CN115382555A - 一种Bi2O3/泡沫Ni及其微波辐射制备方法 - Google Patents

一种Bi2O3/泡沫Ni及其微波辐射制备方法 Download PDF

Info

Publication number
CN115382555A
CN115382555A CN202211174197.1A CN202211174197A CN115382555A CN 115382555 A CN115382555 A CN 115382555A CN 202211174197 A CN202211174197 A CN 202211174197A CN 115382555 A CN115382555 A CN 115382555A
Authority
CN
China
Prior art keywords
foam
microwave radiation
rhodamine
nickel
precursor solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211174197.1A
Other languages
English (en)
Other versions
CN115382555B (zh
Inventor
赵宝秀
徐浩
汪益林
高博
张留科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Technology
Original Assignee
Qingdao University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Technology filed Critical Qingdao University of Technology
Priority to CN202211174197.1A priority Critical patent/CN115382555B/zh
Publication of CN115382555A publication Critical patent/CN115382555A/zh
Application granted granted Critical
Publication of CN115382555B publication Critical patent/CN115382555B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/843Arsenic, antimony or bismuth
    • B01J23/8437Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本申请提供一种Bi2O3/泡沫Ni及其微波辐射制备方法;通过固相研磨的方法制备碘氧化铋前驱体溶液;将预处理后的泡沫镍浸渍到碘氧化铋前驱体溶液中,然后取出浸渍后的的泡沫镍采用微波辐射的方法制备Bi2O3/泡沫Ni催化材料。解决常规Bi2O3对罗丹明B催化活性不高的技术问题,创新性地将Bi2O3负载于泡沫Ni上,并解决了在制备Bi2O3/泡沫Ni中,高温焙烧导致泡沫Ni坍塌破坏泡沫Ni基材的技术问题;Bi2O3/泡沫Ni材料在光催化领域中用作光阳极,对罗丹明B污染物进行光电催化降解;罗丹明B污染物的降解效率至少为98%。

Description

一种Bi2O3/泡沫Ni及其微波辐射制备方法
技术领域
本申请属于催化剂材料制备技术领域,具体涉及一种Bi2O3/泡沫Ni及其微波辐射制备方法。
背景技术
自日本藤岛昭教授发现TiO2可光催化制氢后,人们便开始了对光催化剂的研究,光催化剂的种类繁多,如p型、n型、p-n异质结等。除自身禁带宽度外,催化剂表面形貌及粒径尺寸也是影响其光催化效率的主要因素。在相同条件下,粉体材料的光催化性能要优于其他形态材料的光催化性能,但粉体材料因粒径小而较难回收利用。将粉体催化剂固定/负载在多孔载体上是解决粉体催化剂难以回收的行之有效的方法,如在钛片、FTO及ITO基底上负载催化剂,就可以解决粉体光催化材料难以回收的问题。
在众多基材中,泡沫镍因其丰富的海绵状多孔结构而备受关注,因此可以采用循环浸渍法将粉体催化剂负载在发泡镍表面。
现有的在发泡镍上负载催化剂的方法是高温煅烧法。季邦等人在泡沫镍网负载TiO2/WO3薄膜,并研究其对乙烯的光催化降解性能,他们首先制备了TiO2前驱体,然后将镍网浸渍其中,最后高温煅烧制得TiO2/Ni。任超艳等人用电沉积法制得Zn/TiO2/泡沫镍后,放入马弗炉中在500℃下煅烧1h得到最终催化剂。方涛等人用溶胶-凝胶法得到TiO2前驱体,然后用浸渍提拉法制得TiO2/Ni,煅烧后得到目标催化剂。曾孟雄等人以泡沫镍为载体,活性炭为造孔剂,采用硬模板法制备了泡沫镍负载多孔TiO2薄膜催化剂。
上述研究都采用高温煅烧法获得目标催化剂,但是采用高温煅烧成型有两个致命的缺点:发泡镍表面的催化剂薄膜与发泡镍基材结合不稳定,易从基材上脱落;发泡镍在高温焙烧过程中微孔通道坍塌,结构被破坏;此外,高温煅烧往往需要较长的升温时间,导致能源的消耗较大,而且高温煅烧会使基材的性状发生改变,更甚者会造成基材结构的损毁。
有鉴于此,特提出本申请。
发明内容
为了解决上述技术缺陷之一,本申请实施例中提供了一种Bi2O3/泡沫Ni及其微波辐射制备方法;解决常规Bi2O3对罗丹明B催化活性不高的技术问题,创新性地将Bi2O3负载于泡沫Ni上,并解决了在制备Bi2O3/泡沫Ni中,高温焙烧导致泡沫Ni坍塌破坏泡沫Ni基材的技术问题。
根据本申请实施例第一个方面,提供了一种Bi2O3/泡沫Ni的微波辐射制备方法,通过固相研磨的方法制备碘氧化铋前驱体溶液;将预处理后的泡沫镍浸渍到碘氧化铋前驱体溶液中,然后取出浸渍后的的泡沫镍采用微波辐射的方法制备Bi2O3/泡沫Ni催化材料。
进一步的,固相研磨的方法制备碘氧化铋前驱体溶液的步骤如下:
将硝酸铋研磨粉碎;
将聚乙二醇加入研磨后的硝酸铋中,继续研磨至均匀状态的混合物A中;
将碘化钾加入至混合物A中继续研磨至红色浆状液体状态,得到碘氧化铋前驱体溶液。
进一步的,所述硝酸铋为Bi(NO3)3·5H2O为Bi(NO3)3·5H2O的聚乙二醇溶液,所述Bi(NO3)3·5H2O的浓度为1M。
进一步的,Bi(NO3)3·5H2O与碘化钾的摩尔比为1:1。
进一步的,泡沫镍的预处理方法为:将泡沫镍依次用盐酸、乙醇清洗干净,并进行烘干。
进一步的,泡沫镍的预处理方法为:将泡沫镍依次用盐酸、乙醇清洗干净,在80℃的烘箱中烘干4小时。
进一步的,将预处理后的泡沫镍浸渍到碘氧化铋前驱体溶液中的浸渍条件为:在室温条件下浸渍2min。
进一步的,取出浸渍后的的泡沫镍采用微波辐射的方法制备Bi2O3/泡沫Ni光催化材料的微波辐射条件为:微波功率为210W-490W、微波辐射时间为4-10min。
根据本申请实施例的第二个方面,提供一种采用上述方法制备的Bi2O3/泡沫Ni材料,Bi2O3以四方相结构负载于泡沫Ni表面和空隙中。
根据本申请实施例的第三个方面,Bi2O3/泡沫Ni材料在光催化领域中用作光阳极,对罗丹明B污染物进行光电催化降解;罗丹明B污染物的降解效率至少为98%。
进一步的,对罗丹明B污染物进行光电催化降解的步骤如下:
对罗丹明B污染物进行暗箱吸附,将罗丹明B污染物在Bi2O3/泡沫Ni的光阳极表面达到吸附平衡;
打开光源并外加2V电压,进行光电催化降解罗丹明B污染物。
本申请的有益效果:
1.本申请通过固相研磨的方法制备碘氧化铋前驱体溶液;将预处理后的泡沫镍浸渍到碘氧化铋前驱体溶液中,然后取出浸渍后的的泡沫镍采用微波辐射的方法制备Bi2O3/泡沫Ni光电催化材料,由于泡沫镍是非极性物质,它不吸收微波,在微波加热过程中结构不会被破坏,因此泡沫镍作为基底就能很好的被保护,通过微波辐射选择行地对极性物质进行加热,减少对发泡镍基底的损害。微波辐射热处理方法还有一个优点-缩短反应时间,仅需几分钟就可以将催化剂负载在发泡镍表面与空隙中;目前,还未见采用微波辐射法在泡沫镍上负载Bi2O3的研究。
2.本申请创新性地采用固相研磨法制备碘氧化铋前驱体溶液,传统地制备碘氧化铋前驱体的方法有溶剂热法、共沉淀法、水解法等方法,但是上述方法会直接形成碘氧化铋的沉淀物,并且难以形成具有粘滞性的前驱体,后续无法负载在泡沫镍上,而固相研磨法制备的碘氧化铋前驱体能够使碘氧化铋均匀的分散在聚乙二醇中,并且前驱体溶液有着较好的粘滞性,当采用微波辐射制备Bi2O3/Ni时能够减少材料的脱落。
3.本申请固相研磨法与微波辐射共同配合制备的Bi2O3/泡沫Ni催化材料,泡沫Ni表面光滑,内部是中空结构,泡沫Ni的枝节彼此交错,为Bi2O3的负载搭建起了支架,而前驱体BiOI以本身的粘滞性存在于泡沫Ni上面时,存在并不稳定,当受到微波辐射后,BiOI受热发生变化,在形成Bi2O3的过程中负载在泡沫Ni的枝节上减少材料的脱落。
4.本申请采用固相研磨法与微波辐射共同配合制备的Bi2O3/泡沫Ni催化材料,通过将Bi2O3做成光阳极,通过光电联合技术提高Bi2O3光催化活性;并将其应用于光电催化降解罗丹明B污染物;降解效率可以达到98%;首先,具有多孔结构的Bi2O3/Ni对罗丹明B进行吸附,当光电反应开始时,在氙灯的照射下,Bi2O3/Ni阳极表面生成光生电子(e-)-空穴(h+)对,e-通过外电路快速转移到阴极,降低了光生电子-空穴对的复合,留存在阳极的h+在氧化分解罗丹明B的同时,也可以将H2O和OH-氧化为·OH,进而攻击罗丹明B,将其氧化分解为其他中间产物甚至完全矿化为H2O和CO2,而e-可以与溶解氧发生反应生成·O2 -,一部分罗丹明B被·O2 -氧化分解。在·OH、h+、·O2 -的参与下,将罗丹明B氧化分解为H2O、CO2和其他无机小分子。在此过程中,h+是起主要作用的自由基。
Bi2O3+hv→h++e-
e-+O2→·O2 -
h++H2O→H++·OH
·O2 -+RhB→R+H2O+CO2
·OH+RhB→R+H2O+CO2
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例1制备的Bi2O3/Ni材料的XRD图;
图2为本申请不同浸渍浓度下制备的Bi2O3/Ni材料瞬态光电流分析图;
图3为本申请实施例1制备的Bi2O3/Ni材料在不同体系催化降解罗丹明B的对比图;
图4为本申请实施例1制备的Bi2O3/Ni材料不同体系催化罗丹明B动力学拟合曲线;
具体实施方式
为了使本申请实施例中的技术方案及优点更加清楚明白,以下结合附图对本申请的示例性实施例进行进一步详细的说明,显然,所描述的实施例仅是本申请的一部分实施例,而不是所有实施例的穷举。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
实施例一
一种Bi2O3/泡沫Ni的微波辐射制备方法,包括如下具体步骤:
S1:称取2.4g硝酸铋(Bi(NO3)3·5H2O)于研钵中,研磨至粉碎;
S2:取5ml聚乙二醇(PEG400)至步骤S1中装有硝酸铋的研钵中,研磨一段时间到均匀状态;
S3:称取同摩尔比碘化钾(KI)加入到上述混合物中,研磨一段时间得到红色浆状液体为碘氧化铋(BiOI)前驱体溶液;
S4:将发泡镍(Ni)网依次用盐酸、乙醇清洗干净,烘干后浸渍到S3制备的碘氧化铋(BiOI)前驱体溶液中,浸渍时间为2min浸渍一段时间,取出样品;
S5:将S4制备的样品放入微波炉中采用350W功率加热5分钟,最后用纯水清洗。
选取罗丹明B为目标污染物,以实施例1制备的Bi2O3/Ni材料作为光阳极进行光电催化氧化降解罗丹明B。整个反应装置主要由CHI660E电化学工作站、暗箱、反应器、150W的氙灯光源以及磁力搅拌器构成。实验过程如下:将磁力搅拌器放入暗箱中,在其上面放置反应器,连接电化学工作站,搭建光电催化氧化装置。
取200mL浓度为15mg/L的罗丹明B水溶液于反应器中,搅拌一段时间,待罗丹明B在反应器及光电极表面达到吸附平衡,然后同时打开光源和电源,每隔一定时间取样,使用紫外-可见分光光度计在554nm处测量吸光度,计算去除率。
如图1所示,通过XRD对制备的Bi2O3/Ni材料晶型结构进行分析,结果如图所示。由图可以观察到Bi2O3的特征衍射线与四方相Bi2O3的标准卡片(JCPDS:29-0236)吻合,即在27.94°、32.38°、46.44°、55.08°处的衍射峰分别对应四方相Bi2O3的(111)、(200)、(220)、(311)晶面。
瞬态光电流强度主要是由载流子分离效率决定的,一般来说瞬态光电流强度越大,光生电子-空穴对的迁移速率就越快,本实验通过检测瞬态光电流来评价Bi2O3/Ni的光生载流子的分离和转移效率。如图2所示,改变实施例1中的浸渍浓度,图2为不同浸渍液浓度的Bi2O3/Ni在间歇光照下的光电流响应曲线,在施加相同的电压条件下,随着浸渍液浓度的提高,在i-t测试中光电流密度也随之发生变化,合适的浸渍液浓度有利于Bi2O3/Ni光电流密度的提高,在1M的浸渍液浓度下,其光电流密度达到最大,而当浸渍液浓度为0.66M、1.32M时,在泡沫镍表面生成的Bi2O3/比较少或者过量的负载会造成团结和阻塞现象,不利于光电流的传输。
图3为不同体系催化降解罗丹明B的对比图,Bi2O3/Ni本身作为光阳极,在电催化条件下的去除效果极为有限,但是在光电联用技术的条件下,罗丹明B的去除效率得到有效提升。
图4不同体系催化降解罗丹明B动力学拟合曲线;由图可以看出,光催化、电催化降解罗丹明B速率都比较低,但是当采用光电联用技术降解罗丹明B的时候反应速率大大提高,这是由于光电联用技术激发了Bi2O3/Ni,使其在阳极表面产生的光生电子(e-)-空穴(h+)对不易复合,利用·OH、·O2-、h+氧化降解污染物,达到高效降解的目的。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (10)

1.一种Bi2O3/泡沫Ni的微波辐射制备方法,其特征在于,通过固相研磨的方法制备碘氧化铋前驱体溶液;将预处理后的泡沫镍浸渍到碘氧化铋前驱体溶液中,然后取出浸渍后的的泡沫镍采用微波辐射的方法制备Bi2O3/泡沫Ni光催化材料。
2.如权利要求1所述的Bi2O3/泡沫Ni的微波辐射制备方法,其特征在于,固相研磨的方法制备碘氧化铋前驱体溶液的步骤如下:
将硝酸铋研磨粉碎;
将聚乙二醇加入研磨后的硝酸铋中,继续研磨至均匀状态的混合物A中;
将碘化钾加入至混合物A中继续研磨至红色浆状液体状态,得到碘氧化铋前驱体溶液。
3.如权利要求2所述的Bi2O3/泡沫Ni的微波辐射制备方法,其特征在于,
所述硝酸铋为Bi(NO3)3·5H2O的乙二醇溶液,所述Bi(NO3)3·5H2O的浓度为1M。
4.如权利要求3所述的Bi2O3/泡沫Ni的微波辐射制备方法,其特征在于,
Bi(NO3)3·5H2O与碘化钾的摩尔比为1:1。
5.如权利要求1所述的Bi2O3/泡沫Ni的微波辐射制备方法,其特征在于,
泡沫镍的预处理方法为:首先用盐酸和乙醇依次清洗泡沫镍,然后在80℃的烘箱中烘干4小时。
6.如权利要求1所述的Bi2O3/泡沫Ni的微波辐射制备方法,其特征在于,
将预处理后的泡沫镍浸渍到碘氧化铋前驱体溶液中的浸渍条件为:室温条件下,浸渍2min。
7.如权利要求1所述的Bi2O3/泡沫Ni的微波辐射制备方法,其特征在于,
取出浸渍后的的泡沫镍采用微波辐射的方法制备Bi2O3/泡沫Ni光催化材料的微波辐射条件为:微波功率为210W-490W、微波辐射时间为4-10min。
8.一种采用如权利要求1-7任一所述的方法制备的Bi2O3/泡沫Ni材料,其特征在于,
所述Bi2O3以四方相结构负载于泡沫Ni表面和空隙中;
所述泡沫镍呈多孔结构,Bi2O3以粉体形式附着在泡沫镍表面和空隙中。
9.如权利要求8所述的Bi2O3/泡沫Ni材料,其特征在于,Bi2O3/泡沫Ni材料在光催化领域中用作光阳极,对罗丹明B污染物进行光电催化降解;罗丹明B污染物的降解效率至少为98%。
10.如权利要求9所述的Bi2O3/泡沫Ni材料,其特征在于,对罗丹明B污染物进行光电催化降解的步骤如下:
对罗丹明B污染物进行暗箱吸附,将罗丹明B污染物在Bi2O3/泡沫Ni的光阳极表面达到吸附平衡;
打开光源并外加2V电压,进行光电催化降解罗丹明B污染物。
CN202211174197.1A 2022-09-26 2022-09-26 一种Bi2O3/泡沫Ni及其微波辐射制备方法 Active CN115382555B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211174197.1A CN115382555B (zh) 2022-09-26 2022-09-26 一种Bi2O3/泡沫Ni及其微波辐射制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211174197.1A CN115382555B (zh) 2022-09-26 2022-09-26 一种Bi2O3/泡沫Ni及其微波辐射制备方法

Publications (2)

Publication Number Publication Date
CN115382555A true CN115382555A (zh) 2022-11-25
CN115382555B CN115382555B (zh) 2023-11-03

Family

ID=84128326

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211174197.1A Active CN115382555B (zh) 2022-09-26 2022-09-26 一种Bi2O3/泡沫Ni及其微波辐射制备方法

Country Status (1)

Country Link
CN (1) CN115382555B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101177302A (zh) * 2006-11-10 2008-05-14 宝山钢铁股份有限公司 纳米氧化铋的制备方法
CN106268891A (zh) * 2016-07-20 2017-01-04 扬州大学 一种莲藕状多孔碳/卤氧铋半导体复合光催化材料、制备及应用
CN108906088A (zh) * 2018-07-24 2018-11-30 深圳市必发达科技有限公司 漂珠负载溴氧化铋/碘氧化铋复合光催化剂的制备方法
CN110882705A (zh) * 2019-12-10 2020-03-17 武汉纺织大学 一种微波合成氧空位BiOCl/Bi2S3催化剂及其制备方法、应用
CN111054399A (zh) * 2019-12-10 2020-04-24 武汉纺织大学 一种微波合成氧空位BiOCl/Bi2O3催化剂及其制备方法、应用
WO2021026392A1 (en) * 2019-08-06 2021-02-11 University Of Miami Metal-oxide nanoparticles, photocatalytic nanostructures, and related methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101177302A (zh) * 2006-11-10 2008-05-14 宝山钢铁股份有限公司 纳米氧化铋的制备方法
CN106268891A (zh) * 2016-07-20 2017-01-04 扬州大学 一种莲藕状多孔碳/卤氧铋半导体复合光催化材料、制备及应用
CN108906088A (zh) * 2018-07-24 2018-11-30 深圳市必发达科技有限公司 漂珠负载溴氧化铋/碘氧化铋复合光催化剂的制备方法
WO2021026392A1 (en) * 2019-08-06 2021-02-11 University Of Miami Metal-oxide nanoparticles, photocatalytic nanostructures, and related methods
CN110882705A (zh) * 2019-12-10 2020-03-17 武汉纺织大学 一种微波合成氧空位BiOCl/Bi2S3催化剂及其制备方法、应用
CN111054399A (zh) * 2019-12-10 2020-04-24 武汉纺织大学 一种微波合成氧空位BiOCl/Bi2O3催化剂及其制备方法、应用

Also Published As

Publication number Publication date
CN115382555B (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
CN108067281B (zh) 多孔g-C3N4光催化剂及其制备方法和应用
CN104128194B (zh) 一种p-n型Bi2O3/BiPO4异质结可见光响应型光催化薄膜材料及其制备方法
CN109201065A (zh) 一种泡沫镍复合材料及其制备方法与在光电催化去除水体污染物中的应用
CN102527410B (zh) 炭纤维毡负载CdS/TiO2复合光催化材料的制备方法
CN110565111B (zh) 一种六角柱型WO3/Bi2WO6复合光电极薄膜的制备方法
Chen et al. A solar responsive cubic nanosized CuS/Cu2O/Cu photocathode with enhanced photoelectrochemical activity
Liu et al. Visible-light photocatalytic fuel cell with BiVO4/UiO-66/TiO2/Ti photoanode efficient degradation of Rhodamine B and stable generation of electricity
CN105214689A (zh) 一种TiO2/CdS/石墨烯复合光催化材料及其制备方法
CN109876867A (zh) 一种双金属-有机骨架/钒酸铋复合光电阳极材料的制备方法
CN109746001A (zh) 一种氧化锡光子晶体负载氧化钨和硫化银复合膜及其制备方法和应用
CN113385169A (zh) 一种高效降解有机污染物的新型压电光催化剂、制备方法及应用
He et al. NiFe layered double hydroxide/BiVO4 photoanode based dual-photoelectrode photocatalytic fuel cell for enhancing degradation of azo dye and electricity generation
CN114808013B (zh) 一种三氧化钨/钨酸锰/钨酸钴光电极材料及其制备方法和应用
CN110368968A (zh) NiFe-LDH/Ti3C2/Bi2WO6纳米片阵列及制法和应用
CN108686645A (zh) 一种TiO2/BiVO4异质结复合材料的制备方法和应用
CN113813983B (zh) 一种铒修饰的氮化碳基催化剂及制备方法和用途
CN114804303A (zh) 降解水体有机污染物同时回收重金属离子的系统及方法
CN110102282A (zh) 一种铈掺杂氧化锌光催化剂及其制备方法
CN110952143B (zh) 一种介孔单晶钛酸锶的合成方法
CN105233837A (zh) 一种改性铋酸铜光催化剂及其制备方法
CN103337368B (zh) 一种染料敏化太阳能电池掺杂石墨烯复合电极的制备方法
CN115382555B (zh) 一种Bi2O3/泡沫Ni及其微波辐射制备方法
CN113293392B (zh) 一种氧化铁/羟基氧化钴复合光电极及其制备方法和应用
CN108642511A (zh) 一种硅纳米线/钒酸铋复合光阳极的制备方法
CN109516495A (zh) 一种氧化锡光子晶体负载氧化钨和硫化镉半导体薄膜及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant