CN115360029B - 一种MXenes/沥青复合电极材料的制备方法 - Google Patents

一种MXenes/沥青复合电极材料的制备方法 Download PDF

Info

Publication number
CN115360029B
CN115360029B CN202211029777.1A CN202211029777A CN115360029B CN 115360029 B CN115360029 B CN 115360029B CN 202211029777 A CN202211029777 A CN 202211029777A CN 115360029 B CN115360029 B CN 115360029B
Authority
CN
China
Prior art keywords
mxees
composite electrode
electrode material
asphalt
asphalt composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211029777.1A
Other languages
English (en)
Other versions
CN115360029A (zh
Inventor
李开喜
王宁
管涛涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Institute of Coal Chemistry of CAS
Original Assignee
Shanxi Institute of Coal Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi Institute of Coal Chemistry of CAS filed Critical Shanxi Institute of Coal Chemistry of CAS
Priority to CN202211029777.1A priority Critical patent/CN115360029B/zh
Publication of CN115360029A publication Critical patent/CN115360029A/zh
Application granted granted Critical
Publication of CN115360029B publication Critical patent/CN115360029B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明属于超级电容器电极材料制备技术领域,具体涉及一种MXenes/沥青复合电极材料的制备方法。该方法利用偶联剂与沥青基二维碳纳米片和二维MXene之间的π‑π*相互作用和氢键作用进行自组装来制备MXenes/沥青复合电极。通过自组装有效地防止了碳纳米片和MXene的重堆叠,大大增加了层间距,加速了电解质离子的扩散,提供了更多的电化学活性位点。本发明制得的MXenes/沥青复合电极材料具有更强的结合力和更高的稳定性,不需要添加模板剂,结构可控,电化学性能优异。

Description

一种MXenes/沥青复合电极材料的制备方法
技术领域
本发明属于超级电容器电极材料制备技术领域,特别涉及一种MXenes/沥青复合电极材料的制备方法。
背景技术
超级电容器因其功率密度高、充放电速率高、循环寿命长、稳定性优异、环境友好、安全可靠等优点,在便携式移动电子设备、柔性可穿戴设备、混合动力汽车、能量采集等诸多领域得到了广泛的关注和应用。然而,在高功率密度下由于电极的氧化还原反应效率低和电极动力学迟缓,仍然存在能量密度不理想的问题。因此,开发一种具有独特电学性质和良好控制孔结构的有助于加快离子和电子传输的电极材料,成为超级电容器发展的关键。
二维过渡金属碳化物和氮化物(也称为MXene)因其独特的结构和可调的表面化学而具有的超高的金属导电性,强亲水性,高的体积比电容和优异的机械性能等特性,在超级电容器领域引起了人们广泛的兴趣。然而,由于强大的范德华力,MXene片层不可避免地发生团聚和重堆积,导致电化学活性中心的严重损失,极大地限制了其质量比电容。YuryGogotsi等(Yury Gogotsi,et al.,Two-Dimensional Nanocrystals Produced byExfoliation of Ti3AlC2,Adv.Mater.,2011,23(37):4248-4253)首先利用HF将Ti3AlC2中的Al刻蚀掉,制备出片层状MXene,该工艺简单易实现,但是材料的质量比电容很低。
碳材料作为超级电容器的电极材料,具有比表面积大、导电性好、化学稳定性好、成本低等优点,受到了广泛的关注。因此,可制备基于MXene/碳的复合材料来有效缓解MXene片层堆积,提高其电化学性能。中国发明专利CN106185937A“一种碳纳米颗粒/二维层状碳化钛复合材料的制备方法”中的MAX相经过氢氟酸刻蚀及超声得到MXene(Ti3C2/Ti2C),经过真空浸渍及水热等步骤处理MXene(Ti3C2/Ti2C)和单糖,使碳纳米颗粒在MXene(Ti3C2/Ti2C)材料层间和表面生成,得到碳纳米颗粒/二维层状碳化钛复合材料。中国发明专利CN106981667A“一种二维碳化钛/碳纳米管负载铂颗粒复合材料的制备方法”利用HF刻蚀Ti3AlC2中的Al制备二维碳化钛,采用溶剂热法使二维碳化钛与MWNTs相结合,同时负载铂纳米颗粒制备了Ti3C2/MWNTs-Pt纳米复合材料。中国发明专利CN112695461A“一种应用于锂离子电池的MXene材料隔膜的制备方法”通过盐酸和LiF刻蚀Ti3AlC2以及超声改性得到分层Ti3C2,与氧化石墨烯和聚偏氟乙烯复合,高压电纺,辊压最后得到MXene材料隔膜。Sun等(LiSun,et al.,MXene/N-Doped Carbon Foam with Three-Dimensional Hollow Neuron-like Architecture for Freestanding,Highly Compressible All Solid-StateSupercapacitors,ACS Appl.Mater.Interfaces,2020,12:44777-44788)通过将三聚氰胺甲醛树脂在MXene溶液中浸渍以完全且均匀地填充,然后经过冷冻干燥及热解后,获得MXene/NCF复合材料。以上多孔碳材料无论是碳纳米颗粒、碳纳米管、石墨烯还是碳泡沫,无论是零维、一维、二维还是三维,均通过简单的物理过程进行复合,在制备复合材料时多孔碳与MXene之间的键合作用和界面结合性的研究未见报道。
发明内容
本发明的目的在于克服上述现有技术的不足之处,提供一种MXenes/沥青复合电极材料的制备方法,该方法利用偶联剂与沥青基二维碳纳米片和二维MXene之间的π-π*相互作用和氢键作用进行自组装来制备MXenes/沥青复合电极,通过自组装有效地防止了碳纳米片和MXene的重堆叠,大大增加了层间距,加速了电解质离子的扩散,提供了更多的电化学活性位点。本发明制得的MXenes/沥青复合电极材料具有更强的结合力和更高的稳定性,不需要添加模板剂,结构可控,电化学性能优异。
为实现上述目的,本发明是通过以下技术方案来实现:
本发明提供了一种MXenes/沥青复合电极材料的制备方法,包括如下步骤:
步骤1:将改性沥青和表面活性剂混合后进行水热反应,干燥,得到沥青基碳纳米片前驱体;
步骤2:将MAX相加入刻蚀剂HF中,恒温搅拌,洗涤离心,冷冻干燥,得到混合物A;
步骤3:将混合物A分散于去离子水中,再加入抗氧化剂,并鼓入氩气,再将分散液进行水插层,在一定温度下冷冻后,室温下自然解冻,重复上述冻融过程,最后一次融化后冰浴超声,离心取上清液,冷冻干燥,得到MXenes;
步骤4:将偶联剂溶于去离子水中,加入沥青基碳纳米片前驱体与MXenes,搅拌至均匀分散后,冷冻干燥,得到混合物B;
步骤5:将混合物B进行碳化,自然冷却,洗涤,干燥,得到所述MXenes/沥青复合电极材料。
作为优选,所述步骤1中改性沥青是采用浓硝酸与浓硫酸的混合物处理得到。
作为优选,所述步骤2中表面活性剂为聚醚F127、聚醚P123、十二烷基磺酸钠、十六烷基三甲基溴化铵中的一种。
作为优选,所述步骤2中改性沥青与表面活性剂的质量比为1:1~4:1。
作为优选,所述步骤2中水热反应的条件为:温度为80~150℃,时间为16~48h。
作为优选,所述步骤3中MAX相包括但不限于Ti3AlC2、Ti3SiC2、Ti2AlC、Ta2AlC、Nb2AlC、V2AlC、Ti4AlN3、Ta4AlC3、Nb4AlC3、V4AlC3中的任意一种或任意组合的混合物;MAX相的目数为300~500目。
作为优选,所述步骤4中抗氧化剂包括但不限于抗坏血酸、丁基羟基茴香醚、二丁基羟基甲苯、叔丁基对苯二酚、亚硫酸钠、硫代硫酸钠。
作为优选,所述步骤4中冻融过程循环次数为3~5次。
作为优选,所述步骤5中偶联剂为具有氨基、羟基或羧基的芳烃,包括但不限于苯胺、对苯二胺、邻苯二胺、间苯二胺、萘二胺、氨基蒽、对氨基苯酚、对苯二酚、萘二酚、对苯二甲酸、萘二甲酸。
作为优选,所述步骤5中偶联剂浓度为0.1~1mM,沥青基碳纳米片前驱体与MXenes的质量比为1:1~5:1。
作为优选,所述步骤6中碳化的条件为:温度为700~900℃,时间为1~2h。
与现有技术相比,本发明的有益效果如下:
(1)本发明采用具有氧化还原活性的偶联剂作为“桥梁”,分别通过π-π*相互作用和氢键将富sp2碳原子的沥青和MXenes连接起来,有效避免MXenes在制备过程中发生氧化。
(2)本发明采用的具有氧化还原活性的偶联剂附着在二维材料表面的分子层上,每个偶联剂分子都可以通过法拉第过程来储存能量以引入额外的赝电容。
(3)本发明制备的产品结构可控,不需要添加模板剂,制备出的MXenes/沥青复合电极材料作为超级电容器电极具有良好的形貌,展现出优异的是电化学性能。
附图说明
图1为本发明MXenes/沥青复合材料电极的SEM图;
图2为本发明MXenes/沥青复合材料电极的CV曲线;
图3为本发明MXenes/沥青复合材料电极的GCD曲线;
图4为本发明MXenes/沥青复合材料电极的循环稳定性曲线。
具体实施方式
以下所述实例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但并不限制本发明专利的保护范围,凡采用等同替换或等效变换的形式所获得的技术方案,均应落在本发明的保护范围之内。
实施例1
步骤1:将干燥的煤焦油沥青粉末加入浓硝酸和浓硫酸的混合物(浓硝酸和浓硫酸的体积比为3:7)中,80℃恒温水浴搅拌3h,离心分离收集沉淀,先后加入1mol/L氢氧化钠溶液和1mol/L稀盐酸,离心分离收集溶于氢氧化钠而不溶于稀盐酸的黑棕色沉淀,反复洗涤、干燥得到改性沥青;
步骤2:将1g改性沥青和0.5g聚醚F127在剧烈搅拌下溶解在50ml去离子水中,将混合物放入密封的高压釜中进行水热反应,100℃下保持24h,产物真空干燥,得到沥青基碳纳米片前驱体;
步骤3:将1g 400目的Ti3AlC2加入20ml质量浓度为40%的HF中,35℃恒温搅拌24h,反复洗涤离心,冷冻干燥,得到混合物A;
步骤4:称取1g混合物A分散于20ml去离子水中,同时加入1mmol抗坏血酸,并鼓入氩气,将分散液置于4℃中进行水插层,然后-20℃冷冻,室温下自然解冻,重复上述冻融过程5次,最后一次融化后冰浴超声1h,离心取上清液,冷冻干燥,得到MXenes;
步骤5:将0.004mmol萘二胺溶于20ml去离子水中,然后加入1g沥青基碳纳米片前驱体、0.5g MXenes,搅拌12h至均匀分散后,冷冻干燥,得到混合物B;
步骤6:将1g混合物B直接置于700℃碳化1h,自然冷却至室温,样品反复洗涤,真空干燥,得到所述MXenes/沥青复合电极材料。
将上述制得的MXenes/沥青复合电极材料进行电化学性能测试,具体测试过程如下:将MXenes/沥青复合电极材料、乙炔黑、偏二氟乙烯(质量比8:1:1)制成的料浆均匀涂覆在泡沫镍上制成电极片,分别在6M KOH电解液和1M Na2SO4电解液中采用三电极体系和二电极体系进行测试。
本实施例制备的MXenes/沥青复合电极材料具有独特的堆叠二维纳米片结构(如图1所示),为电荷运输提供了全局导电的sp2碳网络,并缩短了扩散距离。由图2可知,本实施例制备的MXenes/沥青复合电极材料在6M KOH电解液中的CV曲线在不同扫描速率下均出现了一对明显的氧化还原峰,与电极表面具有氧化还原活性的小分子的氧化还原反应有关。如图3所示,不同电流密度下的GCD曲线显示为非严格线性三角形,这归因于其赝电容行为。电流密度为1Ag-1时,比电容高达298F g-1。本实施例制备的超级电容器电极不仅具有高的比电容,而且电化学稳定性优异,超过5000次循环后其电容保持率接近100%(如图4所示)。
实施例2
本实施例是实施例1的变化例,变化之处仅在于:步骤1中将1g煤焦油沥青粉末替换为2g石油沥青粉末;步骤5中将0.004mmol偶联剂萘二胺替换为0.01mmol萘二甲酸。
将上述制得的MXenes/沥青复合电极材料进行电化学性能测试,具体测试过程与实施例1相同。电流密度1A/g时其比电容为238F/g。
实施例3
本实施例是实施例1的变化例,变化之处仅在于:步骤2中将0.5g表面活性剂聚醚F127替换为1g表面活性剂十二烷基磺酸钠;步骤4中将抗坏血酸替换为叔丁基对苯二酚。
将上述制得的MXenes/沥青复合电极材料进行电化学性能测试,具体测试过程与实施例1相同。电流密度1A/g时其比电容为274F/g。
实施例4
本实施例是实施例1的变化例,变化之处仅在于:步骤2中将0.5g聚醚F127替换为0.25g十六烷基三甲基溴化铵;步骤2中水热反应温度为150℃,水热反应时间为16h;步骤5中将0.004mmol偶联剂萘二胺替换为0.02mmol萘二甲酸。
将上述制得的MXenes/沥青复合电极材料进行电化学性能测试,具体测试过程与实施例1相同。电流密度1A/g时其比电容为255F/g。
实施例5
本实施例是实施例1的变化例,变化之处仅在于:步骤3中将400目Ti3AlC2替换为300目Ti2AlC;步骤4中将抗坏血酸替换为硫代硫酸钠。
将上述制得的MXenes/沥青复合电极材料进行电化学性能测试,具体测试过程与实施例1相同。电流密度1A/g时其比电容为269F/g。
实施例6
本实施例是实施例1的变化例,变化之处仅在于:步骤3中将400目Ti3AlC2替换为500目Nb4AlC3;步骤4中将抗坏血酸替换为二丁基羟基甲苯。
将上述制得的MXenes/沥青复合电极材料进行电化学性能测试,具体测试过程与实施例1相同。电流密度1A/g时其比电容为272F/g。
实施例7
本实施例是实施例1的变化例,变化之处仅在于:步骤2中水热反应温度为80℃,水热反应时间为48h;步骤4中将抗坏血酸替换为丁基羟基茴香醚;步骤4中冻融过程循环5次替换为3次。
将上述制得的MXenes/沥青复合电极材料进行电化学性能测试,具体测试过程与实施例1相同。电流密度1A/g时其比电容为261F/g。
实施例8
本实施例是实施例1的变化例,变化之处仅在于:步骤3中将Ti3AlC2替换为Ti3SiC2;步骤4中将抗坏血酸替换为亚硫酸钠;步骤5中将0.5g MXenes替换为0.2g MXenes。
将上述制得的MXenes/沥青复合电极材料进行电化学性能测试,具体测试过程与实施例1相同。电流密度1A/g时其比电容为258F/g。
实施例9
本实施例是实施例1的变化例,变化之处仅在于:步骤3中将Ti3AlC2替换为V2AlC;步骤5中将0.004mmol偶联剂萘二胺替换为0.002mmol对苯二胺;步骤5中将0.5g MXenes替换为1g MXenes。
将上述制得的MXenes/沥青复合电极材料进行电化学性能测试,具体测试过程与实施例1相同。电流密度1A/g时其比电容为266F/g。
实施例10
本实施例是实施例1的变化例,变化之处仅在于:步骤5中将0.004mmol偶联剂萘二胺替换为0.01mmol对氨基苯酚;步骤5中碳化温度为900℃,碳化时间为1h。
将上述制得的MXenes/沥青复合电极材料进行电化学性能测试,具体测试过程与实施例1相同。电流密度1A/g时其比电容为302F/g。
实施例11
本实施例是实施例1的变化例,变化之处仅在于:步骤3中将Ti3AlC2替换为Ti4AlN3;步骤5中将1g沥青基碳纳米片前驱体替换为0.5g沥青基碳纳米片前驱体。
将上述制得的MXenes/沥青复合电极材料进行电化学性能测试,具体测试过程与实施例1相同。电流密度1A/g时其比电容为272F/g。
实施例12
本实施例是实施例1的变化例,变化之处仅在于:步骤3中将Ti3AlC2替换为Ta4AlC3;步骤5中将碳化温度700℃为800℃,碳化时间为2h。
将上述制得的MXenes/沥青复合电极材料进行电化学性能测试,具体测试过程与实施例1相同。电流密度1A/g时其比电容为258F/g。
本发明尚有多种实施方式,本发明的权利要求范围并不仅仅局限于前述具体实施方式,凡采用等效变换而形成的所有技术方案,均在本发明的保护范围之内。

Claims (10)

1.一种MXenes/沥青复合电极材料的制备方法,其特征在于:包括如下步骤:
步骤1:将改性沥青和表面活性剂混合后进行水热反应,干燥,得到沥青基碳纳米片前驱体;
步骤2:将MAX相加入刻蚀剂HF中,恒温搅拌,洗涤离心,冷冻干燥,得到混合物A;
步骤3:将混合物A分散于去离子水中,再加入抗氧化剂,并鼓入氩气,再将分散液进行水插层,在一定温度下冷冻后,室温下自然解冻,重复上述冻融过程,最后一次融化后冰浴超声,离心取上清液,冷冻干燥,得到MXenes;
步骤4:将偶联剂溶于去离子水中,加入沥青基碳纳米片前驱体与MXenes,搅拌至均匀分散后,冷冻干燥,得到混合物B;
步骤5:将混合物B进行碳化,自然冷却,洗涤,干燥,得到所述MXenes/沥青复合电极材料。
2.根据权利要求1所述的一种MXenes/沥青复合电极材料的制备方法,其特征在于:所述步骤1中改性沥青是采用浓硝酸与浓硫酸的混合物处理得到。
3.根据权利要求1所述的一种MXenes/沥青复合电极材料的制备方法,其特征在于:所述步骤1中表面活性剂为聚醚F127、聚醚P123、十二烷基磺酸钠、十六烷基三甲基溴化铵中的一种。
4. 根据权利要求1所述的一种MXenes/沥青复合电极材料的制备方法,其特征在于:所述步骤1中改性沥青与表面活性剂的质量比为1:1 ~ 4:1。
5. 根据权利要求1所述的一种MXenes/沥青复合电极材料的制备方法,其特征在于:所述步骤1中水热反应的条件为:温度为80 ~ 150℃,时间为16 ~ 48 h。
6. 根据权利要求1所述的一种MXenes/沥青复合电极材料的制备方法,其特征在于:所述步骤2中MAX相包括Ti3AlC2、Ti3SiC2、Ti2AlC、Ta2AlC、Nb2AlC、V2AlC、Ti4AlN3、Ta4AlC3、Nb4AlC3、V4AlC3中的任意一种或任意组合的混合物;MAX相的目数为300 ~ 500目。
7. 根据权利要求1所述的一种MXenes/沥青复合电极材料的制备方法,其特征在于:所述步骤3中抗氧化剂包括抗坏血酸、丁基羟基茴香醚、二丁基羟基甲苯、叔丁基对苯二酚、亚硫酸钠或硫代硫酸钠;所述步骤4中冻融过程循环次数为3 ~ 5次。
8.根据权利要求1所述的一种MXenes/沥青复合电极材料的制备方法,其特征在于:所述步骤4中偶联剂为具有氨基、羟基或羧基的芳烃,包括苯胺、对苯二胺、邻苯二胺、间苯二胺、萘二胺、氨基蒽、对氨基苯酚、对苯二酚、萘二酚、对苯二甲酸或萘二甲酸。
9. 根据权利要求1所述的一种MXenes/沥青复合电极材料的制备方法,其特征在于:所述步骤4中偶联剂浓度为0.1 ~ 1 mM,沥青基碳纳米片前驱体与MXenes的质量比为1:1 ~5:1。
10. 根据权利要求1所述的一种MXenes/沥青复合电极材料的制备方法,其特征在于:所述步骤5中碳化的条件为:温度为700 ~ 900℃,时间为1 ~ 2 h。
CN202211029777.1A 2022-10-20 2022-10-20 一种MXenes/沥青复合电极材料的制备方法 Active CN115360029B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211029777.1A CN115360029B (zh) 2022-10-20 2022-10-20 一种MXenes/沥青复合电极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211029777.1A CN115360029B (zh) 2022-10-20 2022-10-20 一种MXenes/沥青复合电极材料的制备方法

Publications (2)

Publication Number Publication Date
CN115360029A CN115360029A (zh) 2022-11-18
CN115360029B true CN115360029B (zh) 2024-02-06

Family

ID=84005069

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211029777.1A Active CN115360029B (zh) 2022-10-20 2022-10-20 一种MXenes/沥青复合电极材料的制备方法

Country Status (1)

Country Link
CN (1) CN115360029B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108892138A (zh) * 2018-07-24 2018-11-27 江西理工大学 一种基于生物质衍生氮/氧共掺杂多级孔结构碳材料及其制备方法
CN111117005A (zh) * 2019-12-31 2020-05-08 哈尔滨工业大学 一种3D石墨烯纳米带-MXene-橡胶复合母胶的制备方法
CN111211315A (zh) * 2020-02-26 2020-05-29 中国科学院山西煤炭化学研究所 一种沥青基片层碳材料及其制备方法和应用
CN114276743A (zh) * 2021-11-09 2022-04-05 河南工程学院 MXene和碳纳米管协同改性聚氨酯防腐涂料及其制备方法和施工工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108892138A (zh) * 2018-07-24 2018-11-27 江西理工大学 一种基于生物质衍生氮/氧共掺杂多级孔结构碳材料及其制备方法
CN111117005A (zh) * 2019-12-31 2020-05-08 哈尔滨工业大学 一种3D石墨烯纳米带-MXene-橡胶复合母胶的制备方法
CN111211315A (zh) * 2020-02-26 2020-05-29 中国科学院山西煤炭化学研究所 一种沥青基片层碳材料及其制备方法和应用
CN114276743A (zh) * 2021-11-09 2022-04-05 河南工程学院 MXene和碳纳米管协同改性聚氨酯防腐涂料及其制备方法和施工工艺

Also Published As

Publication number Publication date
CN115360029A (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
Zou et al. One-pot synthesis of ternary polypyrrole⿿ Prussian-blue⿿ graphene-oxide hybrid composite as electrode material for high-performance supercapacitors
Yan et al. Enhanced supercapacitive performance of delaminated two-dimensional titanium carbide/carbon nanotube composites in alkaline electrolyte
Liu et al. Three-dimensional and stable polyaniline-grafted graphene hybrid materials for supercapacitor electrodes
CN102239114B (zh) 石墨烯和氧化石墨烯气凝胶
Zhu et al. Reduced graphene oxide–nickel oxide composite as high performance electrode materials for supercapacitors
Chen et al. Al and Co co-doped α-Ni (OH) 2/graphene hybrid materials with high electrochemical performances for supercapacitors
Mateen et al. Metal-organic framework-derived walnut-like hierarchical Co-O-nanosheets as an advanced binder-free electrode material for flexible supercapacitor
He et al. Hydrothermal synthesis of Ni-based metal organic frameworks/graphene oxide composites as supercapacitor electrode materials
CN102568853A (zh) 一种基于垂直取向石墨烯的超级电容器电极及其制作方法
Chen et al. Facile self-assembly of sandwich-like MXene/graphene oxide/nickel–manganese layered double hydroxide nanocomposite for high performance supercapacitor
CN113860288B (zh) 一种硅-碳-碳纳米管复合负极材料及其制备方法、应用
Han et al. High specific power/energy, ultralong life supercapacitors enabled by cross-cutting bamboo-derived porous carbons
CN106024410A (zh) 一种高容量石墨烯基超级电容器电极材料及其制备方法
CN111627719B (zh) 一种导电聚合物空心球pacp@碳化钛复合材料及其制备方法
Gao et al. Hydrothermal synthesis and electrochemical capacitance of RuO2· xH2O loaded on benzenesulfonic functionalized MWCNTs
Fan et al. High-density oxygen-enriched graphene hydrogels for symmetric supercapacitors with ultrahigh gravimetric and volumetric performance
Liu et al. Properties of polyaniline/ordered mesoporous carbon composites as electrodes for supercapacitors
An et al. Graphene oxide coated polyaminoanthraquinone@ MXene based flexible film electrode for high-performance supercapacitor
CN111883366A (zh) 一种聚吡咯纳米球@碳化钛复合材料及其制备方法和应用
CN109473649B (zh) 一种钠离子电池复合负极材料及其制备方法
Wang et al. 3-aminopropyltriethoxysilane-assisted Si@ SiO 2/CNTs hybrid microspheres as superior anode materials for Li-ion batteries
Zhang et al. Nanocellulose/nitrogen and fluorine co-doped graphene composite hydrogels for high-performance supercapacitors
Wang et al. Heterogeneous activated carbon with graphitized shell and hydrophilic pores integrating high conductivity and pore affinity for excellent rate performance supercapacitors
Zhang et al. Soft fully-printed rGO/Fe2O3-based supercapacitors for wearable electronics
Luo et al. Graphene-controlled FeSe nanoparticles embedded in carbon nanofibers for high-performance potassium-ion batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant