CN115364211B - 超小酞菁共轭介孔二氧化硅纳米粒子及其作为声敏剂的应用 - Google Patents

超小酞菁共轭介孔二氧化硅纳米粒子及其作为声敏剂的应用 Download PDF

Info

Publication number
CN115364211B
CN115364211B CN202210921159.1A CN202210921159A CN115364211B CN 115364211 B CN115364211 B CN 115364211B CN 202210921159 A CN202210921159 A CN 202210921159A CN 115364211 B CN115364211 B CN 115364211B
Authority
CN
China
Prior art keywords
phthalocyanine
mesoporous silica
silane
ultra
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210921159.1A
Other languages
English (en)
Other versions
CN115364211A (zh
Inventor
戴志飞
张妮丝
徐云雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN202210921159.1A priority Critical patent/CN115364211B/zh
Publication of CN115364211A publication Critical patent/CN115364211A/zh
Application granted granted Critical
Publication of CN115364211B publication Critical patent/CN115364211B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0028Disruption, e.g. by heat or ultrasounds, sonophysical or sonochemical activation, e.g. thermosensitive or heat-sensitive liposomes, disruption of calculi with a medicinal preparation and ultrasounds
    • A61K41/0033Sonodynamic cancer therapy with sonochemically active agents or sonosensitizers, having their cytotoxic effects enhanced through application of ultrasounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6845Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a cytokine, e.g. growth factors, VEGF, TNF, a lymphokine or an interferon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6949Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Nanotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Immunology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种超小酞菁共轭介孔二氧化硅纳米粒子及其作为声敏剂的应用。该纳米粒子的水合粒径小于10纳米,具有表面亲水、内部疏水的介孔壳层,其组成包括酞菁络合物和介孔二氧化硅骨架网络,在介孔壳层表面具有特定肿瘤靶向配体和聚乙二醇修饰。该纳米粒子可以在聚焦超声作用下,通过无机声敏剂介孔二氧化硅的空化作用增加有机声敏剂酞菁对超声能量的吸收和声动力反应转化效率,同时,可以实现在肿瘤部位的高效富集,且主要通过肾代谢排出体外。通过优化并设置合适的超声参数,以及作为负载小分子药物的载体等,能够实现光/声动力治疗、联合化疗、成像治疗一体化等多重功能,并且有效改善对肿瘤治疗的疗效和安全性。

Description

超小酞菁共轭介孔二氧化硅纳米粒子及其作为声敏剂的应用
技术领域
本发明属于生物医用技术领域,具体涉及一种超小的酞菁共轭介孔二氧化硅纳米粒子,及其作为声敏剂在对深部肿瘤组织进行声动力治疗中的应用。
背景技术
近年来,随着对超声原理及其特有的生物效应的研究,超声以及声动力治疗(SDT)的癌症研究逐渐受到人们的关注。与光动力治疗(PDT)有着相似的治疗机制,SDT涉及的主要作用方式为:无毒性声敏化学试剂在病灶处,经过低强度聚焦超声的辐照,使靶组织中滞留的声敏剂获得能量,发生电子跃迁,当跃迁电子回归基态时,将释放出的能量转移给周围的氧气或水分子等,在局部产生大量活性氧(ROS),从而破坏细胞的DNA、RNA,氧化蛋白质和脂类细胞膜结构等,从而杀伤靶细胞。无论是声敏剂还是低强度聚焦超声都应当对组织无毒、无害,但是联合作用后就会产生细胞毒性,从而杀死肿瘤。由于超声可以穿透足够深度的组织,因此,SDT相较于有创的手术切除或消融手术,以及无创但组织穿透性差的PDT都更具有优势。
然而,目前SDT研究中存在的主要问题是声敏剂效果差,以及没有规范化的超声参数筛选方法以匹配声敏剂,使其最大化ROS的转化效率,导致SDT疗效不理想,阻碍了声敏剂在临床环境中的进一步应用。一般而言,声敏剂主要可分为无机类和有机类。有机声敏剂主要来源于光敏剂,如卟啉、酞菁类衍生物,由于其良好的生物安全性和潜在的临床转化率而被广泛探索。然而,这些有机声敏剂通常具有疏水性强、生理环境中循环时间短、化学稳定性差和持久的光毒性等问题,对病灶的选择性依然有限,无法实现对肿瘤的精准递送,限制了其进一步应用。无机或金属声敏剂具有优异的稳定性、较低的光毒性和独特的理化性质,使其具有更持久血液循环,或可以改变结构使其具有多功能性,如氧化锌、氧化铁、黑磷和金属有机框架(MOF)等。无机声敏剂具有高比表面积、多孔且孔径可调节的性质,具备气体吸附功能和化学催化功能,可以在SDT过程中提供空化核,在超声作用下发生空化效应,从而促进声动力反应的发生和进行。然而,这些无机材料的主要缺点是剂量依赖性毒性和低超声能量吸收效率,并且其生物安全性还有存在争议,因此,未来的SDT研究需明确其生物医学应用价值。
SDT是一个非常复杂的过程,其中涉及多种影响因素,除了声敏剂类型,目前与声敏剂相匹配的超声相关参数(超声频率、超声强度、占空比、超声作用时间等)也没有做到统一规范,而国内外研究中鲜有报道SDT中对超声主要参数的筛选和优化,根据文献中的相关报道,无法确定声敏剂是否可以匹配常用的超声参数,以及是否可以在该条件下发挥最大的声动力效应。尽管国内外研究在治疗超声及SDT领域取得了很多新的进展,但其具体作用机制尚不完全清晰,因此还需要进行大量的实验,深入探索超声的剂量、声敏剂类型与不同肿瘤模型的超声及声动力生物学效应及机制,从而为SDT向临床治疗转化提供理论依据。
发明内容
为克服现有技术的不足,本发明创新地结合了有机和无机声敏剂的特点,并规避了传统声敏剂可能存在的问题,设计了超小酞菁共轭介孔二氧化硅纳米粒子(PMSN)作为有机-无机复合声敏剂,用于SDT对肿瘤的治疗。该纳米粒子具有介孔结构、高表面积、良好稳定性和生物相容性,可以用特殊配体进行表面功能化,并具有将声敏剂和多种类型的药物递送到肿瘤细胞中的能力,同时,介孔二氧化硅骨架(Si-O-Si结构)在体循环中具有高度的结构稳定性,可以确保到肿瘤中的药物递送,而具有介孔通道结构的硅纳米通过机械加速效应,在超声辐射后,能够增强超声的空化效应,并且在SDT处理后能够结构完整地排出体外。
具体的,本发明首先提供了所述超小酞菁共轭介孔二氧化硅纳米粒子的制备方法。
本发明进一步提供了上述超小酞菁介孔二氧化硅纳米粒子作为声敏剂在深部肿瘤组织中的微创治疗应用。
本发明所述的超小酞菁共轭介孔二氧化硅纳米粒子结构如图2所示。通过溶胶-凝胶反应(Sol-gel Reaction),控制水解速度、pH、温度,并监控纳米粒子生长,在水溶液中自组装形成具有小于10纳米水合粒径的酞菁共轭介孔二氧化硅纳米粒子。该纳米粒子具有表面亲水、内部疏水的介孔壳层,其组成包括作为有机声敏剂的酞菁,用于吸附和稳定气体核放大空化作用的无机声敏剂介孔二氧化硅网络,并且表面具有特定疾病相关靶向配体和水溶性聚乙二醇(PEG)修饰。
本发明的超小酞菁共轭介孔二氧化硅纳米粒子作为有机-无机复合声敏剂,可以靶向特定肿瘤,在超声作用下提高肿瘤组织中局部的活性氧浓度,杀伤肿瘤细胞,并且能够通过肾代谢完整排出体外。
本发明的超小酞菁共轭介孔二氧化硅纳米粒子作为有机-无机复合声敏剂,有机声敏剂组成部分选自具有金属或硅络合的酞菁及其衍生物分子等,通过其络合金属或硅轴向共价偶联于介孔二氧化硅骨架中;无机声敏剂组成部分选自具有不同壳-核层结构的介孔二氧化硅纳米粒子等。
所述具有金属或硅络合的酞菁及其衍生物的结构源于如下式I所示化合物:
其中,M代表硅或铝、镓、锰、铱等金属元素;R代表氢、卤素、羟基、磺酸基等基团。
式I所示酞菁结构通过M-OH和硅烷的凝胶-溶胶反应,轴向偶联于介孔二氧化硅骨架网络中。
所述有机声敏剂组成部分可来源自传统光敏剂,因此具有光敏剂的特点,对适合波长的光具有吸收作用,如荧光性质、光声效应、光动力效应、光热效应等,可以在一定强度的激光激发下,发生电子跃迁的能量变化,从而应用于荧光成像导航、光声成像、光动力治疗(PDT)和光热治疗等。
在本发明的超小酞菁共轭介孔二氧化硅纳米粒子中,其表面修饰成分包括聚乙二醇和靶向配体,其中,聚乙二醇优选为分子量为500~3000的聚乙二醇,可通过选自例如550、800、1000、2000g/mol等不同分子量的聚乙二醇(PEG)硅烷与介孔二氧化硅骨架反应连接到其表面;靶向配体例如叶酸、精氨酸-甘氨酸-天冬氨酸(RGD)、血管内皮生长因子(VEGF)抗体、表皮生长因子(EGF)抗体等疾病相关配体,靶向配体修饰的不同分子量PEG硅烷与介孔二氧化硅骨架反应连接到其表面。
本发明的超小酞菁共轭介孔二氧化硅纳米粒子中,形成介孔二氧化硅骨架的成分选自四甲氧基硅烷(TMOS)、四乙氧基硅烷(TEOS)、三乙氧基硅烷(TES)、三甲基乙氧基硅烷(TMES)、(3-氨基丙基)三乙氧基硅烷(APTES)、3-巯丙基三甲氧基硅烷(MPTMS)等硅烷偶联剂中的一种或几种,所述纳米颗粒的粒径为小于10纳米。
本发明的超小酞菁共轭介孔二氧化硅纳米粒子可以作为药物递送载体,通过静电力作用负载小分子药物于酞菁共轭的介孔二氧化硅网络中,包括阿霉素、紫杉醇、索拉菲尼、烯丙基肼、厄洛替尼、阿法替尼、奥希替尼等,所述纳米粒子的载药量在2~4%(w/w),用于实现联合治疗、成像治疗一体化等多重功能,并且有效改善声动力作用对肿瘤治疗的疗效和安全性。
本发明所述的超小酞菁介孔二氧化硅纳米粒子的制备方法,包括以下步骤:
1)配置0.002~0.008M氨的水溶液,加入溴化十六烷基三甲铵(CTAB)、四甲基联苯胺(TMB)、1,6-己二胺、六亚甲基亚胺(HMI)等表面活性剂作为二氧化硅颗粒中形成孔的模板剂,在氨的水溶液中充分溶解形成不同尺寸大小的胶束模板;
2)加入硅烷和酞菁络合物,在一定温度的水浴下(20~40℃)搅拌0.5~24小时;然后加入PEG硅烷和靶向配体修饰的PEG硅烷,在一定温度的水浴下(20~40℃)搅拌0.5~24小时,使得纳米粒子PEG化;再将温度升至25~90℃进行老化,并继续静置过夜,形成酞菁共轭介孔二氧化硅纳米粒子;
3)将溶液冷却至室温,透析、纯化,得到所述酞菁共轭介孔二氧化硅纳米粒子。
上述步骤2)的溶液中,硅烷的摩尔浓度为0.011~0.043M,硅烷∶模板剂∶PEG-硅烷的摩尔比一般为1:(0.25~1):(0.1~0.75),配体修饰的PEG-硅烷和PEG-硅烷的摩尔比一般为1∶80~1∶20。步骤1)所形成的胶束模板的大小在1~5纳米范围内。
上述步骤2)中,所述硅烷可以是四甲氧基硅烷(TMOS)、四乙氧基硅烷(TEOS)、三乙氧基硅烷(TES)、三甲基乙氧基硅烷(TMES)、(3-氨基丙基)三乙氧基硅烷(APTES)、3-巯丙基三甲氧基硅烷(MPTMS)等中的一种或几种;所述酞菁络合物为硅酞菁、铝酞菁、镓酞菁、锰酞菁、铱酞菁等及其衍生物。所述酞菁络合物的用量为硅烷用量的1~10%(w/w)。
上述步骤2)在纳米粒子的形成过程中,可通过动态光散射(DLS)进行监测,在合适时间点加入试剂,并通过透射电子显微镜(TEM)确定尺寸和结构。
上述步骤3)中,先将酞菁共轭介孔二氧化硅纳米粒子通过透析膜管透析(滤膜截留分子量:6~8kDa),在室温条件下,于酸性的乙醇-水溶液中透析,换透析液重复透析多次以去除胶束模板,并平衡溶液酸碱性;然后在去离子水中透析多次,以去除游离的酞菁络合物。其中,所述酸性的乙醇-水溶液中,乙醇和水的体积比为1∶1,根据所添加酞菁络合物的耐酸性并能够保持纳米粒子骨架的稳定,添加0.5~20%(v/v)乙酸。
可以先用注射器过滤器(滤孔孔径:200nm)、再用超滤离心管(滤膜截留分子量:3kDa)对纳米粒子进行过滤纯化,进一步通过凝胶渗透色谱法去除硅烷聚集体,从而得到所述的酞菁共轭介孔二氧化硅纳米粒子。
本发明的超小酞菁共轭介孔二氧化硅纳米粒子可用于深部肿瘤组织的局部药物递送和微创治疗,可以促进声敏剂在病灶处的富集效果,避免对周围正常组织的非靶向副作用,增加声动力治疗在肿瘤局部的活性氧水平,从而提高对肿瘤的杀伤效率,适用于不可手术、需要化疗的患者,主要可用于肝癌、乳腺癌、脑胶质瘤等癌症的治疗。
本发明基于所述的超小酞菁共轭介孔二氧化硅纳米粒子,同时建立了安全有效的适合于声动力治疗的超声匹配参数条件,包括0.5~2.25MHz的中心频率,10~80%的占空比,以及20~800kPa的声压峰值的声学参数条件,以能够实现肿瘤局部脑区的声敏剂激活,产生最高活性氧水平,并且在无声敏剂的条件下,单独超声剂量不会对细胞造成伤害为标准。
本发明所述的超小酞菁共轭介孔二氧化硅纳米粒子可以通过超声作用下的声动力效应产生大量ROS,从而导致肿瘤细胞的氧化应激,发生细胞焦亡,并且利用和诱导焦亡的化疗药物联合作用,提高肿瘤细胞焦亡的水平。肿瘤细胞焦亡后,会释放大量的促炎因子,促进免疫细胞在肿瘤微环境中的浸润,从而进一步抑制肿瘤的生长。
本发明所述的超小酞菁共轭介孔二氧化硅纳米粒子,可以提高活体荧光成像的亮度和肿瘤特异性靶向作用,用于SDT前的成像引导,并且可以通过负载具有活性氧敏感的小分子,在SDT过程中自发反应产生具有超声响应性的气体,以进行超声的造影成像和被动空化信号检测。
附图说明
图1是利用本发明所述超小酞菁共轭介孔二氧化硅纳米粒子(PMSN),在深部疾病组织(如小鼠肝癌)中进行SDT的应用原理图。
图2是本发明所述超小酞菁共轭介孔二氧化硅纳米粒子(PMSN)的结构示意图。
图3是实施例1制备得到的超小酞菁共轭的介孔二氧化硅纳米粒子的表征,包括粒径分布图(A)、孔径分布图(B)、透射电子显微镜(TEM)观察结果和扫描透射电子显微镜(STEM)观察结果(C)。
图4是实施例1制备得到的超小酞菁共轭的介孔二氧化硅纳米粒子中酞菁共轭连接于介孔二氧化硅网络的表征,包括无酞菁的介孔二氧化硅纳米粒子(MSN)和酞菁共轭介孔二氧化硅纳米粒子(PMSN)的铝和硅的固体核磁共振结果。
图5是实施例1制备得到的超小酞菁共轭的介孔二氧化硅纳米粒子,通过活性氧探针SOSG测试得到在不同超声条件下ROS产生结果(A)以及和不同对照组相比的ROS产生结果(B)。
图6是实施例2中PMSN和游离酞菁(Pc)在原位肝肿瘤小鼠模型中的生物分布情况,包括活体荧光成像和肝肿瘤的定量结果,并进行了统计学分析,其中,**表示p值<0.01。
图7是实施例3中PMSN以及其他对照组进行联合超声(+US)治疗,实现SDT对肝癌生长情况的实验结果和统计学分析,其中,***表示和不同药物对照组相比p值<0.005,##表示和不加超声对照组相比p值<0.01,###表示和不加超声对照组相比p值<0.005。
图8是实施例4中PMSN负载阿霉素(DPMSN)进行SDT联合治疗引起肿瘤细胞焦亡的实验体外焦亡相关蛋白表达蛋白印迹结果(A)和体内焦亡相关免疫荧光定量结果和统计学分析(B),其中,*表示和不同药物对照组相比p值<0.05,***表示和不同药物对照组相比p值<0.005,#表示和不加超声对照组相比p值<0.05,##表示和不加超声对照组相比p值<0.001。
图9是实施例5中PMSN负载烯丙基肼(PAMSN)在SDT前进行活体荧光成像和超声Bmode成像引导,以及SDT治疗过程中20~120s的超声造影成像和被动空化成像监测的实验结果。
具体实施方式
以下实施例将有助于理解本发明,但并不限制本发明的内容。
实施例1
配置0.002M(pH=8)氨的水溶液10mL,加入0.012M CTAB作为二氧化硅颗粒中形成孔的表面活性剂,充分溶解形成CTAB胶束模板,加入0.022M TMOS作为形成二氧化硅网络的硅烷,加入0.1mmol四磺酸基氢氧化铝酞菁,在30℃水浴下剧烈搅拌过夜。加入21μmolPEG550硅烷和0.525μmol RGD-PEG800硅烷(摩尔比为40∶1),在30℃水浴下剧烈搅拌过夜,使得粒子PEG化,再将温度升至80℃进行老化,并继续静置过夜,将溶液冷却至室温,得到磺酸基铝酞菁共轭介孔二氧化硅纳米粒子(PMSN)。以上纳米粒子的形成过程中,均通过动态光散射进行监测。磺酸基铝酞菁共轭介孔二氧化硅纳米粒子通过透析膜管透析,在酸溶液(去离子水∶乙醇∶乙酸=1∶1∶0.007,体积比)中透析24小时,换透析液重复3次以去除CTAB模板,并平衡溶液酸碱性。其次,在去离子水中透析24小时,换水重复3次,以去除游离的酞菁。用注射器过滤器和超滤离心管纯化以除去硅烷的聚集体,用制备级的Superdex 200凝胶柱,通过凝胶渗透色谱法进一步纯化,最终得到水合粒径小于10纳米粒径、平均3纳米孔径的纳米粒子溶液样品(见图3),并且通过27Al和29Si的固体核磁共振谱结果,与无酞菁共轭的超小介孔二氧化硅纳米粒子(MSN)对比,证明酞菁通过Al-O-Si共价键连接于二氧化硅网络中(见图4)。利用商品化的单线态氧探针SOSG,通过多功能酶标仪检测氧化的SOSG荧光强度,比较PMSN和不同对照组样品在SDT作用下产生ROS的效果,其中,对照组包括:磷酸盐缓冲液(PBS),四磺酸基氯化铝酞菁(Pc),实心结构的超小酞菁共轭二氧化硅纳米粒子(PSNP)和PMSN,Pc和纳米粒子中的Pc浓度均为1μM,结果证明PMSN具有更高的ROS产率(见图5)。
实施例2
在一定参数(Ex=660nm,Em=710nm,曝光时间=2s)下,使活体成像系统进行荧光成像实验和分析。对原位肝癌荷瘤小鼠静脉注射入游离酞菁(Pc)或实施例1中制备的超小酞菁介孔二氧化硅纳米粒子(PMSN)(1μM Pc,100μL)。在注射后的不同时间点获得小鼠的荧光图像。动态观测游离的Pc分子和纳米粒子在肿瘤部位的富集。注射24小时后,解剖小鼠,获取心肝脾肺肾和肿瘤组织,进行离体荧光图像拍摄。结合软件自带的定量处理功能,来分析纳米粒子的小鼠体内的分布。结果如图6所示,用PMSN处理的小鼠,在肿瘤部位表现出强烈的荧光,并且随着时间的推移而增加,在静脉注射后约4小时达到最大浓度。然后随着血液从肿瘤中清除而逐渐下降。相反,由于体内循环时间短和血液清除速度快,而Pc组的小鼠在肿瘤中有一定程度的富集,但是仅呈现微弱的荧光信号,且周围正常肝脏组织依然有荧光信号。并且根据定量结果显示,PMSN在4小时到达最大富集浓度时,与Pc在肿瘤中的浓度中存在显著性差异。
实施例3
采用标记了荧光素酶的肝癌原位荷瘤雄性BALB/c裸鼠为肿瘤模型,通过给小鼠腹腔注射荧光素酶底物以及生物发光成像观察测量,待肿瘤的生物发光强度达到~105photon/sec/cm2/sr后进行分组,然后通过尾静脉注射100μL不同药物:PBS,Pc,MSN,PSNP和PMSN,其中,Pc和纳米粒子中的Pc浓度均为10μM。分别对比施加超声作用,每2天一次,共3次。在实验过程中,将不同组别的每只小鼠分别标记,通过生物发光对肿瘤大小进行定量。从各个不同药物处理的小鼠组间进行对比,如图7所示,经过35天的观察,治疗组的生物发光信号明显减弱。
实施例4
PMSN介导的声动力产生ROS,可以引起有效的细胞焦亡,而在安全的超声剂量范围内,利用负载化疗药物阿霉素的PMSN(DPMSN)和SDT的协同作用,能够诱导更严重的细胞焦亡,并引起肿瘤微环境的免疫响应性,从而进一步抑制肿瘤生长。对肿瘤细胞和小鼠肿瘤给予不同药物:PBS,Pc,MSN,PSNP,PMSN和DPMSN,施加超声进行SDT,并对结果进行对比。体外细胞实验的蛋白印迹结果显示,PMSN和DPMSN可以提高Caspase3/GSDME和Caspase4/GSDMD通路的焦亡相关蛋白表达,并利用末端标记法(TUNEL)和Caspase 4抗体对不同药物处理后的小鼠肿瘤进行免疫荧光染色,结果发现PMSN和DPMSN介导的SDT可以诱导并促进肿瘤细胞的焦亡,且焦亡比例超过15%,而DPMSN介导的SDT作用更显著(图8)。
实施例5
负载烯丙基肼的PMSN(PAMSN),可以在声动力产生活性氧的作用下,氧化成2-丙烯基二氮烯,并自发地进行Retro-ene反应以生成形成氮气分子,这些与组织介质成分不同的气泡会在超声作用时,改变声阻抗性质,从而被超声信号检测到。另外,SDT过程中的聚焦超声的作用下,这些气泡可以作为空化核,产生惯性空化效应爆破,其空化信号也可以被超声探头接收并检测。结果如图9显示,PAMSN可以提高小鼠活体荧光成像效果,并通过荧光成像和超声B mode成像引导进行声动力治疗,通过增强超声造影成像、超声被动空化成像的信号强度以检测SDT的治疗过程。

Claims (7)

1.一种超小酞菁共轭介孔二氧化硅纳米粒子,是通过溶胶-凝胶反应在水溶液中自组装形成的具有小于10纳米水合粒径的酞菁共轭介孔二氧化硅纳米粒子,该纳米粒子具有表面亲水、内部疏水的介孔壳层,其组成包括具有金属络合的酞菁或其衍生物和介孔二氧化硅骨架网络,并且在介孔壳层表面具有靶向配体和聚乙二醇修饰;其中所述具有金属络合的酞菁或其衍生物的结构源于如下式I所示化合物:
式I中,M代表金属元素;R代表氢、卤素、羟基或磺酸基;式I所示化合物通过M-OH和硅烷的凝胶-溶胶反应,轴向偶联于介孔二氧化硅骨架网络中;
所述超小酞菁共轭介孔二氧化硅纳米粒子的制备方法包括以下步骤:
1)配置0.002~0.008M氨的水溶液,加入表面活性剂作为二氧化硅颗粒中形成孔的模板剂,在氨的水溶液中充分溶解形成大小为1~5纳米的胶束模板;其中所述表面活性剂为溴化十六烷基三甲铵;
2)加入硅烷和酞菁络合物,在20~40℃水浴下搅拌0.5~24小时;然后加入聚乙二醇硅烷和靶向配体修饰的聚乙二醇硅烷,在20~40℃水浴下搅拌0.5~24小时,使得纳米粒子被聚乙二醇修饰;再将温度升至25~90℃进行老化,并继续静置过夜,形成酞菁共轭介孔二氧化硅纳米粒子;其中,硅烷的摩尔浓度为0.011~0.043M,酞菁络合物的用量以质量计为硅烷质量的1%~10%,硅烷∶模板剂∶聚乙二醇硅烷的摩尔比为1:(0.25~1):(0.1~0.75),靶向配体修饰的聚乙二醇硅烷和聚乙二醇硅烷的摩尔比为1∶80~1∶20;其中,所述硅烷选自四甲氧基硅烷、四乙氧基硅烷、三乙氧基硅烷、三甲基乙氧基硅烷、(3-氨基丙基)三乙氧基硅烷、3-巯丙基三甲氧基硅烷中的一种或多种,所述酞菁络合物为式I所示的化合物;
3)将溶液冷却至室温,透析、纯化,得到所述酞菁共轭介孔二氧化硅纳米粒子。
2.如权利要求1所述的超小酞菁共轭介孔二氧化硅纳米粒子,其特征在于,式I中M为铝、镓、锰或铱。
3.如权利要求1所述的超小酞菁共轭介孔二氧化硅纳米粒子,其特征在于,介孔壳层表面的聚乙二醇修饰是通过将分子量为500~3000的聚乙二醇硅烷与介孔二氧化硅骨架反应连接到其表面的;介孔壳层表面的靶向配体是通过将靶向配体修饰的分子量为500~3000的聚乙二醇硅烷与介孔二氧化硅骨架反应连接到其表面的。
4.如权利要求3所述的超小酞菁共轭介孔二氧化硅纳米粒子,其特征在于,所述靶向配体选自叶酸、精氨酸-甘氨酸-天冬氨酸、血管内皮生长因子抗体、表皮生长因子抗体。
5.如权利要求1所述的超小酞菁共轭介孔二氧化硅纳米粒子,其特征在于,该纳米粒子还包括通过静电力作用负载于酞菁共轭的介孔二氧化硅网络中的小分子药物。
6.如权利要求1所述的超小酞菁共轭介孔二氧化硅纳米粒子,其特征在于,步骤3)先在酸性的乙醇-水溶液中透析,换透析液重复透析多次以去除胶束模板,并平衡溶液酸碱性;然后在去离子水中透析多次,以去除游离的酞菁络合物;再进行过滤纯化,进一步通过凝胶渗透色谱法去除硅烷聚集体,得到所述酞菁共轭介孔二氧化硅纳米粒子。
7.权利要求1~6任一所述的超小酞菁共轭介孔二氧化硅纳米粒子作为声敏剂在制备肿瘤治疗药物中的应用,所述肿瘤为肝癌。
CN202210921159.1A 2022-08-02 2022-08-02 超小酞菁共轭介孔二氧化硅纳米粒子及其作为声敏剂的应用 Active CN115364211B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210921159.1A CN115364211B (zh) 2022-08-02 2022-08-02 超小酞菁共轭介孔二氧化硅纳米粒子及其作为声敏剂的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210921159.1A CN115364211B (zh) 2022-08-02 2022-08-02 超小酞菁共轭介孔二氧化硅纳米粒子及其作为声敏剂的应用

Publications (2)

Publication Number Publication Date
CN115364211A CN115364211A (zh) 2022-11-22
CN115364211B true CN115364211B (zh) 2023-12-22

Family

ID=84063337

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210921159.1A Active CN115364211B (zh) 2022-08-02 2022-08-02 超小酞菁共轭介孔二氧化硅纳米粒子及其作为声敏剂的应用

Country Status (1)

Country Link
CN (1) CN115364211B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116925311A (zh) * 2023-09-15 2023-10-24 厦门凯纳石墨烯技术股份有限公司 一种碳纳米管/酞菁复合材料、制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038659A2 (en) * 2007-09-14 2009-03-26 Health Research, Inc. Organically modified silica nanoparticles with covalently incorporated photosensitizers for drug delivery in photodynamic therapy
CN106551904A (zh) * 2015-09-18 2017-04-05 天津医科大学 靶向肿瘤的声、光动力载药纳米胶束及其制备方法和用途
CN114209827A (zh) * 2021-11-22 2022-03-22 中国科学院苏州生物医学工程技术研究所 用于肿瘤治疗的卟啉掺杂介孔二氧化硅纳米粒子
CN114209852A (zh) * 2021-12-30 2022-03-22 华南理工大学 一种声响应型载药棒状介孔硅及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038659A2 (en) * 2007-09-14 2009-03-26 Health Research, Inc. Organically modified silica nanoparticles with covalently incorporated photosensitizers for drug delivery in photodynamic therapy
CN106551904A (zh) * 2015-09-18 2017-04-05 天津医科大学 靶向肿瘤的声、光动力载药纳米胶束及其制备方法和用途
CN114209827A (zh) * 2021-11-22 2022-03-22 中国科学院苏州生物医学工程技术研究所 用于肿瘤治疗的卟啉掺杂介孔二氧化硅纳米粒子
CN114209852A (zh) * 2021-12-30 2022-03-22 华南理工大学 一种声响应型载药棒状介孔硅及其制备方法与应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Phthalocyanine iron nanodots for combined chemodynamic-sonodynamic cancer therapy;Yuehan Gong等;《Science China Materials》;第65卷(第9期);2600-2608 *
Use of a novel sonosentitizer in sonodynamic therapy of U251 glioma cells in vitro;Zhiqiang Chen等;《Experimental and Therapeutic Medicine》;第3卷(第2期);273-278 *
稀土金属掺杂的空心二氧化硅的功能化修饰及其在肿瘤诊疗中的应用;王研科;《中国优秀硕士学位论文全文数据库电子期刊》;E072-24 *

Also Published As

Publication number Publication date
CN115364211A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
Li et al. Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer
Rabiee et al. Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy
Niculescu Mesoporous silica nanoparticles for bio-applications
Fan et al. A smart upconversion-based mesoporous silica nanotheranostic system for synergetic chemo-/radio-/photodynamic therapy and simultaneous MR/UCL imaging
Han et al. Therapeutic mesopore construction on 2D Nb2C MXenes for targeted and enhanced chemo-photothermal cancer therapy in NIR-II biowindow
Fei et al. Targeted GSH-exhausting and hydroxyl radical self-producing manganese–silica nanomissiles for MRI guided ferroptotic cancer therapy
Jin et al. MRI-guided and ultrasound-triggered release of NO by advanced nanomedicine
Xu et al. Group IV nanodots: synthesis, surface engineering and application in bioimaging and biotherapy
Fan et al. Intranuclear biophotonics by smart design of nuclear-targeting photo-/radio-sensitizers co-loaded upconversion nanoparticles
Lu et al. Smart cancer cell targeting imaging and drug delivery system by systematically engineering periodic mesoporous organosilica nanoparticles
Wang et al. Self-assembled nanomaterials for photoacoustic imaging
Cui et al. Theranostic gold cluster nanoassembly for simultaneous enhanced cancer imaging and photodynamic therapy
CN107753946B (zh) 一种适配体修饰的靶向载药纳米粒及其制备方法与应用
Ye et al. Ultrasound-propelled Janus Au NR-mSiO2 nanomotor for NIR-II photoacoustic imaging guided sonodynamic-gas therapy of large tumors
CN108578696B (zh) 一种脂质体微泡载金属-icg自组装复合体系
Niu et al. Photodynamic therapy in hypoxia: near-infrared-sensitive, self-supported, oxygen generation nano-platform enabled by upconverting nanoparticles
CN111558051B (zh) 一种具有快速粘液渗透作用的复合纳米微球及其制备方法和应用
CN111760024A (zh) 一种渗透增强型金纳米簇载药靶向制剂及其制法和应用
CN101618013A (zh) 一种聚焦超声-聚合物胶束可控药物释放装置及其释放方法
Yin et al. Hypoxia-alleviated sonodynamic therapy based on a hybrid protein oxygen carrier to enhance tumor inhibition
CN115364211B (zh) 超小酞菁共轭介孔二氧化硅纳米粒子及其作为声敏剂的应用
CN114209852B (zh) 一种声响应型载药棒状介孔硅及其制备方法与应用
CN111110630B (zh) 跨血脑屏障药物递送体系及其制备方法和应用
CN109106952A (zh) 一种靶向治疗恶性淋巴瘤的载药纳米粒的制备方法
Ni et al. Tuning nanosiliceous framework for enhanced cancer theranostic applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant