CN115358028B - 一种换热螺旋盘管设计方法及系统 - Google Patents

一种换热螺旋盘管设计方法及系统 Download PDF

Info

Publication number
CN115358028B
CN115358028B CN202211294339.8A CN202211294339A CN115358028B CN 115358028 B CN115358028 B CN 115358028B CN 202211294339 A CN202211294339 A CN 202211294339A CN 115358028 B CN115358028 B CN 115358028B
Authority
CN
China
Prior art keywords
heat exchange
spiral coil
layer
design
layer heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211294339.8A
Other languages
English (en)
Other versions
CN115358028A (zh
Inventor
李加全
廖亭
雷林海
梅莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu New Hengji Special Equipment Co Ltd
Original Assignee
Jiangsu New Hengji Special Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu New Hengji Special Equipment Co Ltd filed Critical Jiangsu New Hengji Special Equipment Co Ltd
Priority to CN202211294339.8A priority Critical patent/CN115358028B/zh
Publication of CN115358028A publication Critical patent/CN115358028A/zh
Application granted granted Critical
Publication of CN115358028B publication Critical patent/CN115358028B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/18Manufacturability analysis or optimisation for manufacturability

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本发明公开了一种换热螺旋盘管设计方法及系统,涉及智能制造设计技术领域,包括:获取当前需换热设备的尺寸信息和换热参数;确定换热螺旋盘管的最小曲率半径;计算换热效率‑螺距、转数的回归模型;计算出目标换热效率;计算出螺旋盘管目标尺寸数据;判断螺旋盘管目标尺寸数据是否大于当前需换热设备的尺寸信息;对于单层换热螺旋盘管无法满足换热需求的情况,则进行交错式双层换热螺旋盘管设计;判断螺旋盘管是否满足换热效率需求。本发明的优点在于,基于当前换热设备的尺寸信息对螺旋盘管的曲率半径进行换热效率‑螺距、转数的回归模型建立,可根据实际的换热需求进行螺旋盘管最优结构设计,可有效的满足各种螺旋盘管式换热系统设计。

Description

一种换热螺旋盘管设计方法及系统
技术领域
本发明涉及智能制造设计技术领域,具体是涉及一种换热螺旋盘管设计方法及系统。
背景技术
螺旋盘管因其独特的结构特征被广泛的应用于各种换热系统中,随着加工制造技术的发展,发展出的交错式双层换热螺旋盘管可用于空间相对更小的环境中,起换热作用。
虽然交错式双层换热螺旋盘管在相同空间内具有着更高的换热效率,但是其加工成本过高,若针对所有设备均进行交错式双层换热螺旋盘管换热,则会极大的提高换热系统的制造成本,然而现有技术中缺乏针对于换热螺旋盘管的设计方法,在针对某一特定的设备运转时的换热结构的设计时无法快速准确判断出采用单层换热螺旋盘管或交错式双层换热螺旋盘管进行换热,极大的提高了换热系统的设计难度,基于此,本方案提出一种换热螺旋盘管设计方法及系统。
发明内容
为解决上述技术问题,提供一种换热螺旋盘管设计方法及系统,本技术方案解决了上述的现有技术中缺乏针对于换热螺旋盘管的设计方法,在针对某一特定的设备运转时的换热结构的设计时无法快速准确判断出采用单层换热螺旋盘管或交错式双层换热螺旋盘管进行换热,极大的提高了换热系统的设计难度的问题。
为达到以上目的,本发明采用的技术方案为:
一种换热螺旋盘管设计方法,包括:
获取当前需换热设备的尺寸信息和换热参数,所述换热参数包括当前需换热设备的无换热运行温度以及当前需换热设备的目标运行温度;
根据当前需换热设备的尺寸信息确定换热螺旋盘管的最小曲率半径;
根据换热螺旋盘管的最小曲率半径以及换热螺旋盘管管径进行分析,计算出换热盘管在最小曲率半径下的换热效率-螺距、转数的回归模型;
根据当前需换热设备的无换热运行温度以及当前需换热设备的目标运行温度,进行计算出满足当前需换热设备的目标运行温度下的目标换热效率;
根据目标换热效率代入换热效率-螺距、转数的回归模型中,进行计算出螺旋盘管目标尺寸数据;
根据螺旋盘管目标尺寸数据与当前需换热设备的尺寸信息,判断螺旋盘管目标尺寸数据是否大于当前需换热设备的尺寸信息,若是,则判定单层换热螺旋盘管无法满足换热需求,若否,则判定单层换热螺旋盘管可以满足换热需求,输出单层换热螺旋盘管设计数据;
对于单层换热螺旋盘管无法满足换热需求的情况,则进行交错式双层换热螺旋盘管设计,并输出交错式双层换热螺旋盘管设计数据;
根据单层换热螺旋盘管设计数据或交错式双层换热螺旋盘管设计数据进行单层换热螺旋盘管建模或交错式双层换热螺旋盘管建模;
进行单层换热螺旋盘管模型或交错式双层换热螺旋盘管模型的热仿真模拟,并根据热仿真模拟结果判断其是否满足换热效率需求,若是,则输出单层换热螺旋盘管设计数据或交错式双层换热螺旋盘管设计数据,若否,则调整单层换热螺旋盘管设计数据或交错式双层换热螺旋盘管设计数据。
优选的,所述换热效率-螺距、转数的回归模型的计算步骤如下:
确定换热介质和介质流速信息;
按照确定的转数梯度和螺距梯度进行换热螺旋盘管的模拟建模,获得多个不同尺寸参数的换热螺旋盘管的样本模型;
根据换热介质参数、介质流速对多个不同尺寸参数的换热螺旋盘管的样本模型进行热交换仿真模拟,获得多个热交换仿真模拟样本数据;
根据多个热交换仿真模拟样本数据进行换热效率-螺距、转数的回归模型的回归系数计算。
优选的,所述进行换热效率-螺距、转数的回归模型的回归系数计算包括:
首先,建立如下模型:
Figure 439282DEST_PATH_IMAGE002
式中,P为换热效率;
n为换热螺旋盘管的转数;
z为换热螺旋盘管的螺距;
a、b均为系数;
之后,根据多个热交换仿真模拟样本数据对系数a、b进行最大似然计算,获得换热效率-螺距、转数的回归模型的回归系数
Figure 169471DEST_PATH_IMAGE004
、/>
Figure 11525DEST_PATH_IMAGE006
优选的,所述计算出螺旋盘管目标尺寸数据包括:
获取目标换热效率,则需满足:
Figure 983898DEST_PATH_IMAGE008
不等式1
式中,
Figure 1533DEST_PATH_IMAGE010
为目标换热效率;
获取满足不等式1的所有n、z的值;
根据满足不等式1的所有n、z的值进行计算螺旋盘管目标长度范围。
优选的,所述螺旋盘管目标长度的计算方法为:
Figure 151892DEST_PATH_IMAGE012
式中,
Figure 231974DEST_PATH_IMAGE014
为螺旋盘管目标长度;
Figure 227612DEST_PATH_IMAGE016
为满足不等式1的所有转数值n;/>
Figure 473654DEST_PATH_IMAGE018
为满足不等式1的所有螺距值z。
优选的,所述判断螺旋盘管目标尺寸数据是否大于当前需换热设备的尺寸信息具体为:
获取当前需换热设备的高度
Figure 60494DEST_PATH_IMAGE020
,判断/>
Figure 362293DEST_PATH_IMAGE022
的范围内的最大值是否大于/>
Figure 427201DEST_PATH_IMAGE020
,若是,则单层螺旋管结构无法满足换热需求,若否,则判定单层换热螺旋盘管可以满足换热需求,则进行单层换热螺旋盘管的尺寸设计。
其中,所述单层换热螺旋盘管的尺寸设计具体包括:
在满足
Figure 153849DEST_PATH_IMAGE024
的基础上,确定使/>
Figure 426436DEST_PATH_IMAGE026
取最大值的转数/>
Figure 136903DEST_PATH_IMAGE028
和螺距
Figure 5502DEST_PATH_IMAGE030
,以 />
Figure 117814DEST_PATH_IMAGE032
和/>
Figure 797188DEST_PATH_IMAGE034
作为单层换热螺旋盘管设计数据输出。
优选的,所述进行交错式双层换热螺旋盘管设计具体包括如下步骤:
构建如下不等式:
Figure 854006DEST_PATH_IMAGE036
不等式2
式中,
Figure 667241DEST_PATH_IMAGE038
为交错式双层换热螺旋盘管的单层转数,/>
Figure 634060DEST_PATH_IMAGE040
为交错式双层换热螺旋盘管的单层螺距;
计算获取满足不等式2的所有
Figure 977012DEST_PATH_IMAGE038
、/>
Figure 255546DEST_PATH_IMAGE040
的值;
则,交错式双层换热螺旋盘管长度的计算公式为:
Figure 606893DEST_PATH_IMAGE042
式中,
Figure 38006DEST_PATH_IMAGE044
为交错式双层换热螺旋盘管长度;
Figure 308450DEST_PATH_IMAGE046
为满足不等式2的所有转数值/>
Figure 215226DEST_PATH_IMAGE038
Figure 478586DEST_PATH_IMAGE048
为满足不等式2的所有螺距值/>
Figure 419997DEST_PATH_IMAGE040
优选的,所述交错式双层换热螺旋盘管的尺寸设计具体包括:
判断
Figure 126922DEST_PATH_IMAGE044
的范围内的最大值是否大于/>
Figure 130781DEST_PATH_IMAGE020
,若是,则交错式双层换热螺旋盘管结构无法满足换热需求,输出换热螺旋盘管设计失败信号,若否,则判定交错式双层换热螺旋盘管结构可以满足换热需求,则进行交错式双层换热螺旋盘管的尺寸设计。
其中,所述交错式双层换热螺旋盘管的尺寸设计具体包括:
在满足
Figure DEST_PATH_IMAGE050
的基础上,确定使/>
Figure DEST_PATH_IMAGE052
取最大值的转数/>
Figure DEST_PATH_IMAGE054
和螺距 />
Figure DEST_PATH_IMAGE056
,以/>
Figure DEST_PATH_IMAGE058
和/>
Figure DEST_PATH_IMAGE060
作为交错式双层换热螺旋盘管设计数据输出。/>
一种换热螺旋盘管设计系统,用于实现如上述的换热螺旋盘管设计方法,包括:
主控模块,主控模块用于控制各模块组件进行工作;
计算处理模块,计算处理模块与主控模块电性连接,所述计算处理模块用于进行换热效率-螺距、转数的回归模型计算、单层换热螺旋盘管结构计算和交错式双层换热螺旋盘管结构计算;
数据输入输出模块,数据输入输出模块与主控模块电性连接,所述数据输入输出模块用于进行换热设备的尺寸信息和换热参数输入和单层换热螺旋盘管设计数据或交错式双层换热螺旋盘管设计数据输出;
模型生成模块,模型生成模块与主控模块电性连接,模型生成模块用于进行单层换热螺旋盘管设计数据或交错式双层换热螺旋盘管模型生成;
热交换仿真模拟模块,热交换仿真模拟模块与主控模块电性连接,热交换仿真模拟模块用于进行热交换仿真模拟。
与现有技术相比,本发明的有益效果在于:
本发明基于当前换热设备的尺寸信息对螺旋盘管的曲率半径进行确定,之后通过建立在此曲率半径下的换热效率-螺距、转数的回归模型,输入设备的无换热运行温度和目标运行温度,计算满足热平衡状态下的目标换热效率,将目标换热效率代入换热效率-螺距、转数的回归模型中,并根据计算出的螺旋盘管的尺寸信息结合当前换热设备的尺寸信息进行快速判断所需采用的螺旋盘管结构为单层换热螺旋盘管或交错式双层换热螺旋盘管,可根据实际的换热需求进行螺旋盘管最优结构设计,可有效的满足各种螺旋盘管式换热系统设计。
附图说明
图1为本发明提出的换热螺旋盘管设计方法步骤S100-S900流程图;
图2为本发明提出的换热螺旋盘管设计方法步骤S301-S304流程图;
图3为本发明提出的换热螺旋盘管设计系统结构框图;
图4为本发明中提及的交错式双层换热螺旋盘管结构示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。
参照图3所示,一种换热螺旋盘管设计系统,包括:
主控模块,主控模块用于控制各模块组件进行工作;
计算处理模块,计算处理模块与主控模块电性连接,计算处理模块用于进行换热效率-螺距、转数的回归模型计算、单层换热螺旋盘管结构计算和交错式双层换热螺旋盘管结构计算;
数据输入输出模块,数据输入输出模块与主控模块电性连接,数据输入输出模块用于进行换热设备的尺寸信息和换热参数输入和单层换热螺旋盘管设计数据或交错式双层换热螺旋盘管设计数据输出;
模型生成模块,模型生成模块与主控模块电性连接,模型生成模块用于进行单层换热螺旋盘管设计数据或交错式双层换热螺旋盘管模型生成;
热交换仿真模拟模块,热交换仿真模拟模块与主控模块电性连接,热交换仿真模拟模块用于进行热交换仿真模拟。
上述换热螺旋盘管设计系统的使用过程为:
步骤一:首先通过数据输入输出模块输入换热设备的尺寸信息和换热参数;
步骤二:主控模块控制计算处理模块对输入的换热设备的尺寸信息进行分析后,获取换热螺旋盘管的最小曲率半径;
步骤三:通过数据输入输出模块输入换热介质、介质流速,获取当前介质以及最小曲率半径下的换热螺旋盘管的换热效率-螺距、转数的回归模型;
步骤四:主控模块控制计算处理模块对输入的换热设备的换热参数进行分析后获取满足当前需换热设备的目标运行温度下的目标换热效率;
步骤五:目标换热效率代入换热效率-螺距、转数的回归模型中,进行计算出螺旋盘管目标尺寸数据;
步骤六:根据螺旋盘管目标尺寸数据和换热设备的尺寸信息进行判断采用单层换热螺旋盘管或者交错式双层换热螺旋盘管,并进行对应螺旋盘管的设计数据的计算;
步骤七:模型生成模块根据螺旋盘管的设计数据进行单层换热螺旋盘管或者交错式双层换热螺旋盘管模型生成;
步骤八:通过热交换仿真模拟模块生成与当前需换热设备对应的热源信号,并通过对单层换热螺旋盘管或者交错式双层换热螺旋盘管模型进行换热仿真模拟,并根据热仿真模拟结果判断其是否满足换热效率需求,若是,则输出单层换热螺旋盘管设计数据或交错式双层换热螺旋盘管设计数据,若否,则调整单层换热螺旋盘管设计数据或交错式双层换热螺旋盘管设计数据。
步骤九:通过数据输入输出模块输出最终确定的单层换热螺旋盘管设计数据或交错式双层换热螺旋盘管设计数据。
参照图1所示,为进一步的说明,本方案还提出一种换热螺旋盘管设计方法,包括如下步骤:
S100、获取当前需换热设备的尺寸信息和换热参数,换热参数包括当前需换热设备的无换热运行温度以及当前需换热设备的目标运行温度;
S200、根据当前需换热设备的尺寸信息确定换热螺旋盘管的最小曲率半径;
S300、根据换热螺旋盘管的最小曲率半径以及换热螺旋盘管管径进行分析,计算出换热盘管在最小曲率半径下的换热效率-螺距、转数的回归模型;
S400、根据当前需换热设备的无换热运行温度以及当前需换热设备的目标运行温度,进行计算出满足当前需换热设备的目标运行温度下的目标换热效率;
S500、根据目标换热效率代入换热效率-螺距、转数的回归模型中,进行计算出螺旋盘管目标尺寸数据;
S600、根据螺旋盘管目标尺寸数据与当前需换热设备的尺寸信息,判断螺旋盘管目标尺寸数据是否大于当前需换热设备的尺寸信息,若是,则判定单层换热螺旋盘管无法满足换热需求,若否,则判定单层换热螺旋盘管可以满足换热需求,输出单层换热螺旋盘管设计数据;
S700、对于单层换热螺旋盘管无法满足换热需求的情况,则进行交错式双层换热螺旋盘管设计,并输出交错式双层换热螺旋盘管设计数据;
S800、根据单层换热螺旋盘管设计数据或交错式双层换热螺旋盘管设计数据进行单层换热螺旋盘管建模或交错式双层换热螺旋盘管建模;
S900、进行单层换热螺旋盘管模型或交错式双层换热螺旋盘管模型的热仿真模拟,并根据热仿真模拟结果判断其是否满足换热效率需求,若是,则输出单层换热螺旋盘管设计数据或交错式双层换热螺旋盘管设计数据,若否,则调整单层换热螺旋盘管设计数据或交错式双层换热螺旋盘管设计数据。
其中可以理解的是,对螺旋盘管换热效率起到决定因素的是螺旋盘管的换热面积,基于此,对于曲率半径确定至关重要,曲率半径越大,换热面积越大,但是曲率半径过大,导致螺旋盘管与需换热设备之间的热辐射损耗提升,影响换热效率,基于此,本方案中首先根据需换热设备的尺寸信息进行曲率半径的确定,降低设计影响因素;
之后通过建立在此曲率半径下的换热效率-螺距、转数的回归模型,输入设备的无换热运行温度和目标运行温度,计算满足热平衡状态下的目标换热效率,将目标换热效率代入换热效率-螺距、转数的回归模型中,并根据计算出的螺旋盘管的尺寸信息结合当前换热设备的尺寸信息进行快速判断所需采用的螺旋盘管结构为单层换热螺旋盘管或交错式双层换热螺旋盘管,可根据实际的换热需求进行螺旋盘管最优结构设计。
参照图2所示,换热效率-螺距、转数的回归模型的计算步骤如下:
S301、确定换热介质和介质流速信息;
S302、按照确定的转数梯度和螺距梯度进行换热螺旋盘管的模拟建模,获得多个不同尺寸参数的换热螺旋盘管的样本模型;
S303、根据换热介质参数、介质流速对多个不同尺寸参数的换热螺旋盘管的样本模型进行热交换仿真模拟,获得多个热交换仿真模拟样本数据;
S304、根据多个热交换仿真模拟样本数据进行换热效率-螺距、转数的回归模型的回归系数计算。
进行换热效率-螺距、转数的回归模型的回归系数计算包括:
首先,建立如下模型:
Figure DEST_PATH_IMAGE062
式中,P为换热效率;
n为换热螺旋盘管的转数;
z为换热螺旋盘管的螺距;
a、b均为系数;
之后,根据多个热交换仿真模拟样本数据对系数a、b进行最大似然计算,获得换热效率-螺距、转数的回归模型的回归系数
Figure DEST_PATH_IMAGE064
、/>
Figure DEST_PATH_IMAGE066
通过对在螺旋判断的换热效率中,螺旋盘管的螺距和转数对螺旋盘管的换热面积起到了重要的影响因素,且螺旋盘管的螺距和转数也是螺旋盘管设计中的重要尺寸结构,本方案通过建立换热效率-螺距、转数的回归模型,在后续的设计中通过需换热设备的目标换热效率即可快速的获取满足需求的螺旋盘管的螺距、转数数据,完成螺旋盘管的尺寸设计。
计算出螺旋盘管目标尺寸数据包括:
获取目标换热效率,则需满足:
Figure DEST_PATH_IMAGE068
不等式1
式中,
Figure DEST_PATH_IMAGE070
为目标换热效率;
获取满足不等式1的所有n、z的值;
根据满足不等式1的所有n、z的值进行计算螺旋盘管目标长度范围。
在实际的设计过程中需要满足螺旋盘管的换热效率大于需换热设备的目标换热效率,才可实现针对于当前需换热设备的有效换热;
通过计算出所有满足上述换热需求的螺旋盘管转数和螺距值
螺旋盘管目标长度的计算方法为:
Figure DEST_PATH_IMAGE072
式中,
Figure DEST_PATH_IMAGE074
为螺旋盘管目标长度;
Figure DEST_PATH_IMAGE076
为满足不等式1的所有转数值n;
Figure DEST_PATH_IMAGE078
为满足不等式1的所有螺距值z。
判断螺旋盘管目标尺寸数据是否大于当前需换热设备的尺寸信息具体为:
获取当前需换热设备的高度
Figure DEST_PATH_IMAGE080
,判断/>
Figure DEST_PATH_IMAGE082
的范围内的最大值是否大于/>
Figure 702227DEST_PATH_IMAGE080
,若是,则单层螺旋管结构无法满足换热需求,若否,则判定单层换热螺旋盘管可以满足换热需求,则进行单层换热螺旋盘管的尺寸设计。
其中,单层换热螺旋盘管的尺寸设计具体包括:
在满足
Figure DEST_PATH_IMAGE084
的基础上,确定使/>
Figure DEST_PATH_IMAGE086
取最大值的转数/>
Figure DEST_PATH_IMAGE088
和螺距
Figure DEST_PATH_IMAGE090
,以 />
Figure 966986DEST_PATH_IMAGE088
和/>
Figure 828500DEST_PATH_IMAGE090
作为单层换热螺旋盘管设计数据输出。
通过螺旋盘管的螺距和转数即可计算出螺旋盘管的长度尺寸范围;
通过判断螺旋盘管的长度尺寸范围是否可以满足需换热设备的尺寸需求,即可快速的判断采用单层换热螺旋盘管结构是否可以满足针对需换热设备的换热需求,对于单层换热螺旋盘管结构可以满足的情况,进行单层换热螺旋盘管结构尺寸计算,对于不满足的,则进行交错式双层换热螺旋盘管设计。
进行交错式双层换热螺旋盘管设计具体包括如下步骤:
构建如下不等式:
Figure DEST_PATH_IMAGE092
不等式2
式中,
Figure DEST_PATH_IMAGE094
为交错式双层换热螺旋盘管的单层转数,/>
Figure DEST_PATH_IMAGE096
为交错式双层换热螺旋盘管的单层螺距;
其中,需要说明的是,交错式双层螺旋盘管结构为采用双层单层换热螺旋盘管进行交错重叠的方式进行设计,因此,交错式双层螺旋盘管的换热面积为单层换热螺旋盘管的双倍,基于此,交错式双层螺旋盘管的换热效率可近似的认为是单层换热螺旋盘管的双倍;
计算获取满足不等式2的所有
Figure 116393DEST_PATH_IMAGE094
、/>
Figure 613234DEST_PATH_IMAGE096
的值;
则,交错式双层换热螺旋盘管长度的计算公式为:
Figure DEST_PATH_IMAGE098
式中,
Figure DEST_PATH_IMAGE100
为交错式双层换热螺旋盘管长度;
Figure DEST_PATH_IMAGE102
为满足不等式2的所有转数值/>
Figure 903139DEST_PATH_IMAGE094
Figure DEST_PATH_IMAGE104
为满足不等式2的所有螺距值/>
Figure 764915DEST_PATH_IMAGE096
交错式双层换热螺旋盘管的尺寸设计具体包括:
判断
Figure 133580DEST_PATH_IMAGE100
的范围内的最大值是否大于/>
Figure 293166DEST_PATH_IMAGE080
,若是,则交错式双层换热螺旋盘管结构无法满足换热需求,输出换热螺旋盘管设计失败信号,若否,则判定交错式双层换热螺旋盘管结构可以满足换热需求,则进行交错式双层换热螺旋盘管的尺寸设计。
其中,交错式双层换热螺旋盘管的尺寸设计具体包括:
在满足
Figure DEST_PATH_IMAGE106
的基础上,确定使/>
Figure DEST_PATH_IMAGE108
取最大值的转数/>
Figure DEST_PATH_IMAGE110
和螺距 />
Figure DEST_PATH_IMAGE112
,以/>
Figure 781785DEST_PATH_IMAGE110
和/>
Figure 611200DEST_PATH_IMAGE112
作为交错式双层换热螺旋盘管设计数据输出。
其中,交错式双层换热螺旋盘管结构示意图如图4所示,
需要说明的是,对于交错式双层换热螺旋盘管仍然不能满足换热效率的设备,虽然可以设计使用三层换热螺旋盘管进行换热,但是对于三层及以上层数的螺旋盘管其制造成本过高,因此,本方案中不针对于三层及以上层数的螺旋盘管进行尺寸设计,因此对于交错式双层换热螺旋盘管仍然不能满足换热效率的设备,则需要进行其他换热方式设计。
综上所述,本发明的优点在于,基于当前换热设备的尺寸信息对螺旋盘管的曲率半径进行换热效率-螺距、转数的回归模型建立,可根据实际的换热需求进行螺旋盘管最优结构设计,可有效的满足各种螺旋盘管式换热系统设计。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求的保护范围由所附的权利要求书及其等同物界定。

Claims (9)

1.一种换热螺旋盘管设计方法,其特征在于,包括:
获取当前需换热设备的尺寸信息和换热参数,所述换热参数包括当前需换热设备的无换热运行温度以及当前需换热设备的目标运行温度;
根据当前需换热设备的尺寸信息确定换热螺旋盘管的最小曲率半径;
根据换热螺旋盘管的最小曲率半径以及换热螺旋盘管管径进行分析,计算出换热盘管在最小曲率半径下的换热效率-螺距、转数的回归模型;
根据当前需换热设备的无换热运行温度以及当前需换热设备的目标运行温度,进行计算出满足当前需换热设备的目标运行温度下的目标换热效率;
根据目标换热效率代入换热效率-螺距、转数的回归模型中,进行计算出螺旋盘管目标尺寸数据;
根据螺旋盘管目标尺寸数据与当前需换热设备的尺寸信息,判断螺旋盘管目标尺寸数据是否大于当前需换热设备的尺寸信息,若是,则判定单层换热螺旋盘管无法满足换热需求,若否,则判定单层换热螺旋盘管可以满足换热需求,输出单层换热螺旋盘管设计数据;
对于单层换热螺旋盘管无法满足换热需求的情况,则进行交错式双层换热螺旋盘管设计,并输出交错式双层换热螺旋盘管设计数据;
根据单层换热螺旋盘管设计数据或交错式双层换热螺旋盘管设计数据进行单层换热螺旋盘管建模或交错式双层换热螺旋盘管建模;
进行单层换热螺旋盘管模型或交错式双层换热螺旋盘管模型的热仿真模拟,并根据热仿真模拟结果判断其是否满足换热效率需求,若是,则输出单层换热螺旋盘管设计数据或交错式双层换热螺旋盘管设计数据,若否,则调整单层换热螺旋盘管设计数据或交错式双层换热螺旋盘管设计数据。
2.根据权利要求1所述一种换热螺旋盘管设计方法,其特征在于,所述换热效率-螺距、转数的回归模型的计算步骤如下:
确定换热介质和介质流速信息;
按照确定的转数梯度和螺距梯度进行换热螺旋盘管的模拟建模,获得多个不同尺寸参数的换热螺旋盘管的样本模型;
根据换热介质参数、介质流速对多个不同尺寸参数的换热螺旋盘管的样本模型进行热交换仿真模拟,获得多个热交换仿真模拟样本数据;
根据多个热交换仿真模拟样本数据进行换热效率-螺距、转数的回归模型的回归系数计算。
3.根据权利要求2所述一种换热螺旋盘管设计方法,其特征在于,所述进行换热效率-螺距、转数的回归模型的回归系数计算包括:
首先,建立如下模型:
Figure 364176DEST_PATH_IMAGE002
式中,P为换热效率;
n为换热螺旋盘管的转数;
z为换热螺旋盘管的螺距;
a、b均为系数;
之后,根据多个热交换仿真模拟样本数据对系数a、b进行最大似然计算,获得换热效率-螺距、转数的回归模型的回归系数
Figure DEST_PATH_IMAGE003
4.根据权利要求3所述一种换热螺旋盘管设计方法,其特征在于,所述计算出螺旋盘管目标尺寸数据包括:
获取目标换热效率,则需满足:
Figure DEST_PATH_IMAGE005
不等式1
式中,
Figure 449812DEST_PATH_IMAGE006
为目标换热效率;
获取满足不等式1的所有n、z的值;
根据满足不等式1的所有n、z的值进行计算螺旋盘管目标长度范围。
5.根据权利要求4所述一种换热螺旋盘管设计方法,其特征在于,所述螺旋盘管目标长度的计算方法为:
Figure 425859DEST_PATH_IMAGE008
式中,
Figure DEST_PATH_IMAGE009
为螺旋盘管目标长度;
Figure 638665DEST_PATH_IMAGE010
为满足不等式1的所有转数值n;
Figure DEST_PATH_IMAGE011
为满足不等式1的所有螺距值z。
6.根据权利要求5所述一种换热螺旋盘管设计方法,其特征在于,所述判断螺旋盘管目标尺寸数据是否大于当前需换热设备的尺寸信息具体为:
获取当前需换热设备的高度
Figure 469087DEST_PATH_IMAGE012
,判断
Figure 7516DEST_PATH_IMAGE009
的范围内的最大值是否大于
Figure 205279DEST_PATH_IMAGE012
,若是,则单层螺旋管结构无法满足换热需求,若否,则判定单层换热螺旋盘管可以满足换热需求,则进行单层换热螺旋盘管的尺寸设计;
其中,所述单层换热螺旋盘管的尺寸设计具体包括:
在满足
Figure DEST_PATH_IMAGE013
的基础上,确定使
Figure 471044DEST_PATH_IMAGE014
取最大值的转数
Figure DEST_PATH_IMAGE015
和螺距
Figure 906704DEST_PATH_IMAGE016
,以
Figure 130881DEST_PATH_IMAGE015
Figure 550361DEST_PATH_IMAGE016
作为单层换热螺旋盘管设计数据输出。
7.根据权利要求6所述一种换热螺旋盘管设计方法,其特征在于,所述进行交错式双层换热螺旋盘管设计具体包括如下步骤:
构建如下不等式:
Figure 901708DEST_PATH_IMAGE018
不等式2
式中,
Figure DEST_PATH_IMAGE019
为交错式双层换热螺旋盘管的单层转数,
Figure 181423DEST_PATH_IMAGE020
为交错式双层换热螺旋盘管的单层螺距;
计算获取满足不等式2的所有
Figure 592813DEST_PATH_IMAGE019
Figure 499589DEST_PATH_IMAGE020
的值;
则,交错式双层换热螺旋盘管长度的计算公式为:
Figure 638315DEST_PATH_IMAGE022
式中,
Figure DEST_PATH_IMAGE023
为交错式双层换热螺旋盘管长度;
Figure 48568DEST_PATH_IMAGE024
为满足不等式2的所有转数值
Figure 630859DEST_PATH_IMAGE019
Figure DEST_PATH_IMAGE025
为满足不等式2的所有螺距值
Figure 336515DEST_PATH_IMAGE020
8.根据权利要求7所述一种换热螺旋盘管设计方法,其特征在于,所述交错式双层换热螺旋盘管的尺寸设计具体包括:
判断
Figure 13353DEST_PATH_IMAGE023
的范围内的最大值是否大于
Figure 278113DEST_PATH_IMAGE012
,若是,则交错式双层换热螺旋盘管结构无法满足换热需求,输出换热螺旋盘管设计失败信号,若否,则判定交错式双层换热螺旋盘管结构可以满足换热需求,则进行交错式双层换热螺旋盘管的尺寸设计;
其中,所述交错式双层换热螺旋盘管的尺寸设计具体包括:
在满足
Figure 31305DEST_PATH_IMAGE026
的基础上,确定使
Figure DEST_PATH_IMAGE027
取最大值的转数
Figure 365203DEST_PATH_IMAGE028
和螺距
Figure DEST_PATH_IMAGE029
,以
Figure 330885DEST_PATH_IMAGE028
Figure 230577DEST_PATH_IMAGE029
作为交错式双层换热螺旋盘管设计数据输出。
9.一种换热螺旋盘管设计系统,用于实现如权利要求1-8任一项所述的换热螺旋盘管设计方法,其特征在于,包括:
主控模块,主控模块用于控制各模块组件进行工作;
计算处理模块,计算处理模块与主控模块电性连接,所述计算处理模块用于进行换热效率-螺距、转数的回归模型计算、单层换热螺旋盘管结构计算和交错式双层换热螺旋盘管结构计算;
数据输入输出模块,数据输入输出模块与主控模块电性连接,所述数据输入输出模块用于进行换热设备的尺寸信息和换热参数输入和单层换热螺旋盘管设计数据或交错式双层换热螺旋盘管设计数据输出;
模型生成模块,模型生成模块与主控模块电性连接,模型生成模块用于进行单层换热螺旋盘管设计数据或交错式双层换热螺旋盘管模型生成;
热交换仿真模拟模块,热交换仿真模拟模块与主控模块电性连接,热交换仿真模拟模块用于进行热交换仿真模拟。
CN202211294339.8A 2022-10-21 2022-10-21 一种换热螺旋盘管设计方法及系统 Active CN115358028B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211294339.8A CN115358028B (zh) 2022-10-21 2022-10-21 一种换热螺旋盘管设计方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211294339.8A CN115358028B (zh) 2022-10-21 2022-10-21 一种换热螺旋盘管设计方法及系统

Publications (2)

Publication Number Publication Date
CN115358028A CN115358028A (zh) 2022-11-18
CN115358028B true CN115358028B (zh) 2023-03-24

Family

ID=84008391

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211294339.8A Active CN115358028B (zh) 2022-10-21 2022-10-21 一种换热螺旋盘管设计方法及系统

Country Status (1)

Country Link
CN (1) CN115358028B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113776207A (zh) * 2021-06-11 2021-12-10 南京理工大学 一种具有圆锥螺旋盘管结构的管壳式相变蓄热装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105608284A (zh) * 2016-01-08 2016-05-25 北京航空航天大学 一种快速计算机械零部件表面对流换热系数的方法
EP3469289B1 (en) * 2016-06-09 2021-01-27 Fluid Handling LLC. 3d spiral heat exchanger
CN109990504B (zh) * 2019-04-09 2020-03-27 山东大学 一种螺旋绕管式换热器及深井热力系统
CN110598268B (zh) * 2019-08-20 2021-05-28 珠海格力电器股份有限公司 换热器的设计方法、装置、存储介质及电子设备

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113776207A (zh) * 2021-06-11 2021-12-10 南京理工大学 一种具有圆锥螺旋盘管结构的管壳式相变蓄热装置

Also Published As

Publication number Publication date
CN115358028A (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
US20220027539A1 (en) Method and system for manufacturing a heat exchanger for supercritical pressure fluid
WO2011006344A1 (zh) 砂尘环境试验系统的温度调节装置及智能温度控制方法
CN109766589B (zh) 一种管翅式换热器非均匀迎面风速下性能评价方法
Wang et al. Prediction of heat transfer rates for shell-and-tube heat exchangers by artificial neural networks approach
CN110282074B (zh) 船舶冷却管路系统变工况低噪声配置调控方法
Xi et al. Study on heat transfer performance of steam-cooled ribbed channel using neural networks and genetic algorithms
CN110610037B (zh) 逆流式回热器热力仿真方法
CN109885885B (zh) 一种基于气固液三相耦合传热的喷嘴杆壁温预估方法
CN115358028B (zh) 一种换热螺旋盘管设计方法及系统
Jang et al. An algorithm to determine heating lines for plate forming by line heating method
CN111428184B (zh) 一种板翅式换热器芯体尺寸计算方法
Castorani et al. Determination of the optimal configuration of energy recovery ventilator through virtual prototyping and DoE techniques
CN112100813A (zh) 考虑轴向传热作用的局部穿管电缆轴向温度分布计算方法
CN112902720A (zh) 一种陶瓷空心砖蓄热器的蓄热体设计方法
Rao et al. Estimation and optimization of heat transfer and overall pressure drop for a shell and tube heat exchanger
CN117113567A (zh) 一种自适应板式换热器设计方法
JP2004311885A (ja) ヒートシンク及びヒートシンクの形状計算方法
CN109959283B (zh) 高温冷却器热力校核方法及系统
CN108491676B (zh) 隔热罩的隔热性能仿真分析方法及系统
CN110955984A (zh) 板式换热器的仿真方法及系统
CN116150993A (zh) 一种基于频域特性的换热器设计方法及换热器
Kang et al. Novel regenerator design for caloric cycles using artificial neural network—Genetic algorithm method and additive manufacturing
JP7345686B2 (ja) Hvac(暖房、換気、空調)システムの動作を制御するためのシステムおよび方法
CN112035957B (zh) 一种空空中冷器性能预测方法
Zhang et al. Fatigue Analysis of a High-Performance Heat Exchanger

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant