CN115353442A - 一种共沸精馏分离异丙醇/二异丙醚/水共沸物的控制方法 - Google Patents

一种共沸精馏分离异丙醇/二异丙醚/水共沸物的控制方法 Download PDF

Info

Publication number
CN115353442A
CN115353442A CN202211166351.0A CN202211166351A CN115353442A CN 115353442 A CN115353442 A CN 115353442A CN 202211166351 A CN202211166351 A CN 202211166351A CN 115353442 A CN115353442 A CN 115353442A
Authority
CN
China
Prior art keywords
isopropanol
diisopropyl ether
tower
rectifying tower
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211166351.0A
Other languages
English (en)
Inventor
张方坤
马存成
牛成群
徐啟蕾
单宝明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202211166351.0A priority Critical patent/CN115353442A/zh
Publication of CN115353442A publication Critical patent/CN115353442A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • C07C29/82Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation by azeotropic distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/34Separation; Purification; Stabilisation; Use of additives
    • C07C41/40Separation; Purification; Stabilisation; Use of additives by change of physical state, e.g. by crystallisation
    • C07C41/42Separation; Purification; Stabilisation; Use of additives by change of physical state, e.g. by crystallisation by distillation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种共沸精馏分离异丙醇/二异丙醚/水共沸物的控制方法,具体的设计步骤如下:步骤一:设计出二异丙醚/异丙醇/水分离的比例‑积分控制策略。步骤二:设计出二异丙醚/异丙醇/水的模型预测控制策略。步骤三:设计出二异丙醚/异丙醇/水的基于软测量的模型预测控制策略。本发明使用时延神经网络算法优化模型预测控制,改进后的模型预测控制结合比例‑积分控制器的组合控制方案,解决了共沸精馏过程中组分难以实时测量、多变量和强耦合性等控制问题,提高了动态控制性能,该控制方案在系统受到±10%的流量和组分扰动时,系统均能恢复稳定,不影响产品纯度。

Description

一种共沸精馏分离异丙醇/二异丙醚/水共沸物的控制方法
技术领域
本发明涉充共沸精馏过程的技术领域,具体涉及一种共沸精馏分离异丙醇/二异丙醚/水共沸物的控制方法。
背景技术
异丙醇是重要的化工产品和原料,异丙醇的生产过程中存在副反应,会产生含有二异丙醚的副产品。二异丙醚也是重要的化工溶剂和汽油添加剂。为了提高异丙醇的回收率,减少对环境的污染,需要进一步分离副产品。
专利(CN111377804A)公开了采用二甲基乙酰胺、乙二醇以1:2的比例组成的二元混合萃取剂,分离二异丙醚–异丙醇混合物的装置及其方法。该方法只涉及异丙醇/水二元体系,没有涉及异丙醇/二异丙醚/水三元体系。
专利(CN111377804A)公开了一种从异丙醇副产物中提纯二异丙醚的方法。该装置产出异丙醇和二异丙醚的效率较低。
文献(Qi J et al.,“Heat-integrated azeotropic distillation andextractive distillation for the separation of heterogeneous ternaryazeotropes of diisopropyl ether/isopropyl alcohol/water”,Industrial&Engineering Chemistry Research,2019,58(45):20734-45.)公开了一种四塔分离异丙醇/二异丙醚/水三元共沸混合物的流程,该装置能高效的产出异丙醇和二异丙醚,且设备经济成本低,但是缺少动态过程的控制方法。
异丙醇/二异丙醚/水三元共沸混合物的分离过程所表现出复杂的动态特性、强烈的非线性和变量之间的强耦合性,使得传统的如PID等控制方案很难得到较好的控制效果。此外,一些精度高的PID控制方案需要配置高成本的组分检测仪。
发明内容
针对现有技术的不足,本发明旨在提供一种针对异丙醇/二异丙醚/水共沸精馏过程的软测量模型预测控制方法,本发明通过构建时延神经网络实现对异丙醇和二异丙醚的预测,具有精度高、可实时预测、不需要昂贵的组分检测仪器的优点,并且采用的软测量模型预测控制在系统受到±10%的流量和组分扰动时,系统均能恢复稳定,不影响产品纯度,保证生产安全。
为了实现上述目的,本发明采用如下技术方案:
一种共沸精馏分离异丙醇/二异丙醚/水共沸物的控制方法,所述方法包括以下步骤:
步骤1,预分离,原料由异丙醇、二异丙醚和水组成,原料自塔中部进入预分离共沸精馏塔,塔顶流股经过冷凝器得到混合液,凝液暂存于回流罐,罐内混合液产品凝液按照回流比回流至预分离共沸精馏塔和输送至倾析器,倾析器的水相从原理进料塔板流回到共沸精馏塔,预分离精馏塔塔釜中剩余物料输送至浓缩精馏塔;
步骤2,二异丙醚分离,倾析器的有机相作为二异丙醚塔的进料,进入二异丙醚精馏塔的物料经塔处理,塔顶蒸汽经过冷凝器得到混合液,混合液按照回流比回流至二异丙醚精馏塔和循环进到预分离精馏塔,二异丙醚精馏塔塔釜中产物输送至界外;
步骤3,溶剂浓缩塔,进入浓缩精馏塔的物料经塔精馏,塔顶蒸汽经过冷凝器得到混合液,混合液输送到倾析器,倾析器的水相回流至浓缩精馏塔,有机相输送到异丙醇精馏塔,溶剂浓缩塔塔釜中的水输送到界外;
步骤4,异丙醇分离,进入异丙醇精馏塔的物料经塔精馏,塔顶流股经过冷凝器得到混合液,凝液暂存于回流罐,罐内混合液产品凝液按照回流比回流至异丙醇精馏塔和倾析器。异丙醇分离塔塔釜中的产物异丙醇输送到界外。
需要说明的是,所述预分离精馏塔进料管线设有流量控制器,所述流量控制器控制异丙醇/二异丙醚/水原料混合液的进料流量,所述流量控制器为反向控制;
需要说明的是,所述预分离精馏塔、二异丙醚精馏塔与异丙醇精馏塔的塔顶均设有冷凝器和回流罐,所述回流罐上设有压力控制器和液位控制器,浓缩精馏塔设有压缩机和冷凝器,浓缩精馏塔塔顶设有压力控制器,冷凝器设有温度控制器。
需要说明的是,所述预分离精馏塔、二异丙醚精馏塔与异丙醇精馏塔塔顶回流罐的液位分别控制塔顶混合物料的采出,所述三塔的塔顶液位控制器均为正向控制。
需要说明的是,所述苯萃取精馏塔、异丙醇萃取精馏塔与溶剂回收塔塔底通过调整物料采出量来控制塔釜液位,所述三塔的塔顶液位控制器均为正向控制。
需要说明的是,所述两个倾析器通过调整有机相和水相的采出量来分别控制有机相和水相液位,所述倾析器液位控制器均为正向控制。
需要说明的是,所述预分离精馏塔、二异丙醚精馏塔与异丙醇精馏塔通过调整塔顶冷凝器的负荷,控制回流罐的压力,所述浓缩精馏塔塔顶冷凝器通过调整压缩机负荷,控制浓缩精馏塔塔顶压力,所述四塔的塔顶压力控制器均为反向控制。
需要说明的是,所述预分离精馏塔和浓缩精馏塔的塔中下部、二异丙醚精馏塔和异丙醇的塔中上部设有温度控制器,通过调整再沸器热负荷实现温度控制,所述三塔温度控制器均为反向控制;所述二异丙醚精馏塔与异丙醇精馏塔的回流比固定。
需要说明的是,所述二异丙醚精馏塔和异丙醇精馏塔的塔底产品纯度通过调节温度控制器设定值控制,并且组分控制器为反向控制;使用模型预测控制器代替组分控制器和浓缩塔的温度控制器,控制所述二异丙醚精馏塔和异丙醇精馏塔的温度控制器设定值和浓缩塔的再沸器负荷;
需要说明的是,还设有软测量模型预测控制器代替模型预测控制器,输出控制所述浓缩精馏塔的再沸器负荷以及二异丙醚精馏塔和异丙醇精馏塔中上部的温度控制器。
本发明有益效果在于:本发明使用时延神经网络算法优化模型预测控制,改进后的模型预测控制结合比例-积分控制器的组合控制方案,解决了共沸精馏过程中组分难以实时测量、多变量和强耦合性等控制问题,提高了动态控制性能,该控制方案在系统受到±10%的流量和组分扰动时,系统均能恢复稳定,不影响产品纯度。
附图说明
图1为本发明的工艺示意图,带箭头的实线表示各流股管路;
图2为本发明比例-积分方案的控制策略图,带箭头的实线表示各物流管路,带箭头的虚线代表各控制器的输入或输出信号;
图3为本发明模型预测控制方案的控制策略图,带箭头的实线表示各物流管路,带箭头的虚线代表各控制器的输入或输出信号;
图4为本发明软测量模型预测控制方案的控制策略图,带箭头的实线表示各物流管路,带箭头的虚线代表各控制器的输入或输出信号;
图5为本发明模型预测控制器权重的Pareto Front解集;
图6为比例-积分方案的动态响应图,实线为+10%的进料扰动,虚线为-10%的进料扰动;
图7为模型预测控制方案的动态响应图,实线为+10%的进料扰动,虚线为-10%的进料扰动;
图8为基于软测量的模型预测控制的动态响应图,实线为+10%的进料扰动,虚线为-10%的进料扰动。
其中,C1为预分离精馏塔;C2为二异丙醚萃取精馏塔;C3为浓缩精馏塔;C4为异丙醇精馏塔;S-1、S-2为倾析器;FC为原料进料流量控制器;TC1、TC2、TC3、TC4为塔釜温度控制器;TC5浓缩塔塔顶出料冷凝器温度控制器;PC1、PC2、PC3、PC4为塔顶回流罐压力控制器;LC1、LC3、LC7、LC8为塔釜液位控制器;LC2、LC4、LC9为塔顶回流罐液位控制器;LC5、LC10为倾析器水相液位控制器;LC6、LC11为倾析器有机相液位控制器;RR2、RR4为塔顶回流比值系数;QR3为浓缩精馏塔的再沸器负荷;TC2SP、TC4SP为温度控制器TC2、TC4的设定值。
具体实施方式
以下将对本发明作进一步的描述,需要说明的是,以下实施例以本技术方案为前提,给出了详细的实施方式和具体的操作过程,但本发明的保护范围并不限于本实施例。
实施例一
根据图2所示,本实施例提供了一种四塔共沸精馏分离二异丙醚/异丙醇/水三元共沸物工艺的比例-积分控制方案,该控制方案的实施案例如下:
C1塔选择第7块塔板作为温度灵敏板,C2塔选择第4块塔板作为温度灵敏板,C3塔选择第7块塔板作为温度灵敏板,C4塔选择第11块塔板作为温度灵敏板。
各控制器在初始化运行后,自动输入设定值,并以设定值为中间值确定范围,用闭环回路做测试方法。在初始稳态工艺基础上添加±10%的进料流量扰动和进料组分扰动,进料流量扰动即在进料流量为10000kg/h(含二异丙醚30%、含异丙醇10%、含水60%)的工艺稳定运行后,分别添加+10%(11000kg/h)的扰动和-10%(9000kg/h)的扰动,进料组分扰动即在进料流量为10000kg/h(含二异丙醚30%、含异丙醇10%、含水60%)的工艺稳定运行后,分别添加+10%(10000kg/h,含二异丙醚25.5%、含异丙醇8.5%、含水66%)的扰动和-10%(10000kg/h,含二异丙醚34.5%、含异丙醇11.5%、含水54%)的扰动。
在添加了扰动后,对二异丙醚精馏塔底产品二异丙醚的纯度、异丙醇精馏塔塔底产品异丙醇的纯度和浓缩精馏塔塔底产品水的纯度进行数据记录,用以测试动态控制系统的控制性能。进料扰动产品纯度的动态响应如图6所示,虚线为+10%的进料扰动,实线为-10%的进料扰动。
结果显示,当进料流量添加±10%的扰动时,二异丙醚精馏塔得到的产品二异丙醚的浓度由初始的99.9%进行了小幅震荡,在经过7.5h后产品的质量分数恢复到99.9%,异丙醇精馏塔得到的产品异丙醇的浓度由初始的99.5%进行了震荡,在经过5h后产品可达到99.5%以上,浓缩塔的产物水的质量分数一直接近100%,没有发生震荡;在添加组分扰动之后,二异丙醚精馏塔得到的产品二异丙醚的浓度由初始的99.9%进行了震荡,在经过8h后产品的质量分数恢复到99.9%,异丙醇精馏塔得到的产品异丙醇的浓度由初始的99.5%进行了小幅震荡,在经过8h后产品可达到99.5%以上,浓缩塔的产物水的质量分数一直接近100%,没有发生震荡;具有良好的鲁棒性和稳定性。
上述实施例的控制器的控制行为如下:
①流量控制器FC通过进料调节阀控制进料流量(反作用);
②温度控制器TC1、TC2、TC3、TC4分别通过操纵C1、C2、C3、C4塔的再沸器热负荷控制C1精馏塔第7块塔板温度、C2精馏塔第4块塔板温度、C3精馏塔第7块塔板温度、C4精馏塔第11块塔板温度(反作用);
③液位控制器LC1、LC3、LC7、LC8通过操纵塔底产物流量来控制C1、C2、C3、C4塔底液位(正作用);
④液位控制器LC2、LC4、LC9通过操纵塔顶产物流量来控制C1、C2、C4塔顶液位(正作用);
⑤压力控制器PC1、PC2、PC4通过操纵塔顶冷凝器功率控制C1、C2、C4塔顶压力(反作用);
⑥压力控制器PC3通过操纵塔顶压缩机功率控制C3塔塔顶压力(正作用);
⑦液位控制器LC5和LC10通过操纵倾析器S1和S2进入C1塔和C3塔的物流流量控制倾析器S-1和S-2的水相液位(正作用);
⑧液位控制器LC6和LC11通过操纵倾析器S1和S2进入C2塔和C4塔的流股流量控制倾析器S-1和S-2的有机相液位(正作用);
⑨C2、C4塔的回流比RR2和RR4固定。
⑩通过组分控制器CC1、CC2与C2、C4塔的温度控制器TC2、TC4构成串级控制结构,直接控制两种产品的纯度,两组分控制器均为反作用。
该控制方案可以稳定地控制±10%以内的进料流量及组成扰动。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
实施例二
根据图3所示,本实施例提供了一种四塔共沸精馏分离二异丙醚/异丙醇/水三元共沸物工艺的模型预测控制方案,该控制方案的实施案例如下:
基于线性时不变预测模型及状态观测器,进行模型预测控制器设计。模型预测控制器基于以下性能指标在每个采样时刻给出最优的控制序列:
Figure BDA0003861534780000091
式中p为预测时域的采样时间个数,模型预测控制器将根据被控变量及可测扰动当前状态,预测共沸精馏过程在未来p个采样周期内被控变量的变化趋势;m为控制时域的采样时间个数,MPC控制器将根据当前系统状态和预测模型预测被控变量的变化趋势,计算系统在未来m个采样周期的最优控制序列。变量的下标j表示该变量的第j个分量,(k+i|k)表示在k时刻对k+i时刻的预测值。r(k)是输出变量参考轨迹在k时刻的采样值,其约束条件为:
Figure BDA0003861534780000101
Figure BDA0003861534780000102
Figure BDA0003861534780000103
Δu(k+h|k)=0
模型预测控制器根据公式和计算得到在k时刻时对未来m个时刻的最优控制序列{Δu(k|k),…,Δu(k+m-1|k)},并将当前时刻k操纵变量预测值u(k)=u(k-1)+Δu(k|k)对操纵变量赋值,预测的其它控制增量序列则被舍弃。
模型预测控制器的采样周期TS选择为0.01h;预测时域p=50,控制时域m=4。
权重优化的目标是使被控变量偏离其期望值的程度较小的同时,尽可能减小操纵变量变化,在两者之间取得一个平衡。两个目标函数可表示如下:
obj1=∑[y(k)-r(k)]2
obj2=∑[Δu(k)]2
模型预测控制控制器性能指标中被控变量和操纵变量权重影响着控制效果,这些权重主要分为三组,分别为操纵变量权重wu、被控变量权重wy和操纵变量变化量权重wΔu。在本实例设计中,wu均取0。wy和wΔu采用动力学分析方法进行整定。本文采用多目标遗传算法(NSGA-III)算法来处理模型预测控制控制器权重求解问题。在优化中,NSGA-III算法的代价(Cost)函数设置为被控变量与其设定值的误差平方之和(obj1)以及操纵变量变化量的平方和(obj2),被优化量即wy和wΔu这两组权重。
构建MPC控制器时,二异丙醚产品和异丙醇产品纯度被选为模型预测控制器的被控变量,为更有效维持异丙醇纯度,C3塔的灵敏板温度也被选为被控变量,原CS4方案中C2塔和C4塔灵敏板温度以及C3的再沸器热负荷被选为MPC控制器的操纵变量,进料流量扰动被选为可测扰动。基于CS4方案,构建针对三元体系共沸精馏的MPC策略。同时仍使用所述NSGA-III算法计算MPC控制器权重参数的朝帕累托前沿(Pareto Front)解,其解集如图5所示。本文选择Obj1数值为332、Obj2数值14630为的点作为该多目标优化问题的最终解,其对应的MPC控制器权重参数如下表所示
操纵变量 变化量权重(ω<sup>Δu</sup>) 被控变量 被控量权重(ω<sup>y</sup>)
C2塔灵敏板温度 0.108 二异丙醚产品纯度 0.076
C4塔灵敏板温度 0.121 异丙醇产品纯度 0.098
C3塔再沸器负荷 0.156 C3塔灵敏板温度 0.145
各控制器在初始化运行后,自动输入设定值,并以设定值为中间值确定范围,用闭环回路做测试方法。在初始稳态工艺基础上添加±10%的进料流量扰动和进料组分扰动,进料流量扰动即在进料流量为10000kg/h(含二异丙醚30%、含异丙醇10%、含水60%)的工艺稳定运行后,分别添加+10%(11000kg/h)的扰动和-10%(9000kg/h)的扰动,进料组分扰动即在进料流量为10000kg/h(含二异丙醚30%、含异丙醇10%、含水60%)的工艺稳定运行后,分别添加+10%(10000kg/h,含二异丙醚25.5%、含异丙醇8.5%、含水66%)的扰动和-10%(10000kg/h,含二异丙醚34.5%、含异丙醇11.5%、含水54%)的扰动。
在添加了扰动后,对二异丙醚精馏塔底产品二异丙醚的纯度、异丙醇精馏塔塔底产品异丙醇的纯度和浓缩精馏塔塔底产品水的纯度进行数据记录,用以测试动态控制系统的控制性能。进料扰动产品纯度的动态响应如图7所示,虚线为+10%的进料扰动,实线为-10%的进料扰动。
结果显示,当进料流量添加±10%的扰动时,二异丙醚精馏塔得到的产品二异丙醚的浓度由初始的99.9%进行了小幅震荡,在经过5.5h后产品的质量分数恢复到99.9%,异丙醇精馏塔得到的产品异丙醇的浓度由初始的99.5%进行了小幅震荡,在经过5h后产品可达到99.5%以上,浓缩塔的产物水的质量分数一直接近100%,没有发生震荡;在添加组分扰动之后,二异丙醚精馏塔得到的产品二异丙醚的浓度由初始的99.9%进行了小幅震荡,在经过7.5h后产品的质量分数恢复到99.9%,异丙醇精馏塔得到的产品异丙醇的浓度由初始的99.5%进行了小幅震荡,在经过13h后产品可达到99.5%以上,浓缩塔的产物水的质量分数一直接近100%,没有发生震荡;具有良好的鲁棒性和稳定性。
实施例三
根据图4所示,本实施例提供了一种四塔共沸精馏分离二异丙醚/异丙醇/水三元共沸物工艺的比例-积分控制方案,该控制方案的实施案例如下:
本实例通过以下方式获取数据集:基于共沸精馏动态仿真,改变进料的流量和组分,等待系统稳定,在系统稳定一小时后再次改变进料条件,每次改变幅度增加2%(±2%,±4%,±6%…),改变的上下限为初始条件的±20%,每0.01h采样一次数据。
采样得到的数据不能直接作为训练数据,需进行数据归一化,将原始数据缩放于[0,1]区间内,这样可以加快后面预测模型的训练速度,提高纯度预测模型精度。本实例采用离差标准化方法进行数据归一化,该方法将训练数据进行线性转化,将其结果映射于[0,1]区间内,其公式如下:
Figure BDA0003861534780000131
主要构建的预测模块有两个,一个预测二异丙醚塔产品二异丙醚纯度,另一个预测异丙醇塔产品异丙醇纯度,考虑到预分离他和二异丙醚塔组成的预分离流程相对独立,会对浓缩精馏塔和异丙醇精馏塔组成的流程产生较大影响,因此在构建纯度预测模块时,首先选取预分离塔和二异丙醚塔的辅助变量(见下表),获取数据集,基于时延神经网络构建针对二异丙醚产品的预测模块,该预测模块的最优参数为输入时延为2,隐含层神经元个数为70。
Figure BDA0003861534780000132
Figure BDA0003861534780000141
随后,在调试好针对二异丙醚产品的纯度预测模块后,选取预分离塔、浓缩精馏塔和异丙醇精馏塔辅助变量(见下表),获取数据集,同样基于时延神经网络构建针对异丙醇产品的预测模块,该预测模块的最优参数为输入时延为2,隐含层神经元个数为30。
Figure BDA0003861534780000142
随后,在所述模型预测控制方案的基础上构建针对三元共沸体系的软测量模型预测控制方案。其构建过程如下:
(1)首先选择合适的辅助变量以预测二异丙醚产品纯度,这些辅助变量包括预分离精馏塔和二异丙醚精馏塔灵敏板温度和回流流量、进料流量、塔底流量、塔顶流量、塔顶压力等;
(2)构建针对二异丙醚产品的纯度预测模型,调试该预测模型的参数,使预测模型能较为精准地预测二异丙醚产品纯度;
(3)构建融合控制方案的模型预测控制部分,该控制结构仍为实例2所述控制结构;
(4)将该纯度预测模型的预测输出与模型预测控制控制器中二异丙醚产品纯度输入信号部分连接,对二异丙醚产品纯度的设定值为99.9wt%;
(5)运行联合仿真,根据产品纯度响应曲线调整优化模型预测控制控制器及预测模块;
(6)基于步骤(4)所述控制结构,继续选择辅助变量以预测异丙醇产品纯度,这些辅助变量包括预分离精馏塔、浓缩精馏塔和异丙醇精馏塔灵敏板温度和回流流量、进料流量、塔底流量、塔顶流量、塔顶压力等;采用与步骤(2)-(3)相同的方式构建针对异丙醇产品的软测量模型控制,异丙醇纯度的设定值为99.5wt%;
(7)运行模拟,根据响应曲线对控制器及纯度预测模块进行优化调整。
各控制器在初始化运行后,自动输入设定值,并以设定值为中间值确定范围,用闭环回路做测试方法。在初始稳态工艺基础上添加±10%的进料流量扰动和进料组分扰动,进料流量扰动即在进料流量为10000kg/h(含二异丙醚30%、含异丙醇10%、含水60%)的工艺稳定运行后,分别添加+10%(11000kg/h)的扰动和-10%(9000kg/h)的扰动,进料组分扰动即在进料流量为10000kg/h(含二异丙醚30%、含异丙醇10%、含水60%)的工艺稳定运行后,分别添加+10%(10000kg/h,含二异丙醚25.5%、含异丙醇8.5%、含水66%)的扰动和-10%(10000kg/h,含二异丙醚34.5%、含异丙醇11.5%、含水54%)的扰动。
在添加了扰动后,对二异丙醚精馏塔底产品二异丙醚的纯度、异丙醇精馏塔塔底产品异丙醇的纯度和浓缩精馏塔塔底产品水的纯度进行数据记录,用以测试动态控制系统的控制性能。进料扰动产品纯度的动态响应如图8所示,虚线为+10%的进料扰动,实线为-10%的进料扰动。
结果显示,当进料流量添加±10%的扰动时,二异丙醚精馏塔得到的产品二异丙醚的浓度由初始的99.9%进行了小幅震荡,在经过5.3h后产品的质量分数恢复到99.9%,异丙醇精馏塔得到的产品异丙醇的浓度由初始的99.5%进行了小幅震荡,在经过19h后产品可达到99.5%以上,浓缩塔的产物水的质量分数一直接近100%,没有发生震荡;在添加组分扰动之后,二异丙醚精馏塔得到的产品二异丙醚的浓度由初始的99.9%进行了小幅震荡,在经过8h后产品的质量分数恢复到99.9%,异丙醇精馏塔得到的产品异丙醇的浓度由初始的99.5%进行了小幅震荡,在经过16h后产品可达到99.5%以上,浓缩塔的产物水的质量分数一直接近100%,没有发生震荡;具有良好的鲁棒性和稳定性,且无需使用昂贵的成分检测仪器。
对于本领域的技术人员来说,可以根据以上的技术方案和构思,给出各种相应的改变和变形,而所有的这些改变和变形,都应该包括在本发明权利要求的保护范围之内。

Claims (10)

1.一种共沸精馏分离异丙醇/二异丙醚/水共沸物的控制方法,其特征在于,所述方法包括以下步骤:
步骤1,预分离,原料由异丙醇、二异丙醚和水组成,原料自塔中部进入预分离共沸精馏塔,塔顶流股经过冷凝器得到混合液,凝液暂存于回流罐,罐内混合液产品凝液按照回流比回流至预分离共沸精馏塔和输送至倾析器,倾析器的水相从原理进料塔板流回到共沸精馏塔,预分离精馏塔塔釜中剩余物料输送至浓缩精馏塔;
步骤2,二异丙醚分离,倾析器的有机相作为二异丙醚塔的进料,进入二异丙醚精馏塔的物料经塔处理,塔顶蒸汽经过冷凝器得到混合液,混合液按照回流比回流至二异丙醚精馏塔和循环进到预分离精馏塔,二异丙醚精馏塔塔釜中产物输送至界外;
步骤3,溶剂浓缩塔,进入浓缩精馏塔的物料经塔精馏,塔顶蒸汽经过冷凝器得到混合液,混合液输送到倾析器,倾析器的水相回流至浓缩精馏塔,有机相输送到异丙醇精馏塔,溶剂浓缩塔塔釜中的水输送到界外;
步骤4,异丙醇分离,进入异丙醇精馏塔的物料经塔精馏,塔顶流股经过冷凝器得到混合液,凝液暂存于回流罐,罐内混合液产品凝液按照回流比回流至异丙醇精馏塔和倾析器。异丙醇分离塔塔釜中的产物异丙醇输送到界外。
2.根据权利要求1所述的共沸精馏分离异丙醇/二异丙醚/水共沸物的控制方法,其特征在于,所述预分离精馏塔进料管线设有流量控制器,所述流量控制器控制异丙醇/二异丙醚/水原料混合液的进料流量,所述流量控制器为反向控制。
3.根据权利要求1所述的共沸精馏分离异丙醇/二异丙醚/水共沸物的控制方法,其特征在于,所述预分离精馏塔、二异丙醚精馏塔与异丙醇精馏塔的塔顶均设有冷凝器和回流罐,所述回流罐上设有压力控制器和液位控制器,浓缩精馏塔设有压缩机和冷凝器,浓缩精馏塔塔顶设有压力控制器,冷凝器设有温度控制器。
4.根据权利要求1所述的共沸精馏分离异丙醇/二异丙醚/水共沸物的控制方法,其特征在于,所述预分离精馏塔、二异丙醚精馏塔与异丙醇精馏塔塔顶回流罐的液位分别控制塔顶混合物料的采出,所述三塔的塔顶液位控制器均为正向控制。
5.根据权利要求1所述的共沸精馏分离异丙醇/二异丙醚/水共沸物的控制方法,其特征在于,所述苯萃取精馏塔、异丙醇萃取精馏塔与溶剂回收塔塔底通过调整物料采出量来控制塔釜液位,所述三塔的塔顶液位控制器均为正向控制。
6.根据权利要求1所述的共沸精馏分离异丙醇/二异丙醚/水共沸物的控制方法,其特征在于,所述两个倾析器通过调整有机相和水相的采出量来分别控制有机相和水相液位,所述倾析器液位控制器均为正向控制。
7.根据权利要求1所述的共沸精馏分离异丙醇/二异丙醚/水共沸物的控制方法,其特征在于,所述预分离精馏塔、二异丙醚精馏塔与异丙醇精馏塔通过调整塔顶冷凝器的负荷,控制回流罐的压力,所述浓缩精馏塔塔顶冷凝器通过调整压缩机负荷,控制浓缩精馏塔塔顶压力,所述四塔的塔顶压力控制器均为反向控制。
8.根据权利要求1所述的共沸精馏分离异丙醇/二异丙醚/水共沸物的控制方法,其特征在于,所述预分离精馏塔和浓缩精馏塔的塔中下部、二异丙醚精馏塔和异丙醇的塔中上部设有温度控制器,通过调整再沸器热负荷实现温度控制,所述三塔温度控制器均为反向控制;所述二异丙醚精馏塔与异丙醇精馏塔的回流比固定。
9.根据权利要求1所述的共沸精馏分离异丙醇/二异丙醚/水共沸物的控制方法,其特征在于,所述二异丙醚精馏塔和异丙醇精馏塔的塔底产品纯度通过调节温度控制器设定值控制,并且组分控制器为反向控制;使用模型预测控制器代替组分控制器和浓缩塔的温度控制器,控制所述二异丙醚精馏塔和异丙醇精馏塔的温度控制器设定值和浓缩塔的再沸器负荷。
10.根据权利要求1所述的共沸精馏分离异丙醇/二异丙醚/水共沸物的控制方法,其特征在于,还设有软测量模型预测控制器代替模型预测控制器,输出控制所述浓缩精馏塔的再沸器负荷以及二异丙醚精馏塔和异丙醇精馏塔中上部的温度控制器。
CN202211166351.0A 2022-09-23 2022-09-23 一种共沸精馏分离异丙醇/二异丙醚/水共沸物的控制方法 Pending CN115353442A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211166351.0A CN115353442A (zh) 2022-09-23 2022-09-23 一种共沸精馏分离异丙醇/二异丙醚/水共沸物的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211166351.0A CN115353442A (zh) 2022-09-23 2022-09-23 一种共沸精馏分离异丙醇/二异丙醚/水共沸物的控制方法

Publications (1)

Publication Number Publication Date
CN115353442A true CN115353442A (zh) 2022-11-18

Family

ID=84006301

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211166351.0A Pending CN115353442A (zh) 2022-09-23 2022-09-23 一种共沸精馏分离异丙醇/二异丙醚/水共沸物的控制方法

Country Status (1)

Country Link
CN (1) CN115353442A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116077965A (zh) * 2023-04-10 2023-05-09 中建安装集团有限公司 一种制备丙酸正丙酯的背包式反应精馏控制方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1762525A (zh) * 2005-10-14 2006-04-26 清华大学 精馏塔的一种自动控制和优化方法
US20070038333A1 (en) * 2005-08-15 2007-02-15 Dadebo Solomon A Model predictive control having application to distillation
CN105906488A (zh) * 2014-08-06 2016-08-31 东营市海科新源化工有限责任公司 一种用于异丙醇生产中副产物二异丙醚的精制提纯装置的方法
CN107311832A (zh) * 2017-08-01 2017-11-03 青岛科技大学 变压精馏分离苯与异丁醇混合物工艺及动态控制方案
CN110028385A (zh) * 2019-04-26 2019-07-19 山东科技大学 一种分离异丙醇二异丙醚水溶液的方法和装置
CN111474856A (zh) * 2020-05-25 2020-07-31 北京化工大学 一种隔离壁精馏塔的浓度软测量方法
CN112295255A (zh) * 2020-10-24 2021-02-02 四川泸天化创新研究院有限公司 一种甲醇精馏装置智能控制系统及控制方法
US20210370197A1 (en) * 2018-10-24 2021-12-02 Covestro Intellectual Property Gmbh & Co. Kg Thermal separation method with soft sensor
CN113788746A (zh) * 2021-10-19 2021-12-14 青岛科技大学 三塔变压精馏分离丁酮/异丙醇/正庚烷三元共沸物方法
CN114139446A (zh) * 2021-11-25 2022-03-04 青岛科技大学 一种用于特殊精馏过程组分在线检测软测量方法
CN114656346A (zh) * 2022-03-25 2022-06-24 青岛科技大学 一种变压精馏分离丁酮/异丙醇/正庚烷的热集成及其控制方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070038333A1 (en) * 2005-08-15 2007-02-15 Dadebo Solomon A Model predictive control having application to distillation
CN1762525A (zh) * 2005-10-14 2006-04-26 清华大学 精馏塔的一种自动控制和优化方法
CN105906488A (zh) * 2014-08-06 2016-08-31 东营市海科新源化工有限责任公司 一种用于异丙醇生产中副产物二异丙醚的精制提纯装置的方法
CN107311832A (zh) * 2017-08-01 2017-11-03 青岛科技大学 变压精馏分离苯与异丁醇混合物工艺及动态控制方案
US20210370197A1 (en) * 2018-10-24 2021-12-02 Covestro Intellectual Property Gmbh & Co. Kg Thermal separation method with soft sensor
CN110028385A (zh) * 2019-04-26 2019-07-19 山东科技大学 一种分离异丙醇二异丙醚水溶液的方法和装置
CN111474856A (zh) * 2020-05-25 2020-07-31 北京化工大学 一种隔离壁精馏塔的浓度软测量方法
CN112295255A (zh) * 2020-10-24 2021-02-02 四川泸天化创新研究院有限公司 一种甲醇精馏装置智能控制系统及控制方法
CN113788746A (zh) * 2021-10-19 2021-12-14 青岛科技大学 三塔变压精馏分离丁酮/异丙醇/正庚烷三元共沸物方法
CN114139446A (zh) * 2021-11-25 2022-03-04 青岛科技大学 一种用于特殊精馏过程组分在线检测软测量方法
CN114656346A (zh) * 2022-03-25 2022-06-24 青岛科技大学 一种变压精馏分离丁酮/异丙醇/正庚烷的热集成及其控制方法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
ASHA RANI等: "Development of soft sensor for neural network based control of distillation column", 《ISA TRANSACTIONS》, vol. 52, no. 3, 30 January 2013 (2013-01-30), pages 438 - 449 *
BAOMING SHAN等: "Control of the azeotropic distillation process for separation of acetonitrile and water with and without heat integration", 《CHEMICAL ENGINEERING & PROCESSING: PROCESS INTENSIFICATION》, vol. 165, 8 May 2021 (2021-05-08), pages 1 - 13, XP086614889, DOI: 10.1016/j.cep.2021.108451 *
BAOMING SHAN等: "Dynamic control of heat pump assisted extractive distillation process for separation of ethyl acetate/isopropanol/water mixture", 《J CHEM TECHNOL BIOTECHNOL》, vol. 96, no. 8, 31 December 2021 (2021-12-31), pages 2368 - 2381, XP071530090, DOI: 10.1002/jctb.6764 *
BAOMING SHAN等: "Soft sensor model predictive control for azeotropic distillation of the separation of DIPE/IPA/water mixture", 《JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS》, vol. 152, 18 October 2023 (2023-10-18), pages 1 - 13 *
CHAO GUANG等: "Comparison of heterogeneous azeotropic and pressure-swing distillations for separating the diisopropylether/isopropanol/water mixtures", 《CHEMICAL ENGINEERING RESEARCH AND DESIGN》, vol. 143, 31 January 2019 (2019-01-31), pages 249 - 260, XP085613626, DOI: 10.1016/j.cherd.2019.01.021 *
GAURAV KATARIA等: "Dynamic Neural Network Based Sensing and Controlling a Reactive Distillation Column Having Inverse Response", 《THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING》, vol. 55, no. 1, 31 December 2021 (2021-12-31), pages 167 - 179, XP037419257, DOI: 10.1134/S0040579521010085 *
JUN QI等: "Heat-Integrated Azeotropic Distillation and Extractive Distillation for the Separation of Heterogeneous Ternary Azeotropes of Diisopropyl Ether/Isopropyl Alcohol/Water", 《IND. ENG. CHEM. RES.》, vol. 58, no. 45, 24 October 2019 (2019-10-24), pages 20734 - 20745 *
单宝明等: "基于变径-变压塔的甲醇/氯仿二元共沸物精馏分离过程热集成与动态控制", 《应用化工》, vol. 50, no. 1, 31 January 2021 (2021-01-31), pages 269 - 274 *
宋世晶等: "异丙醇装置副产二异丙醚精制过程模拟研究", 《山东化工》, vol. 40, no. 5, 31 December 2011 (2011-12-31), pages 14 - 16 *
黄路等: "异丙醚-异丙醇-水三元共沸物的Aspen Plus分离模拟", 《石油与天然气化工》, vol. 39, no. 6, 31 December 2010 (2010-12-31), pages 472 - 474 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116077965A (zh) * 2023-04-10 2023-05-09 中建安装集团有限公司 一种制备丙酸正丙酯的背包式反应精馏控制方法

Similar Documents

Publication Publication Date Title
Lee et al. Evolutional design and control of the equilibrium-limited ethyl acetate process via reactive distillation− pervaporation hybrid configuration
CN110262257B (zh) 一种多变量控制方法及装置
CN115353442A (zh) 一种共沸精馏分离异丙醇/二异丙醚/水共沸物的控制方法
CN114253130B (zh) 一种二元精馏过程的自抗扰控制结构及控制方法
Pascall et al. Semicontinuous separation of dimethyl ether (DME) produced from biomass
Wang et al. Composition control and temperature inferential control of dividing wall column based on model predictive control and PI strategies
CN107311832B (zh) 变压精馏分离苯与异丁醇混合物工艺及动态控制方案
Zhang et al. Design optimization and control of dividing wall column for purification of trichlorosilane
CN114656346B (zh) 一种变压精馏分离丁酮/异丙醇/正庚烷的热集成及其控制方法
Czarnecki et al. Extractive dividing wall column for separating azeotropic systems: a review
Hwang et al. Design and control of a fully thermally coupled distillation column modified from a conventional system
CN111221251B (zh) 一种基于滑模控制器的隔壁塔控制系统及控制方法
Qian et al. Model predictive control of azeotropic dividing wall distillation column for separating furfural–water mixture
RU2722132C1 (ru) Способ управления ректификационной колонной выделения изопентана
Rao et al. Modeling, simulation and control of middle vessel batch distillation column
CN218011152U (zh) 一种新型分隔壁精馏塔动态控制装置
Jana A hybrid FLC-EKF scheme for temperature control of a refinery debutanizer column
Chien et al. Overall control strategy of a coupled reactor/columns process for the production of ethyl acrylate
Ay et al. Decoupling constrained model predictivecontrol of multicomponent packed distillation column
Wahid et al. Multivariable model predictive control (4x4) of methanol-water separation in dimethyl ether production
Cheng et al. Decoupling control of a binary distillation column with measurement noise
Egger et al. New process control concepts for energy efficient operation of reactive dividing wall columns
CN115933386B (zh) 一种考虑输入约束的精馏塔过程抗扰控制结构及控制方法
Udugama et al. Achieving value from process intensification through better process control
Paranjape Modeling and control of an extractive distillation column

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination