成较为均匀的分散相,能有效解决晶须材料的团聚;然后再通过研磨球对分散相进行球磨,能够得到更加细致和均匀的浆料,便于后续工艺步骤的处理和提升最终产品碳化硼陶瓷的性能。
进一步地,步骤S2中,浆料喷雾造粒的干燥温度为200~300℃,干燥后得到混合粉体。
通过喷雾造粒,制得的混合粉体中颗粒球精度好,颗粒均匀,方便后续工艺步骤的处理和提升最终产品碳化硼陶瓷的性能。
进一步地,步骤S3中,将混合粉体利用钢模干压成型,获得相应形状的块体,再经过冷等静压成型,得到素坯;
其中,所述钢模干压成型和冷等静压成型的成型压力均为20~200 MPa。
钢模干压成型能够使混合粉体在模具内相互靠近,并借内摩擦力牢固地结合,形成一定形状的块(坯)体,干压成型生产效率高,人工少、废品率低,生产周期短,生产的制品密度大、强度高;再结合冷等静压成型,通过施加各向同等的压力,在高压的作用下,能够制得致密的坯体。两种成型方式连续结合使用,能够使制得的素坏具有较高的强度和致密度,方便后续工艺步骤的处理和提升最终产品碳化硼陶瓷的性能。
进一步地,步骤S4中,热压烧结的温度为1800-2100℃,热压烧结时间为0.5-2小时,热压烧结压力为20-70MPa,热压烧结气氛为真空、氢气或者惰性气体;
其中:
热压烧结采用传统的热压烧结法或电流辅助烧结法。
由于加入了低温烧结助剂,使本方案中的热压烧结在较低的烧结温度下就能够完成对晶须增强碳化硼复合陶瓷的烧结,并赋予晶须增强碳化硼复合陶瓷更高的致密度、硬度、韧性和强度,降低了生产成本。
本发明通过添加晶须、烧结助剂和增强剂,所制备的晶须增强碳化硼复合陶瓷具有低密度、高硬度、高强度、高韧性和高弹性模量的特点。与现有技术相比,密度≤2.85g/cm3,维氏硬度Hv>37 GPa,三点抗弯强度>544 MPa,压痕断裂韧性>4.5 MPa·m1/2,弹性模量> 452GPa。本发明的晶须增强碳化硼复合陶瓷是理想的防弹材料,并可应用在防弹、高温、耐磨、耐腐蚀等领域。
下面例举本发明的晶须增强碳化硼复合陶瓷及制备方法。
实施例1
B4C-SiC晶须-Y2O3-Al2O3-TiB2
S1:混料:将75重量份的B4C粉、10重量份的SiC晶须、2重量份的烧结助剂Y2O3、3重量份的烧结助剂Al2O3、20重量份的增强剂TiB2颗粒加入去离子水中,配成混合粉体,超声分散10分钟,得到混合分散液体;然后放入研磨球,球料比为1:1,球磨10小时,得到浆料;
S2:干燥:将球磨后的浆料喷雾造粒,干燥温度为200~300℃,得到混合粉体;
S3:成型:将混合粉体利用钢模干压成型,压力为30MPa,获得相应形状的块体,再经过冷等静压成型,压力为200MPa,得到素坯;
S4:热压烧结:将步骤S3制得的素坯放在石墨模具中,烧结温度为1900℃,加压至50MPa,氩气气氛保温1小时,得到晶须增强碳化硼复合陶瓷。
实施例2
B4C-SiC晶须-Al2O3-碳粉-TiB2
S1:混料:将75重量份的B4C粉、10重量份的SiC晶须、2重量份的烧结助剂Al2O3、4重量份的烧结助剂碳粉、25重量份的增强剂TiB2颗粒加入去离子水中,配成混合粉体,超声分散10分钟;然后放入研磨球,球料比为1:1,球磨10小时,得到浆料;
S2:干燥:将球磨后的浆料喷雾造粒,干燥温度为200~300℃,得到混合粉体;
S3:成型:将混合粉体利用钢模干压成型,压力为30MPa,获得相应形状的块体,再经过冷等静压成型,压力为200MPa,得到素坯;
S4:热压烧结:将步骤S3制得的素坯放在石墨模具中,烧结温度为1800℃,加压至50MPa,氩气气氛保温1小时,得到晶须增强碳化硼复合陶瓷。
实施例3
B4C-SiC晶须-Y2O3-碳粉-TiB2-TiC
S1:混料:将70重量份的B4C粉、10重量份的SiC晶须、1重量份的烧结助剂Y2O3、1重量份的烧结助剂碳粉、20重量份的增强剂TiB2颗粒、5重量份的增强剂TiC颗粒加入去离子水中,配成混合粉体,超声分散10分钟;然后放入研磨球,球料比为1:1,球磨10小时,得到浆料;
S2:干燥:将球磨后的浆料喷雾造粒,干燥温度为200~300℃,得到混合粉体;
S3:成型:将混合粉体利用钢模干压成型,压力为30MPa,获得相应形状的块体,再经过冷等静压成型,压力为200MPa,得到素坯;
S4:热压烧结:将步骤S3制得的素坯放在石墨模具中,烧结温度为1900℃,加压至50MPa,氩气气氛保温1小时,得到晶须增强碳化硼复合陶瓷。
对比例1
B4C-SiC晶须
S1:混料:将90重量份的B4C粉、10重量份的SiC晶须加入去离子水中,配成混合粉体,超声分散10分钟;然后放入研磨球,球料比为1:1,球磨10小时,得到浆料;
S2:干燥:将球磨后的浆料喷雾造粒,干燥温度为200~300℃,得到混合粉体;
S3:成型:将混合粉体利用钢模干压成型,压力为30MPa,获得相应形状的块体,再经过冷等静压成型,压力为200MPa,得到素坯;
S4:热压烧结:将步骤S3制得的素坯放在石墨模具中,烧结温度为2100℃,加压至70MPa,氩气气氛保温1小时,得到晶须增强碳化硼复合陶瓷。
对比例2
B4C-SiC晶须-Y2O3
S1:混料:将80重量份的B4C粉、20重量份的SiC晶须、5重量份的烧结助剂Y2O3加入去离子水中,配成混合粉体,超声分散10分钟;然后放入研磨球,球料比为1:1,球磨10小时,得到浆料;
S2:干燥:将球磨后的浆料喷雾造粒,干燥温度为200~300℃,得到混合粉体;
S3:成型:将混合粉体利用钢模干压成型,压力为30MPa,获得相应形状的块体,再经过冷等静压成型,压力为200MPa,得到素坯;
S4:热压烧结:将步骤S3制得的素坯放在石墨模具中,烧结温度为1950℃,加压至50MPa,氩气气氛保温1小时,得到晶须增强碳化硼复合陶瓷。
对比例3
B4C-SiC晶须-Y2O3-Al2O3
S1:混料:将75重量份的B4C粉、10重量份的SiC晶须、2重量份的烧结助剂Y2O3、3重量份的烧结助剂Al2O3加入去离子水中,配成混合粉体,超声分散10分钟;然后放入研磨球,球料比为1:1,球磨10小时,得到浆料;
S2:干燥:将球磨后的浆料喷雾造粒,干燥温度为200~300℃,得到混合粉体;
S3:成型:将混合粉体利用钢模干压成型,压力为30MPa,获得相应形状的块体,再经过冷等静压成型,压力为200MPa,得到素坯;
S4:热压烧结:将步骤S3制得的素坯放在石墨模具中,烧结温度为1900℃,加压至70MPa,氩气气氛保温1小时,得到晶须增强碳化硼复合陶瓷。
对比例4
B4C-SiC晶须-TiB2
S1:混料:将75重量份的B4C粉、10重量份的SiC晶须、15重量份的TiB2加入去离子水中,配成混合粉体,超声分散10分钟;然后放入研磨球,球料比为1:1,球磨10小时,得到浆料;
S2:干燥:将球磨后的浆料喷雾造粒,干燥温度为200~300℃,得到混合粉体;
S3:成型:将混合粉体利用钢模干压成型,压力为30MPa,获得相应形状的块体,再经过冷等静压成型,压力为200MPa,得到素坯;
S4:热压烧结:将步骤S3制得的素坯放在石墨模具中,烧结温度为2100℃,加压至70MPa,氩气气氛保温1小时,得到晶须增强碳化硼复合陶瓷。
通过实施例和对比例:用金刚石工具分别对实施例1~3和对比例1~4所制得的晶须增强碳化硼复合陶瓷进行加工,用各实施例的晶须增强碳化硼复合陶瓷分别制成多根3mm×4mm×36mm的样条。样条用于测试碳化硼复合陶瓷的性能。
实施例1~3和对比例1~4制备的碳化硼复合陶瓷样条进行如下性能测试:
(a)密度:采用密度天平,按照阿基米德法测试。
(b)三点抗弯强度:样条中的10根用于测试碳化硼复合陶瓷的三点抗弯强度,外跨距30 mm。
(c)维氏硬度与压痕断裂韧性测试方法:利用维氏硬度计测试,压力0.5kg,保压10s。
(d)弹性模量:采用声波振动法。
其中:密度主要用于测量材料的致密性;三点抗弯强度、维氏硬度和弹性模量是与材料的性能相关的,数值越高越好。
表1 实施例1~3和对比例1~4制备的碳化硼复合陶瓷的性能测试结果
Figure 924053DEST_PATH_IMAGE002
通过性能测试结果可知,与对比例相比,本发明的实施例中,密度≤2.85g/cm3,维氏硬度Hv>37 GPa,三点抗弯强度>544 MPa,压痕断裂韧性>4.5 MPa·m1/2,弹性模量> 452GPa。
最后应说明的是:以上所述的各实施例仅用于说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或全部技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

1.一种晶须增强碳化硼复合陶瓷,其特征在于:包括如下重量份的组分:
碳化硼粉体:50~99.5份
晶须:0.5~20份
烧结助剂:0-10份
增强剂:0-20份
其中:
所述碳化硼粉体的平均粒径为0.3~1.5μm,所述烧结助剂的平均粒径为0.2~3μm,所述增强剂的平均粒径为0.2~3μm。
2.根据权利要求1所述的晶须增强碳化硼复合陶瓷,其特征在于:包括如下重量份的组分:
碳化硼粉体:70~95份
晶须:5~10份
烧结助剂:0-10份
增强剂:0-20份。
3.根据权利要求1所述的晶须增强碳化硼复合陶瓷,其特征在于:所述晶须为SiC、BN和SiBCN中的至少一种,所述晶须的直径为0.3~1.5μm,长径比为5~100。
4.根据权利要求1所述的晶须增强碳化硼复合陶瓷,其特征在于:所述烧结助剂为硼粉、碳粉、TiO2、MgO、Al2O3、Y2O3、Ce2O3、Sm2O3中的至少一种。
5.根据权利要求1所述的晶须增强碳化硼复合陶瓷,其特征在于:所述增强剂为TiB2、TiN、TiC、Ti(C,N)、ZrB2、WC、SiC和硼化钨中的至少一种。
6.一种用于制备权利要求1-5中任意一项所述的晶须增强碳化硼复合陶瓷的方法,其特征在于:包括下述步骤:
S1:混料:将碳化硼粉体、晶须、烧结助剂和增强剂混匀,得到浆料;
S2:干燥:将浆料喷雾造粒,得到混合粉体;
S3:成型:将混合粉体压制成型,得到素坯;
S4:热压烧结:将素坯进行热压烧结,得到晶须增强碳化硼复合陶瓷。
7.根据权利要求6所述的晶须增强碳化硼复合陶瓷的制备方法,其特征在于:
步骤S1中,所述混匀包括如下步骤:
S11:将碳化硼粉体、晶须、烧结助剂和增强剂加入去离子水中,超声分散10分钟,得到混合分散液体;
S12:将混合分散液体和研磨球放入球磨机,球料比为1:1,球磨10小时,得到浆料。
8.根据权利要求6所述的晶须增强碳化硼复合陶瓷的制备方法,其特征在于:
步骤S2中,浆料喷雾造粒的干燥温度为200~300℃,干燥后得到混合粉体。
9.根据权利要求6所述的晶须增强碳化硼复合陶瓷的制备方法,其特征在于:
步骤S3中,将混合粉体利用钢模干压成型,获得相应形状的块体,再经过冷等静压成型,得到素坯;
其中,所述钢模干压成型和冷等静压成型的成型压力均为20~200 MPa。
10.根据权利要求6所述的晶须增强碳化硼复合陶瓷的制备方法,其特征在于:
步骤S4中,热压烧结的温度为1800-2100℃,热压烧结时间为0.5-2小时,热压烧结压力为20-70MPa,热压烧结气氛为真空、氢气或者惰性气体;
其中:
热压烧结采用传统的热压烧结法或电流辅助烧结法。
CN202211021192.5A 2022-08-24 2022-08-24 一种晶须增强碳化硼复合陶瓷及其制备方法 Pending CN115403386A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211021192.5A CN115403386A (zh) 2022-08-24 2022-08-24 一种晶须增强碳化硼复合陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211021192.5A CN115403386A (zh) 2022-08-24 2022-08-24 一种晶须增强碳化硼复合陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN115403386A true CN115403386A (zh) 2022-11-29

Family

ID=84162673

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211021192.5A Pending CN115403386A (zh) 2022-08-24 2022-08-24 一种晶须增强碳化硼复合陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN115403386A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115849912A (zh) * 2023-02-22 2023-03-28 潍坊衡瑞硼业新材料科技有限公司 一种防弹陶瓷及其制备方法
CN116082042A (zh) * 2023-01-10 2023-05-09 中硼科技(威海)有限公司 一种碳化硼多孔骨架制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1800096A (zh) * 2005-11-15 2006-07-12 山东大学 一种碳化硼基陶瓷喷砂嘴材料
CN1803714A (zh) * 2006-01-18 2006-07-19 山东大学 碳化硼基复合防弹陶瓷及其制备方法
CN102219536A (zh) * 2011-04-27 2011-10-19 浙江大学 一种B4C/SiC晶须/SiC复相陶瓷基复合材料及其制备方法
CN102515772A (zh) * 2011-12-28 2012-06-27 牡丹江金钢钻碳化硼有限公司 一种碳化硼-硼化锆复相陶瓷材料及其制备方法
CN103833403A (zh) * 2014-03-04 2014-06-04 上海工程技术大学 一种碳化硅晶须增韧碳化硼陶瓷复合材料的制备方法及产品
CN103979972A (zh) * 2014-04-09 2014-08-13 宁波东联密封件有限公司 一种热压烧结碳化硼防弹材料及其制备方法
CN108911773A (zh) * 2018-06-20 2018-11-30 浙江立泰复合材料股份有限公司 一种碳化硅纤维增强碳化硼陶瓷材料的制备方法
CN109704771A (zh) * 2019-01-17 2019-05-03 宁波伏尔肯科技股份有限公司 一种高温气冷堆核控制棒用碳化硼多孔陶瓷的制备方法
CN112390649A (zh) * 2020-11-09 2021-02-23 镇江华核装备有限公司 一种复合纤维增强碳化硼陶瓷板制备方法
CN113480314A (zh) * 2021-07-30 2021-10-08 浙江吉成新材股份有限公司 一种碳化硼陶瓷无压烧结制备工艺

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1800096A (zh) * 2005-11-15 2006-07-12 山东大学 一种碳化硼基陶瓷喷砂嘴材料
CN1803714A (zh) * 2006-01-18 2006-07-19 山东大学 碳化硼基复合防弹陶瓷及其制备方法
CN102219536A (zh) * 2011-04-27 2011-10-19 浙江大学 一种B4C/SiC晶须/SiC复相陶瓷基复合材料及其制备方法
CN102515772A (zh) * 2011-12-28 2012-06-27 牡丹江金钢钻碳化硼有限公司 一种碳化硼-硼化锆复相陶瓷材料及其制备方法
CN103833403A (zh) * 2014-03-04 2014-06-04 上海工程技术大学 一种碳化硅晶须增韧碳化硼陶瓷复合材料的制备方法及产品
CN103979972A (zh) * 2014-04-09 2014-08-13 宁波东联密封件有限公司 一种热压烧结碳化硼防弹材料及其制备方法
CN108911773A (zh) * 2018-06-20 2018-11-30 浙江立泰复合材料股份有限公司 一种碳化硅纤维增强碳化硼陶瓷材料的制备方法
CN109704771A (zh) * 2019-01-17 2019-05-03 宁波伏尔肯科技股份有限公司 一种高温气冷堆核控制棒用碳化硼多孔陶瓷的制备方法
CN112390649A (zh) * 2020-11-09 2021-02-23 镇江华核装备有限公司 一种复合纤维增强碳化硼陶瓷板制备方法
CN113480314A (zh) * 2021-07-30 2021-10-08 浙江吉成新材股份有限公司 一种碳化硼陶瓷无压烧结制备工艺

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
尹邦跃等: "《陶瓷核燃料工艺》", 哈尔滨工程大学出版社, pages: 233 - 234 *
张卫珂等: "SiC晶须增韧B4C-Si复合陶瓷材料", 《陶瓷学报》 *
张卫珂等: "SiC晶须增韧B4C-Si复合陶瓷材料", 《陶瓷学报》, no. 01, 15 February 2014 (2014-02-15) *
朱新河等: "《轮机工程材料》", 30 September 2018, 大连海事大学出版社, pages: 199 - 200 *
李云凯等: "《陶瓷及其复合材料》", 31 August 2007, 北京理工大学出版社, pages: 257 - 258 *
裴立宅等: "《高技术陶瓷材料》", 31 July 2015, 合肥工业大学出版社, pages: 130 - 135 *
邓建新等: "B4C/SiCw陶瓷喷砂嘴的制备及其冲蚀磨损机理研究", 《硅酸盐通报》, no. 03, 28 June 2004 (2004-06-28) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116082042A (zh) * 2023-01-10 2023-05-09 中硼科技(威海)有限公司 一种碳化硼多孔骨架制备方法
CN115849912A (zh) * 2023-02-22 2023-03-28 潍坊衡瑞硼业新材料科技有限公司 一种防弹陶瓷及其制备方法

Similar Documents

Publication Publication Date Title
CN110483085B (zh) 一种晶须增强氧化铝复合陶瓷及其制备方法与应用
CN115403386A (zh) 一种晶须增强碳化硼复合陶瓷及其制备方法
CN108484171B (zh) 一种碳化硼-硼化钛复相陶瓷材料及其无压烧结制备方法
CN110655404A (zh) 一种钛碳化硅基复合陶瓷材料及其制备工艺
CN113416077B (zh) 一种双复合结构的高温陶瓷刀具材料及其制备方法与应用
CN108409336A (zh) 氮化硅陶瓷及其制备方法
CN109609806B (zh) 一种氧化石墨烯增强钛基复合材料及其制备方法
CN110818428A (zh) 一种共晶增强增韧氮化硅陶瓷的制备方法
CN114736022B (zh) 一种高致密度、高强度和超高硬度碳化硼/高熵二硼化物复相陶瓷及其制备方法
CN112830803A (zh) 一种液相烧结凝胶注模成型SiC陶瓷阀件材料及其制备方法
Liu et al. Enhancement mechanical properties of in-situ preparated B4C-based composites with small amount of (Ti3SiC2+ Si)
CN113121238B (zh) 一种高性能碳化硼基复合陶瓷材料及其制备方法
CN106518090B (zh) 一种赛隆陶瓷摩擦焊搅拌头及其制备方法
CN111825461A (zh) 石墨烯改性碳化硅陶瓷材料及其制备方法及防弹装甲
CN105777130B (zh) 反应烧结碳化硼陶瓷复合材料的凝胶注模成型制备方法
CN111995418A (zh) 一种高强度高韧性的碳化硅纳米线增强碳化硅陶瓷复合材料的制备方法
CN105039842B (zh) 一种耐高温耐磨金属铁与氧化铝陶瓷复合材料及其制备方法
CN1944339A (zh) 放电等离子烧结工艺合成氮化铝钛-氮化钛复合块体材料
CN115786756A (zh) 一种致密Mo2NiB2基金属陶瓷的制备方法
CN113149658B (zh) 一种氮化钛基复合陶瓷材料及其制备方法
CN113582698A (zh) 一种ZrB2-SiC增韧B4C防弹片的制备方法
CN1179919C (zh) 一种陶瓷喷砂嘴制备工艺
CN113816747A (zh) TiC增强MAX相高熵陶瓷基复合材料及其制备方法
CN113957294A (zh) 一种CrCoNi中熵合金增强Al基复合材料及其制备方法
CN109956754B (zh) 石墨烯纳米片增韧TiB2基陶瓷刀具材料及其制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20221129

RJ01 Rejection of invention patent application after publication