CN115386849B - 一种二维自支撑金属材料及其制备方法、及应变传感器 - Google Patents

一种二维自支撑金属材料及其制备方法、及应变传感器 Download PDF

Info

Publication number
CN115386849B
CN115386849B CN202211021393.5A CN202211021393A CN115386849B CN 115386849 B CN115386849 B CN 115386849B CN 202211021393 A CN202211021393 A CN 202211021393A CN 115386849 B CN115386849 B CN 115386849B
Authority
CN
China
Prior art keywords
dimensional
supporting
self
metal film
film layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211021393.5A
Other languages
English (en)
Other versions
CN115386849A (zh
Inventor
陈祖煌
林柏臣
邱华军
张洪健
朱纪欣
张严翼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Graduate School Harbin Institute of Technology
Original Assignee
Shenzhen Graduate School Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Graduate School Harbin Institute of Technology filed Critical Shenzhen Graduate School Harbin Institute of Technology
Priority to CN202211021393.5A priority Critical patent/CN115386849B/zh
Publication of CN115386849A publication Critical patent/CN115386849A/zh
Application granted granted Critical
Publication of CN115386849B publication Critical patent/CN115386849B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/02Local etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/18Acidic compositions for etching copper or alloys thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

本发明提供了一种二维自支撑金属材料及其制备方法、及应变传感器,该二维自支撑金属材料的制备方法包括如下步骤:步骤S1,衬底上依次沉积牺牲层和二维金属膜层;步骤S2,将步骤S1得到的材料置于刻蚀溶液中,所述刻蚀溶液选择性刻蚀牺牲层,并保留最外层的二维金属膜层,所述二维金属膜层在刻蚀溶液的表面张力作用下漂浮于所述刻蚀溶液的表面;步骤S3,将漂浮的二维金属膜层转移到其他衬底上。采用本发明的技术方案,先自下而上生长高质量的牺牲层和二维金属层薄膜,然后通过自上而下方法,选择性刻蚀牺牲层,获得了较完整的自支撑二维金属材料,解决了已有技术超薄金属膜难以合成的问题,以及不能兼具大尺寸和厚度可控合成的问题。

Description

一种二维自支撑金属材料及其制备方法、及应变传感器
技术领域
本发明属于新材料技术领域,尤其涉及一种二维自支撑金属材料及其制备方法、及应变传感器。
背景技术
近年来石墨烯、过渡金属二卤族化合物和金属烯等自支撑二维材料因其独特的电学、力学和量子霍尔等效应而受到广泛研究,且在能量存储、传感、生物成像等领域具有巨大的应用潜力。然而,与具有较强的层内化学键和较弱的层间相互作用的范德华材料不同,金属和大部分无机材料中原子间存在较强键合且不存在分层结构。此外,由于二维材料的表面能随着厚度的减小而急剧增加,使得自支撑二维材料的制备更加困难。
当前,已报道了多种自支撑二维材料的合成方法,这些方法大致上可以分为两种策略:自下而上和自上而下。其中自下而上包含了外延生长、籽晶生长、湿化学法、表面活性剂/配位修饰合成法、模板合成法等;自上而下包含了机械剥离法、液相剥离法、固体熔化剥离法、超快飞秒脉冲激光剥离法、电化学剥离法、离子注入剥离法、化学刻蚀法等。通过这两种策略已有多种二维材料被成功制备,例如铂、钯、铜等单质和PtCu、PdMo 、PdZnCd等合金以及氮化铝、铌酸锂等无机化合物。
自下而上策略制备自支撑二维材料可以实现大量制备以及厚度比较均匀,但在合成过程中容易出现团聚的问题,并且合成得到的二维膜材料尺寸小,通常不超过微米级的横向尺寸。此外,对所有材料不具备普适性。虽然自上而下的策略避免了团聚,可以得到大尺寸的二维材料,但普通机械剥离会导致厚度均匀性变差。因此,目前在制备自支撑二维材料方面存在的瓶颈是,尚未有能制备兼具大尺寸的金属膜厚度可控且具有普适性的方法。这些因素影响了自支撑二维金属在高性能应变传感方面的应用探索。
发明内容
针对以上技术问题,本发明公开了一种二维自支撑金属材料及其制备方法、及应变传感器。
对此,本发明采用的技术方案为:
一种二维自支撑金属材料的制备方法,其包括如下步骤:
步骤S1,衬底上依次沉积牺牲层和二维金属膜层;
步骤S2,将步骤S1得到的材料置于刻蚀溶液中,所述刻蚀溶液选择性刻蚀牺牲层,并保留最外层的二维金属膜层,所述二维金属膜层在刻蚀溶液的表面张力作用下漂浮于所述刻蚀溶液的表面;
步骤S3,将漂浮的二维金属膜层转移到其他衬底上。
采用此技术方案,可以获得大面积较完整的自支撑金属薄膜,最大可达厘米级,而且可保持在厘米级尺寸范围内无明显裂纹。该方法制备的二维金属膜层的厚度可低至1nm。当厚度大于30nm时,该自支撑金属薄膜具有表面褶皱结构,可以用于设计应变传感元件,具有高灵敏度。此外,通过选择合适的牺牲层材料和对应的刻蚀液,可实现自支撑二维贵金属、非贵金属、合金等材料的制备。
作为本发明的进一步改进,所述牺牲层的厚度为20~40nm。进一步优选的,所述牺牲层的厚度为30 nm。
作为本发明的进一步改进,步骤S1中,采用磁控溅射进行沉积。采用此技术方案,由于磁控可实现大面积金属膜材料的制备(可实现晶圆级),并且薄膜的厚度与磁控溅射时间呈正相关,因此可通过控制溅射时间实现薄膜的厚度可控。
作为本发明的进一步改进,所述牺牲层的材质为Cu或铝酸锶,所述刻蚀溶液为稀硝酸溶液。牺牲层的材料可以选择性的被刻蚀完全,得到纯净的自支撑二维金属膜材料,而不含牺牲层杂质。
作为本发明的进一步改进,步骤S1中,沉积的牺牲层、二维金属膜层的表面方根粗糙度为不超过150 pm。采用此技术方案,刻蚀后得到的自支撑薄膜较为完整,裂纹和空洞少。
作为本发明的进一步改进,所述二维金属膜层为Pt层。
作为本发明的进一步改进,所述磁控溅射的参数条件为:室温,背景真空为106Pa,溅射时氩气压力0.4 Pa,功率为20 W (Cu) 和40 W (Pt),靶基距 100 mm。采用此技术方案,以更好的控制薄膜平面的平整度。
作为本发明的进一步改进,所述稀硝酸的浓度为3.5~4.5mol/L。进一步优选的,所述稀硝酸的浓度为4mol/L。刻蚀液浓度过高,易导致刻蚀时释放较多热量,而由于牺牲层与薄膜的热膨胀系数存在差异,易导致超薄薄膜形成较多开裂,采用此技术方案,可以减少开裂。
作为本发明的进一步改进,步骤S2中,所述刻蚀溶液的温度为20℃,刻蚀时间30min,步骤S3中,将漂浮的二维金属膜层转移到其他衬底后,于60℃烘干时间 1 h。
本发明还公开了一种二维自支撑金属材料,其采用如上任意一项所述的二维自支撑金属材料的制备方法制备得到。
本发明还公开了一种应变传感器,其采用如上所述的二维自支撑金属材料制备得到。采用此技术方案,利用所述的二维自支撑金属材料的褶皱结构,制备的应变传感元件,灵敏度高。
与现有技术相比,本发明的有益效果为:
第一,本发明的技术方案结合物理沉积和化学刻蚀技术,先自下而上生长高质量的牺牲层和二维金属层薄膜,然后通过自上而下方法,选择性刻蚀牺牲层,获得了较完整的自支撑二维金属材料。该方法解决了超薄金属膜难以合成的问题,以及已有技术不能实现自支撑金属薄膜兼具大尺寸和厚度可控合成的问题。此外,方法具有普适性,可适用于各种金属及合金。
第二,本发明的技术方案得到的自支撑二维Pt具有较大的尺寸,厚度可调,保留了与块体相同的fcc晶体结构。
第三,采用本发明的技术方案,在高分子表面自组装形成的褶皱结构,得到具有高灵敏度的应变传感元件,具有高灵敏度,有望应用于各类高精度检测,如人体脉搏检测等。
附图说明
图1是本发明实施例1得到的自支撑二维铂(Pt)材料的原子力显微形貌(AFM)剖面图。
图2是本发明实施例1得到的自支撑二维铂(Pt)材料XRD图。
图3是本发明实施例1得到的自支撑二维铂(Pt)材料剥离后XPS全谱图。
图4是本发明实施例1得到的自支撑二维铂(Pt)材料的AFM图、TEM和SAED图和光学图像图。其中(a)是 剥离前的AFM 图,(b)是 剥离后的AFM剖面图,(c)是剥离后的TEM和SAED图,(d)是剥离后的光学图像。
图5是本发明对比例1得到的自支撑二维铂(Pt)材料的AFM图和光学图像图,其中,(a)为剥离前的AFM图,(b)为剥离后的AFM图,(c)为剥离后的光学形貌图。
图6是本发明对比例2刻蚀前后的表面形貌对比图,(a)为刻蚀前,(b)为刻蚀后,
图7是本发明对比例3得到的自支撑二维铂(Pt)材料的光学图像图。
图8是本发明实施例2得到的自支撑二维铂(Pt)材料转移到PET衬底后的实物图。
图9是本发明实施例2得到的自支撑二维铂(Pt)材料转移到PET衬底上的SEM图,(a)和(b)分别为不同放大倍数。
图10是本发明对比例4和实施例2的自支撑二维铂(Pt)材料的光学图像图,(a)为对比例4,(b)为对比例5。
图11是本发明实施例4的应变传感元件的性能图;其中(a)是I-V测试图,(b)是开关响应测试图,(c)是拉伸应变灵敏度测试图,(d)是拉伸应变灵敏度与其它类型传感元件对比。
图12是本发明实施例5的弯曲应变传感元件的性能图;其中(a)是I-V测试图,(b)是 开关响应 图,(c)是弯曲应变灵敏度测试图。
具体实施方式
下面对本发明的较优的实施例作进一步的详细说明。
一种大面积、厚度可控的自支撑二维金属材料的制备方法,主要基于物理沉积技术和化学刻蚀法,结合了自上而下和自下而上制备策略。具体方法为:
首先,通过磁控溅射生长技术在衬底上生长牺牲层和二维金属膜层的双层结构;
其次,在将生长所得的材料置于刻蚀溶液中,刻蚀溶液可选择性刻蚀牺牲层,而保留最外层二维金属层;
最后,利用刻蚀溶液的表面张力,使自支撑二维金属材料漂浮于溶液表面,进而可转移到任意衬底。
由于磁控可实现大面积金属膜材料的制备(可实现晶圆级),并且薄膜的厚度与磁控溅射时间呈正相关,因此可通过控制溅射时间实现薄膜的厚度可控。此外,通过选择合适的牺牲层材料和对应的刻蚀液,可实现自支撑二维贵金属、非贵金属、合金等材料的制备,因此该发明对自支撑二维金属材料的制备具有普适性。
下面结合具体的实施例进行说明。
实施例1
一种自支撑二维铂(Pt)膜,其制备方法包括:
首先,将商业铜(Cu)和Pt靶材,借助磁控溅射技术在硅衬底上实现对应成分薄膜的生长,得到铜牺牲层和二维金属Pt层。磁控溅射的沉积参数为:室温、背景真空106 Pa、溅射时氩气压力0.4 Pa、功率为20 W (Cu) 和40 W (Pt)、靶基距 100 mm。铜牺牲层和二维金属Pt层的表面均方根粗糙度为不大于150 pm。
然后,通过稀硝酸溶液,选择性刻蚀Cu牺牲层,得到自支撑二维Pt材料。其中,稀硝酸的浓度为4mol/L,刻蚀溶液温度20℃、刻蚀时间30 min。
最后,将自支撑二维Pt转移到玻璃或高分子等衬底,本实施例为转移到PET膜衬底上,转移后60℃烘干时间 1 h。
采用本实施例的技术方案,刻蚀溶液可将牺牲层刻蚀完全,得到纯净的自支撑二维金属膜材料,而不含牺牲层杂质。对得到的材料进行测试和表征,结果如图1~图4所示。可见,所得到自支撑金属薄膜,表面平整,无明显裂纹;厚度可控,最低可低至1nm;表现为二维薄膜,不存在团聚现象。
对比例1
在实施例1的基础上,本对比例在刻蚀前的表面粗糙度较大,大于1 nm,经过刻蚀后得到的自支撑薄膜的微观形貌图如图5所示,实施例1得到的自支撑薄膜的微观形貌图如图4所示,可见,实施例1得到的自支撑薄膜较完整,而对比例1得到的自支撑薄膜破碎严重,存在较多的裂纹和空洞。
对比例2
在实施例1的基础上,本对比例采用具有水溶性氧化物铝酸锶作为牺牲层,刻蚀前后的自支撑薄膜的微观形貌图如图6所示,可见,刻蚀前的自支撑薄膜表面较粗糙,且刻蚀后的自支撑薄膜的表面有裂纹。
对比例3
在实施例1的基础上,本对比例的刻蚀溶液选择6 mol/L的稀硝酸,刻蚀后的自支撑薄膜的微观形貌图如图7所示,可见,刻蚀后的自支撑薄膜的表面形成较多开裂,可能与刻蚀溶液的浓度过高,导致刻蚀时释放较多热量,而由于牺牲层与薄膜的热膨胀系数存在差异,而造成自支撑薄膜较多开裂。
实施例2
在实施例1的基础上,本实施例制备得到的自支撑二维铂(Pt)薄膜的厚度为30nm,该自支撑二维铂(Pt)薄膜转移到PET衬底后的实物图如图8所示,光学形貌图如图9所示,可以看出,实施例1得到的自支撑二维铂(Pt)薄膜面积较大,且较完整,可达厘米级,并且在厘米级尺寸范围内无明显裂纹,而且存在明显的褶皱。可见,通过PET高分子衬底支撑,二维Pt可自组装形成褶皱结构而无需额外施加高分子表面改性步骤。
对比例4
本对比例中,在实施例1的基础上,直接在未刻蚀的Pt膜表面复合高分子膜,膜表面形貌如图10(a)所示。
实施例3
在实施例1的基础上,本实施例的自支撑薄膜的厚度为10nm,其微观形貌图如图10(b)所示。
通过对比例4的形貌可见,在未刻蚀的Pt膜表面复合高分子膜,未发现褶皱结构。而通过对比例4的形貌可见,得到的薄膜为为自支撑结构,只是在低于10 nm厚的自支撑金属薄膜表面,褶皱结构表现不明显,可能不适合应用于传感,但是整个膜完整,无明显开裂现象。
实施例4
采用实施例2得到PET膜衬底负载的自支撑二维铂(Pt)膜制备成拉伸应变传感元件,传感性能如图11所示,可见,该元件的灵敏度最高可达4643,应变范围0%-2%,大于当前大多数应变传感器的报道值。
实施例5
将实施例2得到PET膜衬底负载的自支撑二维铂(Pt)膜制备成弯曲应变传感元件,传感性能如图12示,可见,该元件的灵敏度最高可达10149,应变范围0.05%-0.2%,大于当前大多数应变传感器的报道值。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (7)

1.一种二维自支撑金属材料的制备方法,其特征在于:其包括如下步骤:
步骤S1,衬底上依次沉积牺牲层和二维金属膜层;
步骤S2,将步骤S1得到的材料置于刻蚀溶液中,所述刻蚀溶液选择性刻蚀牺牲层,并保留最外层的二维金属膜层,所述二维金属膜层在刻蚀溶液的表面张力作用下漂浮于所述刻蚀溶液的表面;得到具有表面褶皱结构的二维金属膜层;
步骤S3,将漂浮的二维金属膜层转移到其他衬底上;
所述牺牲层的材质为Cu,所述刻蚀溶液为稀硝酸溶液;所述稀硝酸的浓度为3.5~4.5mol/L;
步骤S1中,沉积的牺牲层、二维金属膜层的表面方根粗糙度为不超过150 pm。
2.根据权利要求1所述的二维自支撑金属材料的制备方法,其特征在于:所述二维金属膜层为Pt层。
3.根据权利要求1所述的二维自支撑金属材料的制备方法,其特征在于:步骤S1中,采用磁控溅射进行沉积。
4. 根据权利要求3所述的二维自支撑金属材料的制备方法,其特征在于:所述磁控溅射的参数条件为:室温,溅射时氩气压力0.4 Pa,靶基距为 100 mm。
5. 根据权利要求4所述的二维自支撑金属材料的制备方法,其特征在于:步骤S2中,所述刻蚀溶液的温度为20℃,刻蚀时间30 min,步骤S3中,将漂浮的二维金属膜层转移到其他衬底后,于60℃烘干时间 1 h。
6.一种二维自支撑金属材料,其特征在于:其采用如权利要求1~5任意一项所述的二维自支撑金属材料的制备方法制备得到。
7.一种应变传感器,其特征在于:其采用如权利要求6所述的二维自支撑金属材料制备得到。
CN202211021393.5A 2022-08-24 2022-08-24 一种二维自支撑金属材料及其制备方法、及应变传感器 Active CN115386849B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211021393.5A CN115386849B (zh) 2022-08-24 2022-08-24 一种二维自支撑金属材料及其制备方法、及应变传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211021393.5A CN115386849B (zh) 2022-08-24 2022-08-24 一种二维自支撑金属材料及其制备方法、及应变传感器

Publications (2)

Publication Number Publication Date
CN115386849A CN115386849A (zh) 2022-11-25
CN115386849B true CN115386849B (zh) 2023-12-05

Family

ID=84122970

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211021393.5A Active CN115386849B (zh) 2022-08-24 2022-08-24 一种二维自支撑金属材料及其制备方法、及应变传感器

Country Status (1)

Country Link
CN (1) CN115386849B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101661876A (zh) * 2009-10-19 2010-03-03 中国电子科技集团公司第四十六研究所 一种制备氮化物自支撑衬底的方法
CN102227013A (zh) * 2011-04-07 2011-10-26 中国科学院宁波材料技术与工程研究所 一种自支撑多铁性复合薄膜的制备方法
TW201704373A (zh) * 2015-03-23 2017-02-01 阪東化學股份有限公司 導電性被覆膜複合體及其製造方法
CN109920723A (zh) * 2019-01-28 2019-06-21 三明学院 一种自支撑锗薄膜的制备方法及锗薄膜
CN110391400A (zh) * 2019-07-26 2019-10-29 南通大学 一种柔性自支撑硅/超长二氧化钛纳米管电极的制备方法
CN113061862A (zh) * 2020-01-02 2021-07-02 中国科学院物理研究所 一种二维金属纳米材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101661876A (zh) * 2009-10-19 2010-03-03 中国电子科技集团公司第四十六研究所 一种制备氮化物自支撑衬底的方法
CN102227013A (zh) * 2011-04-07 2011-10-26 中国科学院宁波材料技术与工程研究所 一种自支撑多铁性复合薄膜的制备方法
TW201704373A (zh) * 2015-03-23 2017-02-01 阪東化學股份有限公司 導電性被覆膜複合體及其製造方法
CN109920723A (zh) * 2019-01-28 2019-06-21 三明学院 一种自支撑锗薄膜的制备方法及锗薄膜
CN110391400A (zh) * 2019-07-26 2019-10-29 南通大学 一种柔性自支撑硅/超长二氧化钛纳米管电极的制备方法
CN113061862A (zh) * 2020-01-02 2021-07-02 中国科学院物理研究所 一种二维金属纳米材料的制备方法

Also Published As

Publication number Publication date
CN115386849A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
Bordo et al. Effect of deposition rate on structure and surface morphology of thin evaporated Al films on dielectrics and semiconductors
Hwang et al. Fabrication of carbon nanotube emitters in an anodic aluminium oxide nanotemplate on a Si wafer by multi-step anodization
EP2655246B1 (en) Methods for making graphene windows
US20080003778A1 (en) Low-temperature welding with nano structures
CN107188161B (zh) 石墨烯及其制备方法
TW202104603A (zh) 類單晶薄膜及其製造方法
Abd-Elnaiem et al. Characterization of arrangement and geometry of porous anodic alumina formed by one-step anodization of Al-1 wt% Si thin films
CN110023531A (zh) 铝合金溅镀靶材
CN115386849B (zh) 一种二维自支撑金属材料及其制备方法、及应变传感器
CN109652770B (zh) 一种利用半导体基体来调控气相沉积金属薄膜织构的方法
CN108840329B (zh) 一种独立自支撑石墨烯基超薄膜的制备方法
Peng et al. Formation of microcrystalline silicon films using rapid crystal aluminum induced crystallization under low-temperature rapid thermal annealing
Xiao et al. Annealing effects on the formation of semiconducting Mg2Si film using magnetron sputtering deposition
Rossi et al. Effects of deposition method on the microstructure and intermetallic compound formation in Ag–Sn bilayers
Wallace et al. On-site growth method of 3D structured multi-layered graphene on silicon nanowires
Fukutani et al. Nanowire array fabricated by Al–Ge phase separation
CN109811313B (zh) 一种高电阻率基底上多孔氧化铝模板的制备方法
Ma et al. Pulsed laser deposition of ZnO honeycomb structures on metal catalyst prepatterned Si substrates
CN108862262B (zh) 一种石墨烯基超薄复合膜的制备方法
Liao et al. Growth of porous anodized alumina on the sputtered aluminum films with 2D–3D morphology for high specific surface area
Bayat et al. Growth of copper nanowire arrays on NiTi shape memory alloy thin film
Huan-Hua et al. Strong surface diffusion mediated glancing-angle deposition: growth, recrystallization and reorientation of tin nanorods
Troglia et al. Free-standing nanolayers based on Ru silicide formation on Si (100)
CN114804079B (zh) 石墨烯薄膜及其转移方法
WO2019049876A1 (ja) エピタキシャルシリコン薄膜の製造に用いられるシリコン基板及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant