CN115364235B - 一种锌离子驱动氧气节约和基因沉默的生物活性纳米载体及其制备方法和应用 - Google Patents

一种锌离子驱动氧气节约和基因沉默的生物活性纳米载体及其制备方法和应用 Download PDF

Info

Publication number
CN115364235B
CN115364235B CN202211026380.7A CN202211026380A CN115364235B CN 115364235 B CN115364235 B CN 115364235B CN 202211026380 A CN202211026380 A CN 202211026380A CN 115364235 B CN115364235 B CN 115364235B
Authority
CN
China
Prior art keywords
ala
zif
bioactive
gene silencing
zinc ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211026380.7A
Other languages
English (en)
Other versions
CN115364235A (zh
Inventor
刘军杰
程慧
史进进
张振中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN202211026380.7A priority Critical patent/CN115364235B/zh
Publication of CN115364235A publication Critical patent/CN115364235A/zh
Application granted granted Critical
Publication of CN115364235B publication Critical patent/CN115364235B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • A61K41/00615-aminolevulinic acid-based PDT: 5-ALA-PDT involving porphyrins or precursors of protoporphyrins generated in vivo from 5-ALA
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • A61K31/80Polymers containing hetero atoms not provided for in groups A61K31/755 - A61K31/795
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/465Hydrolases (3) acting on ester bonds (3.1), e.g. lipases, ribonucleases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6949Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明提供了一种锌离子驱动氧气节约和基因沉默的生物活性纳米载体及其制备方法和应用,该生物活性纳米载体,包括以下原料:ALA、DNAzyme、六水合硝酸锌、二甲基咪唑、DSPE‑PEG2000、甲醇和去离子水。本发明还包括上述生物活性纳米载体的制备方法和应用,以及包括该生物活性纳米载体的药物组合物。本发明仅通过锌离子的干扰就能从多个方向增加肿瘤细胞中PpIX的积累,提高基于ALA的光动力治疗效果,有效解决了现有技术中光动力治疗中肿瘤缺氧、稳定性欠缺和PpIX积累量不足等问题。

Description

一种锌离子驱动氧气节约和基因沉默的生物活性纳米载体及 其制备方法和应用
技术领域
本发明属于生物医药技术领域,具体涉及一种锌离子驱动氧气节约和基因沉默的生物活性纳米载体及其制备方法和应用。
背景技术
光动力疗法(PDT)具有侵袭性小、副作用少、避免耐药性等优点,在肿瘤治疗中具有巨大的潜力。在PDT过程中,注入的光敏剂(PS)可以被特定的光照射激活,产生活性氧(ROS),活性氧具有很强的毒性,可以诱导肿瘤细胞凋亡或坏死,达到杀死肿瘤细胞的效果。自PDT应用以来,人们开发和探索了多种PS,如卟啉衍生物、5-氨基乙酰丙酸(ALA)、二氢卟吩(Ce6)等。其中ALA作为PS原卟啉IX(PpIX)的内源性代谢前体,因其清除速度快、皮肤光毒性低而被FDA批准用于治疗多种肿瘤。当被肿瘤细胞内化时,ALA将在线粒体内以多步反应转化为PpIX,原位产生的PpIX在光照下会产生ROS,杀死肿瘤细胞。不幸的是,固有的肿瘤缺氧微环境通过下调氧依赖性coprophyrinogen III氧化酶(CPOX,一种ALA转化为PpIX的限速酶)的活性而抑制PpIX的生成。此外,亚铁螯合酶(FECH)催化PpIX与铁离子结合而生成不具有光敏性的血红素,从而导致光敏PpIX的损失。可以看出,由于肿瘤缺氧和快速代谢失活导致的肿瘤细胞内PpIX积累不足,极大地阻碍了ALA介导的PDT的实际应用。因此,制定适当的策略来促进PpIX的生产并避免其失活是实现PpIX积累的有效策略。
肿瘤缺氧可通过削弱氧依赖性CPOX酶的活性限制了ALA向PpIX的转化。同时,在缺氧条件下,PpIX的活性氧(ROS)产生效率也相当有限。到目前为止,人们在克服肿瘤缺氧方面做出了巨大的努力。例如直接输送氧气(O2)、催化分解过氧化氢(H2O2)或水生成氧气等。然而,这些解决方案仍然面临包括过早的氧气泄漏、较低的氧气生成效率等巨大挑战,导致治疗效果不理想。理论分析表明,减少O2消耗是消除肿瘤缺氧的较好策略。正如我们所知,氧气是通过线粒体呼吸消耗的,尤其是氧化磷酸化(OXPHOS)代谢途径。因此,通过抑制线粒体电子传递链(ETC)中的线粒体复合物可实现O2节约,从而缓解肿瘤缺氧。研究表明,金属离子作为酶的辅助因子,决定着各种酶的活性,在能量代谢中起着不可或缺的作用。最近,研究发现过量的锌离子(Zn2+)可以抑制线粒体ETC上的复合物IV,从而抑制氧化磷酸化过程的耗氧。细胞内Zn2+的调节有望成为缓解肿瘤缺氧的一种潜在策略。
基于ALA的PDT的另一个关键挑战是光敏PpIX的消耗。研究表明,FECH催化铁离子与PpIX结合生成血红素,从而阻碍活性氧的生成。特异性沉默介导PpIX代谢失活的关键酶FECH可能是一种更安全和有前途的方法。具有mRNA切割功能的脱氧核酶(DNAzyme)被认为是一种有效的沉默特定蛋白质的工具。与核酶、siRNA和反义寡核苷酸相比,DNAzyme具有良好的生物稳定性和较高的目标mRNAs裂解效率。然而,DNAzyme往往面临胞内递送能力差、胞内金属辅因子缺乏等问题,导致基因沉默效率低下。近年来,金属有机骨架(MOFs)在药物传递中引起了广泛关注。通常,纳米级沸石咪唑骨架-8(ZIF-8)纳米颗粒可以用作多种药物的多功能纳米载体,如核酸、蛋白质等。此外,ZIF-8可以在酸性微环境中解离来控制负载的药物分子的释放。值得注意的是,伴随释放的Zn2+可作为DNAzyme辅因子激活Zn2+依赖性DNAzyme的生物催化活性。基于ZIF-8独特的多孔特性,我们预计它也为ALA负载提供了巨大的潜力。因此,ZIF-8共载DNAzyme/ALA有望减少PpIX的代谢消耗,提高PDT效率。
发明内容
针对现有技术中存在的上述问题,本发明提供一种锌离子驱动氧气节约和基因沉默的生物活性纳米载体及其制备方法和应用,仅通过锌离子的干扰就能从多个方向增加肿瘤细胞中PpIX的积累,提高基于ALA的光动力治疗效果,有效解决了现有技术中光动力治疗中肿瘤缺氧、稳定性欠缺和PpIX积累量不足等问题。
为实现上述目的,本发明解决其技术问题所采用的技术方案是:提供一种锌离子驱动氧气节约和基因沉默的生物活性纳米载体,包括以下原料:ALA、DNAzyme、六水合硝酸锌、二甲基咪唑、DSPE-PEG2000、甲醇和去离子水;
ALA、DNAzyme、六水合硝酸锌、二甲基咪唑、DSPE-PEG2000摩尔质量比为29-30μmol:0.1-0.3μmol:0.1-0.2g:0.003-0.007g:0.31-0.35g,六水合硝酸锌、甲醇和去离子水的质量体积比为0.1-0.2g:9-11mL:4-6mL。
进一步,ALA、DNAzyme、六水合硝酸锌、二甲基咪唑、DSPE-PEG2000摩尔质量比为29.8μmol:0.2μmol:0.15g:0.005g:0.33g。
进一步,六水合硝酸锌、甲醇和去离子水的质量体积比为0.15g:10mL:5mL。
进一步,锌离子驱动氧气节约和基因沉默的生物活性纳米载体粒径为60-100nm。
上述锌离子驱动氧气节约和基因沉默的生物活性纳米载体的制备方法(见图1),包括以下步骤:
(1)将ALA用六水合硝酸锌水溶液搅拌溶解,得混合液一;然后将DNAzyme水溶液滴加到二甲基咪唑的甲醇溶液中,室温下搅拌5-10min,得混合液二;
(2)向步骤(1)所得混合液二中加入混合液一,室温下避光搅拌1-2h,然后依次经离心和洗涤,得ALA&Dz@ZIF纳米颗粒;再将ALA&Dz@ZIF纳米颗粒加入去离子水超声搅拌溶解,并将其分散到DSPE-PEG2000溶液中,继续搅拌12h,最后经离心和洗涤,得锌离子驱动氧气节约和基因沉默的生物活性纳米载体(ALA&Dz@ZIF-PEG)。
进一步,步骤(2)中,两次离心时,在12000rpm条件下离心30min。
进一步,锌离子驱动氧气节约和基因沉默的生物活性纳米载体重悬于去离子水中储存在4℃或经过50℃真空干燥得粉末物。
上述锌离子驱动氧气节约和基因沉默的生物活性纳米载体在制备抗肿瘤药物中的应用。
一种药物组合物,包括上述锌离子驱动氧气节约和基因沉默的生物活性纳米载体、至少一种肿瘤治疗药物和至少一种辅料。
进一步,肿瘤治疗药物为难溶性抗肿瘤药物、水溶性药物或核酸药物。
进一步,肿瘤治疗药物为西紫杉醇、紫杉醇、阿霉素、顺铂、卡铂、柔红霉素、寡义反核苷酸、小干扰或酶类药物。
综上所述,本发明具备以下优点:
1、本发明通过锌离子驱动氧气节约和基因沉默的生物活性纳米载体,提供锌离子的化合物来源丰富,方便获取,成本低。同时,仅通过锌离子的干扰就能从多个方向增加肿瘤细胞中PpIX的积累,提高基于ALA的光动力治疗效果,有效解决了现有技术中光动力治疗中肿瘤缺氧、稳定性欠缺和PpIX积累量不足等问题。
2、本发明的锌离子驱动氧气节约和基因沉默的生物活性纳米载体,作为抗肿瘤药物转运系统,在到达靶部位前避免药物提前泄露,可使药物更多的转运到肿瘤部位,在酸性溶酶体的作用下释放锌离子与药物,从而最大的发挥抗肿瘤活性。
3、本发明的锌离子驱动氧气节约和基因沉默的生物活性纳米载体针对光动力治疗中光敏剂的光敏毒性、靶向性差、稳定性欠缺等缺点,整个体系毒性小、有良好的水溶性、稳定性强、生物相容性好、无明显毒副作用。利用纳米颗粒EPR效应及在胞内溶酶体的环境下可实现药物精准释放,发挥出显著的抗肿瘤活性。
4、本发明还可通过诱导细胞内原卟啉(PpIX)积累提高肿瘤光动力治疗效果,其纳米载体包括ALA、DNAzyme和ZIF-8,其可在溶酶体的酸性环境下分解,同时释放ALA、DNAzyme和锌离子(Zn2+),如图3所示,过量的Zn2+可通过抑制线粒体复合物IV阻断OXPHOS,升高的O2水平促进氧依赖性CPOX酶介导的ALA向PpIX的转化。同时,如图2所示,Zn2+作为辅助因子启动DNAzyme的剪切功能,特异性沉默FECH以抑制PpIX的代谢失活,协同增加肿瘤细胞中PpIX含量和ROS产量。这种开源节流的PpIX积累策略为拓宽ALA的临床应用带来了希望。
附图说明
图1为锌离子驱动氧气节约和基因沉默的生物活性纳米载体制备示意图;
图2为Zn2+驱动的基因沉默机制示意图;
图3为Zn2+驱动O2节约机制示意图;
图4为不同处理后MCF-7细胞中Zn2+含量的ICP-MS分析;
图5为流式检测缺氧信号(ROS-ID)荧光强度;
图6为不同处理后,ICP-MS检测肿瘤组织中Zn2+含量变化;
图7为肿瘤切片的HIF-1α免疫荧光染色和HIF-1α荧光半定量示意图;
图8为Western blot分析胞内FECH的蛋白表达量和条带的灰度分析;
图9为Western blot分析肿瘤组织内FECH的蛋白表达量和条带的灰度分析;
图10为流式检测RhL和RhZ的细胞摄取情况;
图11为CLSM检测胞内PpIX的荧光结果;
图12为PpIX荧光检测结果;
图13为不同浓度的ALA&Dz@ZIF-PEG对MCF-7细胞的暗毒性和光毒性结果;
图14为光照下不同纳米颗粒的细胞毒性;
图15为治疗期间的相对肿瘤体积;
图16为肿瘤组织的TUNEL染色结果。
具体实施方式
实施例1
一种锌离子驱动氧气节约和基因沉默的生物活性纳米载体,制备方法包括以下步骤:
(1)将ALA(5.0mg)分散在六水合硝酸锌水溶液(10mL)中,搅拌溶解5min,得混合液一;然后将DNAzyme水溶液(200μL,1mM)缓慢滴加到二甲基咪唑的甲醇溶液(5mL)中,室温下搅拌5min,得混合液二;
(2)向步骤(1)所得混合液二中加入混合液一,室温下避光搅拌1h,然后依次经离心(12000rpm,30min)和洗涤,得ALA&Dz@ZIF纳米颗粒;再将5mg ALA&Dz@ZIF纳米颗粒加入5mL去离子水超声搅拌溶解,并将其分散到5mL DSPE-PEG2000(1mg/mL)溶液中,继续搅拌12h,最后经离心(12000rpm,30min)收集沉淀物并用去离子水洗涤三次,得锌离子驱动氧气节约和基因沉默的生物活性纳米载体(ALA&Dz@ZIF-PEG)。
在制备锌离子驱动氧气节约和基因沉默的生物活性纳米载体的情况下,分别制备ZIF-8、ZIF-PEG、ALA@ZIF-PEG和Dz@ZIF-PEG,其具体制备流程如下:
(1)ZIF-8的合成:称取0.15g六水合硝酸锌溶解在5mL去离子水中,超声溶解完全以获得溶液A,称取0.33g二甲基咪唑溶于10mL无水甲醇,超声溶解完全以获得溶液B;将溶液A缓慢滴加到溶液B中(体积比:1:2),室温下搅拌1小时;将混合物离心(12000rpm,30min)后,使用乙醇和去离子水洗涤沉淀物,制备出ZIF-8纳米颗粒;ZIF-8产物重悬于去离子水中储存在4℃或者经过50℃真空干燥得到粉末物。
(2)ZIF-PEG的合成:称取5mg DSPE-PEG2000于25mL圆底烧瓶中,加入5mL去离子水超声溶解;称取5mg ZIF-8于10mL离心管中加入5mL去离子水超声溶解;在室温搅拌下将ZIF-8溶液滴加到含有DSPE-PEG2000溶液的圆底烧瓶中,继续搅拌12h后,离心(12000rpm,30min)收集沉淀物并用去离子水洗涤三次;ZIF-PEG产物重悬于去离子水中储存在4℃或者经过50℃真空干燥得到粉末物。
(3)ALA@ZIF-PEG的合成:称量5.00mg ALA并将其加入到六水合硝酸锌溶液中(10mL),搅拌5min以获得混合溶液C;然后将混合溶液C缓慢滴加到二甲基咪唑甲醇溶液(2mL)中,室温下避光搅拌1小时;将混合物离心(12000rpm,30min)并使用乙醇和去离子水洗涤沉淀物,所得ALA@ZIF产物重悬于去离子水中储存在4℃或者经过50℃真空干燥得到粉末物;称取5mg ALA@ZIF加入5mL去离子水超声溶解,并将其分散到5mL DSPE-PEG2000(1mg/mL)溶液中,继续搅拌12h后,离心(12000rpm,30min)收集沉淀物并用去离子水洗涤三次;ALA@ZIF-PEG产物重悬于去离子水中储存在4℃或者经过50℃真空干燥得到粉末物。
(4)Dz@ZIF-PEG的合成:DNAzyme粉末分散在去离子水(2000μL)中,配制成1mM的水溶液;将DNAzyme水溶液缓慢滴加到二甲基咪唑甲醇溶液(2mL)中,室温下搅拌5min以获得混合溶液D;随后,向混合溶液D中缓慢滴加六水合硝酸锌水溶液(1mL),室温下继续搅拌1小时;将混合溶液离心(12000rpm,30min)并使用乙醇和去离子水洗涤沉淀物,制备的Dz@ZIF产物重悬于去离子水中储存在4℃或者经过50℃真空干燥得到粉末物;称取5mg Dz@ZIF加入5mL去离子水超声溶解,并将其分散到5mL DSPE-PEG2000(1mg/mL)溶液中,继续搅拌12h后,离心(12000rpm,30min)收集沉淀物并用去离子水洗涤三次;Dz@ZIF-PEG产物重悬于去离子水中储存在4℃或者经过50℃真空干燥得到粉末物。
实验例1
生物活性纳米载体ALA&Dz@ZIF-PEG体内外Zn2+含量测定和缺氧检测
(1)体外Zn2+含量测定和缺氧检测
Zn2+含量测定:MCF-7细胞接种到6孔板中(每孔5×105个细胞)置于细胞培养箱中培养24h,然后分别加入2mL空白培养基、ZIF-PEG(67μg/mL)、ALA&Dz@ZIF-PEG(80μg/mL)与细胞共孵育4h;之后,吸除含药培养液,加入1mL胰蛋白酶消化收集细胞悬液,悬液于1000rpm条件下离心5min,弃去上清液,沉淀中加入500μL PBS轻轻吹打,混匀,并对细胞悬液进行准确计数;使用ICP-MS检测细胞中Zn2+水平。ICP-MS测量结果如图4所示;其中,n=3,***p<0.001。
由图4可知,经过ALA&Dz@ZIF-PEG处理后,MCF-7细胞中Zn2+的浓度从0.72ng/104cells增加到4.75ng/104cells;证实了ALA&Dz@ZIF-PEG纳米颗粒在酸性环境下降解释放Zn2+,显著提高胞内Zn2+水平。
Zn2+对细胞乏氧的影响考察:将MCF-7细胞接种到6孔板中(每孔5×105个细胞)置于细胞培养箱中24h以进行细胞附着;之后,将6孔板和微需氧产气袋(日本三菱)放入培养袋中并置于培养箱8h以诱导缺氧;取出6孔板每孔分别加入2mL空白培养基、ALA&Dz@ZIF-PEG(80μg/mL)、ALA&Dz@ZIF-PEG+TPEN处理细胞4h,其中TPEN是一种Zn2+特异性螯合剂;随后,吸除含药培养液,PBS洗涤三次,加入胰蛋白酶消化并收集细胞悬液,悬液在1000rpm条件下离心5min;弃去上清液,加入500μL PBS重悬细胞沉淀,使用
Figure BDA0003815916550000091
缺氧/氧化应激检测试剂盒(Enzo Life Sciences,New York)和流式细胞术考察Zn2+对细胞乏氧的影响。
缺氧检测试剂盒是利用缺氧细胞中存在的硝基还原酶,将硝基转化为羟胺和氨基并释放红色的荧光探针;其结果如图5所示。
由图5荧光强度分析可知,低氧(Hypoxia)组的荧光显著高于正常O2组(Normoxia),ALA&Dz@ZIF-PEG组荧光强度相比Hypoxia组大幅降低,表明Zn2+能够节约O2。然而,加入TPEN(一种Zn2+螯合剂)后荧光增强,表明O2含量降低,进一步证明是Zn2+驱动的乏氧缓解。
(2)体内Zn2+含量测定和对肿瘤组织乏氧的影响
本实验分为三组:(1)Saline组;(2)ZIF-PEG组;(3)ALA&Dz@ZIF-PEG组。给药结束后解剖裸鼠取出肿瘤组织,使用生理盐水清洗干净,滤纸吸干组织表面水分,加入HNO3(3mL/g)酸解过夜,加入30%H2O2(0.6mL/mg)水浴加热4h,冷却后加入2%HNO3定容至10mL,ICP-MS检测肿瘤组织中Zn2+含量变化;制备冰冻切片及乏氧诱导因子(Hypoxia inducingfactor-1α,HIF-1α)免疫荧光实验,使用CLSM采集图像并分析肿瘤组织缺氧情况。ICP-MS检测肿瘤组织中Zn2+含量变化如图6所示;其中,n=3,**p<0.01。肿瘤切片的HIF-1α免疫荧光染色和HIF-1α荧光半定量结果如图7所示;其中,A为HIF-1α免疫荧光染色,B为HIF-1α荧光半定量比例尺:100μm(n=3,***p<0.001)。
由图6可知,Saline组Zn2+浓度约为21μM,ZIF-PEG处理的荷瘤裸鼠瘤内Zn2+浓度约97μM,ALA&Dz@ZIF-PEG组Zn2+浓度约为84μM,ALA&Dz@ZIF-PEG处理的荷瘤裸鼠的肿瘤组织Zn2+含量提高了3倍。肿瘤组织内Zn2+浓度升高为随后Zn2+驱动的乏氧缓解和基因沉默提供基础。
由图7可知,与Saline组相比,用ZIF-PEG处理的裸鼠观察到HIF-1α信号显著降低。HIF-1α阳性区域的半定量统计分析证实了ZIF-PEG处理组肿瘤中HIF-1α的表达下调,表明Zn2+可以有效缓解肿瘤缺氧。
实验例2
生物活性纳米载体ALA&Dz@ZIF-PEG体内外基因沉默作用考察
(1)细胞内FECH的表达变化
蛋白样品的提取:
将MCF-7细胞接种到35mm的培养皿(每皿1×106个细胞)中,并置于细胞培养箱中培养24h以进行细胞附着;吸去原培养基,每皿分别加入5mL ZIF-PEG、DNAzyme、Dz@ZIF-PEG处理细胞24h,空白培养基作为对照组;然后用PBS洗去制剂,加入胰蛋白酶消化并收集细胞悬液,将悬液置于4℃下1000rpm离心5min,收集细胞沉淀;细胞沉淀中加入1μL PMSF蛋白酶抑制剂和100μL RIPA裂解液混匀,置于冰上裂解40min,每5min进行一次短暂涡旋使其充分裂解;4℃下12000rpm离心15min,上清液即全蛋白提取物;将全蛋白提取物与6×蛋白上样缓冲液混合均匀并在100℃下变性5min。
蛋白浓度测定:
1)工作液配制:取15mL BCA试剂,加入0.3mL Cu试剂充分混匀。
2)配制1mg/mL的BSA标准溶液,并进行梯度稀释,将BSA标准溶液加入到96孔板中,随后每孔加入200μL工作液,置于37℃下避光孵育15min,测定每孔在562nm处的OD值,根据浓度和OD值绘制标准曲线。
3)取适量待测蛋白样品,加入工作液于37℃下避光孵育15min,测定其在562nm处的OD值,通过标准曲线求出待测蛋白样品浓度。
PAGE电泳:
1)检漏:将去离子水注入洁净的玻璃板中间,放置10min,检测制胶装置是否存在漏液现象;倒掉去离子水,滤纸擦干。
2)分离胶(12%)的配制:根据FECH蛋白的分子量(48kD),选择浓度为12%的分离胶,按照表1配制分离胶;迅速将配制好的分离胶注入玻璃板空隙,加入少量异丙醇,室温静置约40min至分离胶凝固,回收异丙醇,去离子水冲洗三次。
3)浓缩胶配制:按照表2配制浓缩胶,取适量浓缩胶加入到分离胶上方,立即插入样品梳,室温静置,待浓缩胶凝固后取下样品梳,使用去离子水冲洗上样孔。
表1分离胶配方
Figure BDA0003815916550000111
表2浓缩胶配方
Figure BDA0003815916550000112
Figure BDA0003815916550000121
4)上样及电泳:各取10μL样品蛋白以及预染蛋白标记物加入样品孔,设置电压为80V,待样品进入分离胶后,将电压设置为120V,待溴酚蓝接近凝胶底部时,终止电泳。
5)转膜:剪取一定大小的聚偏二氟乙烯膜(Polyvinylidene difluoride,PVDF),先将其置于甲醇溶液中活化20s,后置于水溶液中浸泡20s,按照海绵、滤纸、PVDF膜、分离胶、滤纸、海绵的顺序制好转印夹,在冰水浴条件下以300mA恒定电流,电泳90min。
6)封闭:将PVDF膜置于5%的脱脂奶粉溶液中,在4℃下封闭过夜。
7)一抗孵育:按照抗体说明书加入适量一抗稀释液稀释一抗,将PVDF膜浸入一抗溶液中,并置于摇床上室温孵育2h。
8)二抗孵育:按照抗体说明书加入适量TBST溶液稀释二抗,将PVDF膜浸入二抗溶液,并置于摇床上室温孵育2h。
9)显色:各取500μL ECL超敏液A液与B液混合均匀,滴加至PVDF膜上,使用多功能化学发光荧光成像仪显影并拍照。
10)数据分析:采用Image J 2006.02.01软件对蛋白条带进行灰度值半定量。
Western blot分析胞内FECH的蛋白表达量和条带的灰度分析如图8所示;其中,A为Western blot分析胞内FECH的蛋白表达量,B为Western blot条带的灰度分析(n=3,**p<0.01)。
由图8可知,单独ZIF-PEG和DNAzyme对MCF-7细胞的FECH蛋白表达的影响可以忽略不计。相比之下,Dz@ZIF-PEG处理的MCF-7细胞中FECH蛋白表达明显下调,与FECH mRNA的qRT-PCR结果一致,上述结果都清楚地证明了纳米系统的有效基因沉默。
(2)肿瘤组织FECH表达情况
本实验分为三组:(1)Saline组;(2)ZIF-PEG组;(3)ALA&Dz@ZIF-PEG组。给药结束后解剖裸鼠,取各组肿瘤组织各10mg并剪碎,置于组织匀浆仪中研磨;加入2μL PMSF蛋白酶抑制剂和200μL RIPA裂解液,置于冰上裂解40min,12000rpm离心15min,取上清;按照western blot实验步骤进行。Western blot结果如图9所示;其中,A为不同处理后,westernblot分析肿瘤组织内FECH的蛋白表达量,B为western blot条带的灰度分析(n=3,**p<0.01)。
由图9可知,相比于Saline组,不含有DNAzyme的ALA@ZIF-PEG组肿瘤组织FECH蛋白表达未发生明显变化。经过含有DNAzyme的ALA&Dz@ZIF-PEG处理后,肿瘤组织FECH蛋白表达明显下调,表明DNAzyme具有沉默FECH基因能力。
实验例3
生物活性纳米载体ALA&Dz@ZIF-8的PpIX测定
(1)为保证ALA的细胞摄取量一致,使用罗丹明B(RhB)代替ALA制备RhB@Lipo(RhL)和RhB@ZIF-PEG(RhZ),通过流式细胞术评估相同孵育时间达到相同摄取量时RhL和RhZ浓度。将MCF-7细胞接种在6孔板中(每孔5×105个细胞)并置于细胞培养箱中培养24h;然后每孔分别加入2mL RhL(浓度分别为:10、20、30、40μg/mL)和RhZ(60μg/mL),与细胞共孵育2h;之后加入1mL胰蛋白酶消化并收集细胞悬液,1000rpm离心5min,弃去上清液,加入500μLPBS重悬细胞沉淀,使用400目滤网过滤细胞;滤液通过流式细胞术(FACS Aria III,BD,USA)进行检测分析,使用Flow JO_V10软件处理流式数据。流式检测RhL和RhZ的细胞摄取情况如图10所示。
由图10可知,孵育相同时间后40μg/mL RhL和60μg/mL RhZ的胞内荧光强度相似,表明细胞对两种制剂的摄取量相同。
(2)MCF-7细胞内PpIX含量考察
MCF-7细胞接种到共聚焦培养皿中(每培养皿2×105个细胞)培养24h,之后将共聚焦培养皿放入微需氧产气袋(日本三菱)中并置于培养箱8h;然后将ALA@Lipo、ALA@ZIF-PEG、ALA&Dz@ZIF-PEG分别加入到对应的共聚焦培养皿中与细胞共孵育9h,空白培养基作为对照组;之后每皿加入1mL的25nM Mitotracker荧光探针(用于染色线粒体),置于细胞培养箱中30min;每皿加入1mL的Hoechst-33342活细胞染色液(用于染色细胞核),置于细胞培养箱中30min,使用CLSM进行观察。CLSM检测胞内PpIX的荧光结果如图11所示;比例尺:15μm。
由图11可知,带有蓝色荧光的DAPI用于指示细胞核,带有绿色荧光的Mitotracker用于指示线粒体,红色荧光用于指示PpIX;Control组几乎观察不到PpIX的红色荧光。ALA@Lipo组观察到少量的荧光,这是由于受到ALA低的转化效率和PpIX快速代谢失活的限制。与ALA@Lipo组相比,ALA@ZIF-PEG组中观察到大量红色荧光,表明Zn2+通过缓解乏氧促进了PpIX产生。此外,在ALA&Dz@ZIF-PEG组中观察到最强的红色荧光,表明基因沉默阻断了PpIX失活,进一步增加了线粒体中PpIX的蓄积。上述数据证实,ALA&Dz@ZIF-PEG不仅是一种高效的纳米递送载体,而且兼具缓解乏氧和基因沉默,可在缺氧肿瘤细胞中增加PpIX积累。
(2)肿瘤组织PpIX及ROS含量考察
生理盐水清洗各组肿瘤组织,并迅速转移至-80℃冰箱中,随后制成冰冻切片,由于PpIX本身具有荧光可直接在荧光显微镜下观察并拍照记录。PpIX荧光检测结果如图12所示;其中,为PpIX,B为PpIX的荧光半定量,比例尺:100μm(n=3,**p<0.01,***p<0.001)。
由图12可知,Saline组几乎观察不到PpIX的红色荧光;ALA@Lipo组观察到少量的荧光,这是由于受到ALA低的转化效率和PpIX快速代谢失活的限制;与ALA@Lipo组相比,ALA@ZIF-PEG组中观察到大量红色荧光,表明Zn2+通过提高ALA生物转化效率促进PpIX产生;此外,在ALA&Dz@ZIF-PEG组中观察到最强红色荧光,表明基因沉默阻断了PpIX失活。与装载ALA的脂质体组相比,装载ALA和DNAzyme的ALA&Dz@ZIF-PEG组的PpIX含量增加了约2.9倍,这与体外细胞中PpIX的CLSM考察结果相符合。
实验例4
生物活性纳米载体ALA&Dz@ZIF-8可有效用于肿瘤的治疗,实现作为药物转运载体在提高光动力治疗的应用,其应用分为体外和体内两部分,以ALA&Dz@ZIF-8对人源乳腺癌MCF-7的作用效果为例:
1)体外:
ALA&Dz@ZIF-PEG的细胞毒性考察:将MCF-7细胞接种在96孔板(每孔5×103个细胞)中培养24h;之后将细胞板与微需氧产气袋共同置于培养袋中继续放入培养箱内培养8h;然后弃去原培养液,加入PBS洗三次,每孔加入200μL含有ALA&Dz@ZIF-PEG的DMEM培养基(其中包含(1)培养基(对照),(2)ALA&Dz@ZIF-PEG(ALA 0.5μg/mL,DNAzyme 0.3μg/mL),(3)ALA&Dz@ZIF-PEG(ALA 1.1μg/mL,DNAzyme 0.6μg/mL),(4)ALA&Dz@ZIF-PEG(ALA 2.1μg/mL,DNAzyme 1.2μg/mL),(5)ALA&Dz@ZIF-PEG(ALA 4.2μg/mL,DNAzyme 2.3μg/mL),(6)ALA&Dz@ZIF-PEG(ALA 6.3μg/mL,DNAzyme 3.5μg/mL),(7)ALA&Dz@ZIF-PEG(ALA 8.4μg/mL,DNAzyme4.6μg/mL))。每组设置5个复孔;避光孵育9h后,每孔加入200μL的10%完全培养基,黑暗条件下或用532nm激光(300mW/cm2)照射肿瘤细胞区域5min,继续孵育24h;照使用说明,每孔加入100μL的10%CCK-8,37℃条件下孵育3h,通过酶标仪(Synergy H1,美国)测量每孔在450nm处的光密度(Optical density,OD)值。不同浓度的ALA&Dz@ZIF-PEG对MCF-7细胞的暗毒性和光毒性结果如图13所示,其中,A为暗毒性,B为光毒性(n=6)。
由图13可知,结果显示无激光照射,ALA&Dz@ZIF-PEG的细胞活力大于90.0%,表明ALA&Dz@ZIF-PEG具有良好生物相容性。而光照组的细胞活力明显下降并呈现剂量依赖性,当ALA&Dz@ZIF-PEG的浓度达到80μg/mL时,MCF-7细胞的存活率仅为30%,证明ALA&Dz@ZIF-PEG具有良好PDT抗肿瘤效果。
不同制剂的细胞毒性考察:将MCF-7细胞接种在96孔板(每孔5×103个细胞)中培养24h;之后将细胞板与微需氧产气袋共同置于培养袋中继续放入培养箱内培养8h;然后每孔加入200μL含药培养基(实验分组为:ZIF-PEG(67μg/mL),Lipo(40μg/mL),Dz@ZIF-PEG(74μg/mL),ALA@Lipo(40μg/mL),ALA@ZIF-PEG(60μg/mL),ALA&Dz@ZIF-PEG(80μg/mL),空白培养基作为对照组)与细胞共孵育,每组设置5个复孔;避光孵育9h后,每孔加入200μL 10%完全培养基,用532nm激光(300mW/cm2)照射肿瘤细胞区域5min,然后置于培养箱中继续孵育24h;每孔加入100μL的10%CCK-8,37℃条件下孵育3h,通过酶标仪测量每孔在450nm处的OD值。光照下不同纳米颗粒的细胞毒性结果如图14所示(n=6,***p<0.001)。
由图14可知,结果显示ALA&Dz@ZIF-PEG(80μg/mL)组细胞的存活率最低,约为30%;ALA@ZIF-PEG(60μg/mL)组细胞的存活率约为60%;ALA@Lipo(40μg/mL)组细胞的存活率约为73%;空白纳米载体ZIF-PEG、Lipo以及Dz@ZIF-PEG处理细胞后,细胞的存活率仍有90%。这说明ALA&Dz@ZIF-PEG通过Zn2+驱动的乏氧缓解和基因沉默,显著提高了ALA的抗肿瘤效果。
实验表明,本发明一种通过Zn2+驱动O2节约和基因沉默的生物活性纳米载体作为药物载体时能装载药物进入肿瘤细胞部位,可抑制肿瘤扩增,对正常细胞的活力无影响,能更好的发挥出抗肿瘤药物的疗效。
2)体内:
以人源乳腺癌细胞MCF-7构建荷瘤裸鼠模型。收集处于对数生长期的MCF-7细胞,加入PBS溶液将MCF-7细胞密度调整为4×107个/mL;冰水浴条件下,将MCF-7细胞悬液与等体积的Matrigel Matrix混合均匀后,取200μL接种到裸鼠右前肢的腋下皮下;接种后的裸鼠继续正常饲养,每日观察荷瘤裸鼠接种部位肿瘤的生成情况,使用游标卡尺分别测量肿瘤长径和短径并记录;将肿瘤体积大于50mm3的荷瘤裸鼠随机分为5组(每组6只),具体分组为:(1)Saline组;(2)ZIF-PEG组;(3)ALA@Lipo组;(4)ALA@ZIF-PEG组;(5)ALA&Dz@ZIF-PEG组;其中ZIF-PEG的浓度为5.25mg/kg,ALA@Lipo的浓度为4.57mg/kg,ALA@ZIF-PEG和ALA&Dz@ZIF-PEG中ALA浓度为0.5mM;每组均采用尾静脉注射的方式对荷瘤裸鼠进行给药,各组给药体积均为200μL,隔天给药共给药7次(n=6);每次给药12h后,用532nm激光器照射肿瘤部位5min(300mW/cm2),给药期间正常饲养荷瘤裸鼠并密切关注裸鼠的健康状况和精神状态。
连续给药七次,每次给药前称量并记录裸鼠肿瘤体积。治疗期间的相对肿瘤体积如图15所示(n=6,***p<0.001);其中,从上到下依次为Saline组、ZIF-PEG组、ALA@Lipo组、ALA@ZIF-PEG组和ALA&Dz@ZIF-PEG组。
由图15可知,Saline和ZIF-PEG处理组中肿瘤体积呈现快速增长趋势;相比之下,ALA@Lipo、ALA@ZIF-PEG和ALA&Dz@ZIF-PEG处理组表现出不同程度的肿瘤生长抑制,尤其ALA&Dz@ZIF-PEG组对肿瘤的抑制作用最显著。实验证明,将本发明体系给药后,小鼠的肿瘤体积的增加得到了明显的抑制。
给药结束采取颈椎脱臼法处死各组荷瘤裸鼠,解剖取出肿瘤组织,使用生理盐水清洗干净,用4%多聚甲醛溶液固定肿瘤组织,然后制成切片,用原位末端转移酶标记技术(Transferase-mediated dUTP-biotin nick end labeling assay,TUNEL)进行染色,最后使用荧光显微镜采集图像。肿瘤组织的TUNEL染色结果如图16所示,比例尺:100μm。
由图16可知,蓝色荧光信号指示细胞核,绿色荧光信号指示凋亡细胞损伤的DNA,Saline组几乎观察不到凋亡细胞;ALA@Lipo组仅观察到少量凋亡细胞;ALA@ZIF-PEG组由于其缓解乏氧促进了PpIX转化,诱导细胞凋亡;ALA&Dz@ZIF-PEG组由于其缓解乏氧和基因沉默能力,协同升高PpIX水平,使得细胞凋亡现象最为明显。这些结果清晰地表明ALA&Dz@ZIF-PEG可以有效地消融肿瘤。
虽然结合附图对本发明的具体实施方式进行了详细地描述,但不应理解为对本专利的保护范围的限定。在权利要求书所描述的范围内,本领域技术人员不经创造性劳动即可作出的各种修改和变形仍属本专利的保护范围。

Claims (8)

1.一种锌离子驱动氧气节约和基因沉默的生物活性纳米载体,其特征在于,包括以下原料:5-氨基乙酰丙酸、DNAzyme、六水合硝酸锌、二甲基咪唑、DSPE-PEG2000、甲醇和去离子水;
所述5-氨基乙酰丙酸、DNAzyme、六水合硝酸锌、二甲基咪唑、DSPE-PEG2000摩尔质量比为29-30μmol:0.1-0.3μmol:0.1-0.2g:0.003-0.007g:0.31-0.35g,所述六水合硝酸锌、甲醇和去离子水的质量体积比为0.1-0.2g:9-11mL:4-6 mL。
2.如权利要求1所述的锌离子驱动氧气节约和基因沉默的生物活性纳米载体,其特征在于,所述5-氨基乙酰丙酸、DNAzyme、六水合硝酸锌、二甲基咪唑、DSPE-PEG2000摩尔质量比为29.8μmol:0.2μmol:0.15g:0.005g:0.33g。
3. 如权利要求1所述的锌离子驱动氧气节约和基因沉默的生物活性纳米载体,其特征在于,所述六水合硝酸锌、甲醇和去离子水的质量体积比为0.15g:10mL:5 mL。
4.如权利要求1所述的锌离子驱动氧气节约和基因沉默的生物活性纳米载体,其特征在于,所述锌离子驱动氧气节约和基因沉默的生物活性纳米载体粒径为60-100nm。
5.权利要求1-4任一项所述的锌离子驱动氧气节约和基因沉默的生物活性纳米载体的制备方法,其特征在于,包括以下步骤:
(1)将5-氨基乙酰丙酸用六水合硝酸锌水溶液搅拌溶解,得混合液一;然后将DNAzyme水溶液滴加到二甲基咪唑的甲醇溶液中,室温下搅拌5-10min,得混合液二;
(2)向步骤(1)所得混合液二中加入混合液一,室温下避光搅拌1-2h,然后依次经离心和洗涤,得5-氨基乙酰丙酸&Dz@ZIF纳米颗粒;再将5-氨基乙酰丙酸&Dz@ZIF纳米颗粒加入去离子水超声搅拌溶解,并将其分散到DSPE-PEG2000溶液中,继续搅拌12h,最后经离心和洗涤,得锌离子驱动氧气节约和基因沉默的生物活性纳米载体。
6.如权利要求5所述的锌离子驱动氧气节约和基因沉默的生物活性纳米载体的制备方法,其特征在于,步骤(2)中,两次离心时,在12000rpm条件下离心30min。
7.如权利要求5所述的锌离子驱动氧气节约和基因沉默的生物活性纳米载体的制备方法,其特征在于,所述锌离子驱动氧气节约和基因沉默的生物活性纳米载体重悬于去离子水中储存在4℃或经过50℃真空干燥得粉末物。
8.权利要求1-4任一项所述的锌离子驱动氧气节约和基因沉默的生物活性纳米载体在制备抗肿瘤药物中的应用。
CN202211026380.7A 2022-08-25 2022-08-25 一种锌离子驱动氧气节约和基因沉默的生物活性纳米载体及其制备方法和应用 Active CN115364235B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211026380.7A CN115364235B (zh) 2022-08-25 2022-08-25 一种锌离子驱动氧气节约和基因沉默的生物活性纳米载体及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211026380.7A CN115364235B (zh) 2022-08-25 2022-08-25 一种锌离子驱动氧气节约和基因沉默的生物活性纳米载体及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115364235A CN115364235A (zh) 2022-11-22
CN115364235B true CN115364235B (zh) 2023-04-25

Family

ID=84066799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211026380.7A Active CN115364235B (zh) 2022-08-25 2022-08-25 一种锌离子驱动氧气节约和基因沉默的生物活性纳米载体及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115364235B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117138055B (zh) * 2023-06-02 2024-04-16 中山大学附属第一医院 一种双载体的阿霉素载药纳米材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105561306A (zh) * 2015-01-16 2016-05-11 南京大学 一种含有单线态氧保护剂的组合物及其制备方法
KR102183300B1 (ko) * 2019-04-15 2020-11-26 연세대학교 산학협력단 광역동 항암 치료의 내성 극복용 약학적 조성물
CN110618112B (zh) * 2019-07-12 2022-06-07 安徽师范大学 一种基于AuNPs@ZIF-8的适配体荧光传感器的制备方法及其应用
CN110669821B (zh) * 2019-10-28 2022-09-20 郑州大学 一种双光子脱氧核酶金属有机框架探针的制备方法及其应用
CN113648415A (zh) * 2021-08-25 2021-11-16 广西医科大学第一附属医院 一种用于靶向治疗肿瘤的有机金属纳米载药颗粒及其制备方法

Also Published As

Publication number Publication date
CN115364235A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
Zhang et al. Degradable silver-based nanoplatform for synergistic cancer starving-like/metal ion therapy
CN110743012A (zh) 一种葡萄糖氧化酶修饰的介孔二氧化锰药物组合物的制备方法及应用
Yin et al. Synergistically enhanced multienzyme catalytic nanoconjugates for efficient cancer therapy
Lu et al. Microorganism-enabled photosynthetic oxygeneration and ferroptosis induction reshape tumor microenvironment for augmented nanodynamic therapy
Hu et al. Self-intensified synergy of a versatile biomimetic nanozyme and doxorubicin on electrospun fibers to inhibit postsurgical tumor recurrence and metastasis
Huang et al. Hypoxia-triggered gene therapy: A new drug delivery system to utilize photodynamic-induced hypoxia for synergistic cancer therapy
CN115364235B (zh) 一种锌离子驱动氧气节约和基因沉默的生物活性纳米载体及其制备方法和应用
Wang et al. Controllable hypoxia-activated chemotherapy as a dual enhancer for synergistic cancer photodynamic immunotherapy
Luo et al. Mitochondria targeted composite enzyme nanogels for synergistic starvation and photodynamic therapy
Liu et al. pH-responsive nanomedicine co-encapsulated with Erlotinib and chlorin e6 can enable effective treatment of triple negative breast cancer via reprogramming tumor vasculature
Chen et al. Long acting carmustine loaded natural extracellular matrix hydrogel for inhibition of glioblastoma recurrence after tumor resection
Yang et al. Synergistic anticancer strategy of sonodynamic therapy combined with PI-103 against hepatocellular carcinoma
Dong et al. GQDs/hMSN nanoplatform: Singlet oxygen generation for photodynamic therapy
Wu et al. A transformable gold nanocluster aggregate-based synergistic strategy for potentiated radiation/gene cancer therapy
CN113648401B (zh) 一种蛋白酶体抑制增敏光动力治疗的杂化纳米组装体及其制备与应用
CN115089723A (zh) 一种谷胱甘肽和过氧化氢敏感的锰基纳米颗粒及其制备方法和应用
Yang et al. Photocontrolled chondrogenic differentiation and long-term tracking of mesenchymal stem cells in vivo by upconversion nanoparticles
Tong et al. Prussian blue nano-enzyme-assisted photodynamic therapy effectively eradicates MRSA infection in diabetic mouse skin wounds
Zhou et al. Carrier free nanomedicine to reverse anti-apoptosis and elevate endoplasmic reticulum stress for enhanced photodynamic therapy
Zheng et al. An iron-containing ferritin-based nanosensitizer for synergistic ferroptosis/sono-photodynamic cancer therapy
CN106606783B (zh) 一种靶向共递释光敏剂与化疗药物的药物递释系统
CN107998393B (zh) 增强光吸收的黑色素/Ce6光动力纳米肿瘤药物及其制备和应用
CN114601925A (zh) 透明质酸与rsl3共同修饰的光敏纳米材料、制备方法及其应用
Xu et al. Cu2+-pyropheophorbide-a-cystine conjugate-mediated multifunctional mesoporous silica nanoparticles for photo-chemodynamic therapy/GSH depletion combined with immunotherapy cancer
Matsubara et al. Methylene blue in place of acridine orange as a photosensitizer in photodynamic therapy of osteosarcoma

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant