CN115340352B - 一种微膨胀地浸采铀固井液及其制备方法 - Google Patents

一种微膨胀地浸采铀固井液及其制备方法 Download PDF

Info

Publication number
CN115340352B
CN115340352B CN202210958196.XA CN202210958196A CN115340352B CN 115340352 B CN115340352 B CN 115340352B CN 202210958196 A CN202210958196 A CN 202210958196A CN 115340352 B CN115340352 B CN 115340352B
Authority
CN
China
Prior art keywords
situ leaching
parts
leaching uranium
micro
exciting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210958196.XA
Other languages
English (en)
Other versions
CN115340352A (zh
Inventor
徐乐昌
彭阳
周磊
吴名涛
郑伍魁
原渊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Research Institute of Chemical Engineering and Metallurgy of CNNC
Original Assignee
Beijing Research Institute of Chemical Engineering and Metallurgy of CNNC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Research Institute of Chemical Engineering and Metallurgy of CNNC filed Critical Beijing Research Institute of Chemical Engineering and Metallurgy of CNNC
Priority to CN202210958196.XA priority Critical patent/CN115340352B/zh
Publication of CN115340352A publication Critical patent/CN115340352A/zh
Application granted granted Critical
Publication of CN115340352B publication Critical patent/CN115340352B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • C04B22/062Oxides, Hydroxides of the alkali or alkaline-earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • C04B22/066Magnesia; Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • C04B22/142Sulfates
    • C04B22/147Alkali-metal sulfates; Ammonium sulfate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • C09K8/467Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/302Water reducers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00724Uses not provided for elsewhere in C04B2111/00 in mining operations, e.g. for backfilling; in making tunnels or galleries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供了一种微膨胀地浸采铀固井液及其制备方法,属于原地浸出采铀技术领域。本发明通过激发剂、激发助剂的作用,使得以粉煤灰为主要胶结料的工业副产品得到激发,工业副产品体系固井液由于微粉矿粉和粉煤灰水化热较低,水化前后体积变化较小,粉煤灰球形度好,并且掺入了地浸采铀钻孔泥浆等综合因素和处理方式,在表面活性剂和膨胀剂的作用下得到了一种微膨胀地浸固井液,克服了现有技术中普通硅酸盐的高耗能、水化热高等缺点,也避免了矿渣MTC固井液直接应用于地浸采铀固井存在固井填充不完全的潜在风险,另外有效解决了废弃泥浆堆积占地问题,为地浸采铀固井提供了一种简单易得,性能稳定,绿色环保的固井液。

Description

一种微膨胀地浸采铀固井液及其制备方法
技术领域
本发明涉及原地浸出采铀技术领域,尤其涉及一种微膨胀地浸采铀固井液及其制备方法。
背景技术
原地浸出采铀,即地浸采铀(英文简称ISL)是通过钻孔工程,借助化学试剂,从天然埋藏条件下把矿石中的铀溶解出来,而不使矿石产生位移的集采、选、冶于一体的铀矿开采方法。地浸钻孔担负着揭露矿层的作用,更是浸出剂进入矿层的通道,所以,其固井质量对地浸采铀至关重要。目前,地浸钻孔主要采用普通硅酸盐作为固井原料。随着矿体埋深的增加,普通硅酸盐出现许多不足,比如固井过程中放热量大,浆体水化后收缩大,耐久性差。
近年来,矿渣MTC固井液在多个行业得到了工业应用。使用碱激发矿渣充填料,克服了普通硅酸盐的高耗能、水化热高等缺点,具有良好的应用前景。但是,矿渣MTC固井液直接应用于地浸采铀固井,由于矿粉细度较大,颗粒形貌较差,存在固井填充不完全的潜在风险。所以,可应用于地浸采铀的微膨胀MTC固井液的研制,成为亟待解决的问题。
发明内容
有鉴于此,本发明的目的在于提供一种微膨胀地浸采铀固井液及其制备方法。本发明的微膨胀地浸采铀固井液能有效解决普通硅酸盐水泥作为固井液原料,放热量大、水化收缩大、流动性差的问题且固井效果好。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种微膨胀地浸采铀固井液,由包括以下质量份数的原料制得:
900~1100份地浸采铀钻孔泥浆、350~700份工业副产品、100~400份激发剂、50~200份激发助剂、20~80份膨胀剂和10~25份表面活性剂;
所述工业副产品包括粉煤灰和矿渣微粉。
优选地,所述工业副产品包括以下质量百分含量的组分:粉煤灰60%~80%和矿渣微粉20%~40%。
优选地,所述激发剂包括NaOH、KOH和NaSO4中的一种或多种。
优选地,所述激发助剂为Na2SiO3溶液;所述Na2SiO3溶液的质量浓度为40%~45%。
优选地,所述膨胀剂为活性氧化镁;所述活性氧化镁的比表面积为400~500m2/kg。
优选地,所述表面活性剂为聚羧酸减水剂;所述聚羧酸减水剂的粒径为100~300μm。
优选地,所述原料还包括0~200份水,所述水的量不为0。
本发明还提供了上述技术方案所述微膨胀地浸采铀固井液的制备方法,包括以下步骤:
将激发剂、激发助剂和地浸采铀钻孔泥浆混合,得到激发泥浆;
将工业副产品、膨胀剂和表面活性剂混合,得到粉料;
将所述粉料与激发泥浆混合进行激发,得到所述微膨胀地浸采铀固井液。
优选地,所述激发依次在低速搅拌和高速搅拌的条件下进行;所述低速搅拌的转速为140~150r/min,时间为2min,所述高速搅拌的转速为270~280r/min,时间为2min。
优选地,所述激发剂、激发助剂和地浸采铀钻孔泥浆混合在低速搅拌下进行;所述低速搅拌的转速为140~150r/min,时间为2min。
本发明提供了一种微膨胀地浸采铀固井液,由包括以下质量份数的原料制得:900~1100份地浸采铀钻孔泥浆、350~700份工业副产品、100~400份激发剂、50~200份激发助剂、20~80份膨胀剂和10~25份表面活性剂,所述工业副产品包括粉煤灰和矿渣微粉。
本发明通过激发剂、激发助剂的作用,使得以粉煤灰为主要胶结料的工业副产品得到激发,工业副产品体系固井液由于微粉矿粉和粉煤灰水化热较低,水化前后体积变化较小,粉煤灰球形度好,并且掺入了地浸采铀钻孔泥浆等综合因素和处理方式,在表面活性剂和膨胀剂的作用下得到了一种微膨胀地浸固井液,克服了现有技术中普通硅酸盐的高耗能、水化热高等缺点,也避免了矿渣MTC固井液直接应用于地浸采铀固井存在固井填充不完全的潜在风险,另外有效解决了废弃泥浆堆积占地问题,为地浸采铀固井提供了一种简单易得,性能稳定,绿色环保的固井液。
本发明还提供了上述技术方案所述微膨胀地浸采铀固井液的制备方法,物料混合前期均匀性较差,快搅和慢搅产生的剪切力形式不一样的,先进行慢搅再进行快搅有助于更为充分的混合。
附图说明
图1为本发明实施例中制备微膨胀地浸采铀固井液的流程图。
具体实施方式
本发明提供了一种微膨胀地浸采铀固井液,由包括以下质量份数的原料制得:
900~1100份地浸采铀钻孔泥浆、350~700份工业副产品、100~400份激发剂、50~200份激发助剂、20~80份膨胀剂和10~25份表面活性剂,所述工业副产品包括粉煤灰和矿渣微粉。
在本发明中,若无特殊说明,使用的原料均为本领域市售商品。
本发明提供的微膨胀地浸采铀固井液优选包括1000质量份的地浸采铀钻孔泥浆。
在本发明中,所述地浸采铀钻孔泥浆的含水量优选为25wt%~30wt%,pH值优选为8.5~9;有机质含量少,烧失量优选为5~10wt%。
在本发明中,所述地浸采铀钻孔泥浆中SiO2的质量分数优选为70%~80%,Al2O3的质量分数优选为10%~15%,CaO的质量分数优选为1.5%~3%,Fe2O3的质量分数优选为2%~3%,其他氧化物及有害化合物含量较少;所述地浸采铀钻孔泥浆中重金属的总含量优选低于1.0mg·g-1,所述重金属包括铜、锌、铅、镉、铬、砷和汞。
本发明提供的微膨胀地浸采铀固井液优选包括380~500质量份的工业副产品。
在本发明中,所述工业副产品优选包括以下质量百分含量的组分:粉煤灰60%~80%和矿渣微粉20%~40%。
在本发明中,所述粉煤灰优选为一级粉煤灰,比表面积优选为300~400m2/kg,所述粉煤灰中SiO2的质量分数优选为48%~54%,Al2O3的质量分数优选为31%~37%,CaO的质量分数优选为2%~6%,Fe2O3的质量分数优选为2%~6%,K2O的质量分数优选为1%~3%,TiO2的质量分数优选为0.5%~1.5%。
在本发明中,所述矿渣微粉的比表面积优选为300~400m2/kg,在本发明中的具体实施例中,所述矿渣微粉优选炼铁时产生的工业副产品,经过水淬粉磨之后形成的矿渣微粉,所述矿渣微粉具有较好的潜在水化活性,替代部分粉煤灰,可以提高粉煤灰的激活程度,缩短凝结时间。
在本发明中,所述矿渣微粉中CaO的质量分数优选为38%~44%,SiO2的质量分数优选为31%~37%,Al2O3的质量分数优选为9%~13%,MgO的质量分数优选为6%~10%。
本发明提供的微膨胀地浸采铀固井液优选包括160~340质量份的激发剂,更优选为220~260份。
在本发明中,所述激发剂优选包括NaOH、KOH和NaSO4中的一种或多种。
在本发明中,所述激发剂的粒径优选为0.5~3mm。
本发明提供的微膨胀地浸采铀固井液优选包括90~180质量份的激发助剂。
在本发明中,所述激发助剂优选为Na2SiO3溶液,所述Na2SiO3溶液的质量分数优选为40%~45%。
在本发明中,所述Na2SiO3溶液的模数优选为2.25,是指把Na2SiO3写成Na2O·nSiO2时n=2.25,即二氧化硅与氧化钠的摩尔数比为2.25。
本发明提供的微膨胀地浸采铀固井液优选包括40质量份的膨胀剂。
在本发明中,所述膨胀剂优选为活性氧化镁,所述活性氧化镁的比表面积优选为400~500m2/kg。
在本发明中,所述活性氧化镁优选由菱镁矿煅烧制得,所述煅烧的温度优选为800~1000℃。
本发明提供的微膨胀地浸采铀固井液优选包括11~15质量份的表面活性剂。
在本发明中,所述表面活性剂优选为聚羧酸减水剂,所述聚羧酸减水剂的粒径优选为100~300μm,减水率优选≥45%,所述聚羧酸减水剂起到减水的作用,当含水量一致的情况下,所述聚羧酸减水剂的掺入能够改善工作性能,增加流动度。
在本发明中,所述原料优选还包括0~200份水,更优选为150份。
本发明还提供了上述技术方案所述微膨胀地浸采铀固井液的制备方法,包括以下步骤:
将激发剂、激发助剂和地浸采铀钻孔泥浆混合,得到激发泥浆;
将工业副产品、膨胀剂和表面活性剂混合,得到粉料;
将所述粉料与激发泥浆混合进行激发,得到所述微膨胀地浸采铀固井液。
本发明优选先分别称取地浸采铀钻孔泥浆、工业副产品、激发剂、激发助剂、膨胀剂和表面活性剂。
在本发明中,所述激发剂、激发助剂和地浸采铀钻孔泥浆混合优选在低速搅拌下进行,所述低速搅拌的转速优选为140~150r/min,时间优选为2min。
本发明优选将所述粉料加入到所述激发泥浆中。
在本发明中,所述激发优选依次在低速搅拌和高速搅拌的条件下进行,所述低速搅拌的转速优选为140~150r/min,时间优选为2min,所述高速搅拌的转速优选为270~280r/min,时间优选为2min,物料混合前期均匀性较差,快搅和慢搅产生的剪切力形式不一样的,先进行慢搅再进行快搅有助于更为充分的混合。
为了进一步说明本发明,下面结合实例对本发明提供的微膨胀地浸采铀固井液及其制备方法进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
本发明实施例中使用的原料:
地浸采铀钻孔泥浆的含水量为25wt%,pH值为8.5;烧失量为10wt%,地浸采铀钻孔泥浆中SiO2的质量分数为70%,Al2O3的质量分数为10%,CaO的质量分数为1.5%,Fe2O3的质量分数为2%,其他氧化物及有害化合物含量较少;所述地浸采铀钻孔泥浆中重金属的总含量低于1.0mg·g-1,所述重金属包括铜、锌、铅、镉、铬、砷和汞;
工业副产品包括以下质量百分含量的组分:粉煤灰60%和矿渣微粉40%,粉煤灰为一级粉煤灰,比表面积为400m2/kg,粉煤灰中SiO2的质量分数为54%,Al2O3的质量分数为31%,CaO的质量分数为2%,Fe2O3的质量分数为2%,K2O的质量分数为1%,TiO2的质量分数为0.5%;矿渣微粉的比表面积为400m2/kg,矿渣微粉优选炼铁时产生的工业副产品,经过水淬粉磨之后形成的矿渣微粉,矿渣微粉中CaO的质量分数为38%,SiO2的质量分数为31%,Al2O3的质量分数为9%,MgO的质量分数为6%;
激发剂为NaOH;
激发助剂为Na2SiO3溶液,Na2SiO3溶液的质量分数为40%,Na2SiO3溶液的模数为2.25;
膨胀剂为活性氧化镁,比表面积为400m2/kg,由菱镁矿在800℃煅烧制得;
表面活性剂为聚羧酸减水剂,粒径为100~300μm,减水率≥45%。
图1为本发明实施例中制备微膨胀地浸采铀固井液的流程图。
实施例1
按质量称取1000份地浸采铀钻孔泥浆、380份工业副产品、160份激发剂、90份激发助剂、20份膨胀剂、11份表面活性剂,将160份激发剂、90份激发助剂加入1000份地浸采铀钻孔泥浆中,以140r/min低速搅拌2min,形成激发泥浆,再将380份工业副产品、20份膨胀剂和11份表面活性剂干燥混合5min,使其分散均匀,水化过程中能够均匀膨胀,最后将充分混合的粉料加入到所述待激发泥浆中,先以140r/min低速搅拌2min,再以270r/min高速搅拌2min,最终得到一种微膨胀地浸固井液。其各项性能如表1所示。
实施例2
按质量称取1000份地浸采铀钻孔泥浆、380份工业副产品、260份激发剂、90份激发助剂、20份膨胀剂、11份表面活性剂和150份水,将260份激发剂、90份激发助剂和150份水加入1000份地浸采铀钻孔泥浆中,以150r/min低速搅拌2min,形成激发泥浆,再将380份工业副产品、20份膨胀剂和11份表面活性剂干燥混合5min,使其分散均匀,水化过程中能够均匀膨胀,最后将充分混合的粉料加入到所述待激发泥浆中,先以150r/min低速搅拌2min,再以280r/min高速搅拌2min,最终得到一种微膨胀地浸固井液,其各项性能如表1所示。
实施例3
按质量称取1000份地浸采铀钻孔泥浆、700份工业副产品、220份激发剂、180份激发助剂、40份膨胀剂、15份表面活性剂,将220份激发剂和180份激发助剂加入1000份地浸采铀钻孔泥浆中,以140r/min低速搅拌2min,形成激发泥浆,再将700份工业副产品、40份膨胀剂和15份表面活性剂干燥混合5min,使其分散均匀,水化过程中能够均匀膨胀,最后将充分混合的粉料加入到所述待激发泥浆中,先以140r/min低速搅拌2min,再以270r/min高速搅拌2min,最终得到一种微膨胀地浸固井液,其各项性能如表1所示。
实施例4
按质量称取1000份地浸采铀钻孔泥浆、700份工业副产品、340份激发剂、180份激发助剂、40份膨胀剂、15份表面活性剂和200份水,将340份激发剂、180份激发助剂和200份水加入1000份地浸采铀钻孔泥浆中,以140r/min低速搅拌2min,形成激发泥浆,再将700份工业副产品、40份膨胀剂和15份表面活性剂干燥混合5min,使其分散均匀,水化过程中能够均匀膨胀,最后将充分混合的粉料加入到所述待激发泥浆中,先以140r/min低速搅拌2min,再以280r/min高速搅拌2min,最终得到一种微膨胀地浸固井液,其各项性能如表1所示。
实施例5
按质量称取1000份地浸采铀钻孔泥浆、700份工业副产品、220份激发剂、180份激发助剂、20份膨胀剂、15份表面活性剂,将220份激发剂和180份激发助剂加入1000份地浸采铀钻孔泥浆中,以150r/min低速搅拌2min,形成激发泥浆,再将700份工业副产品、20份膨胀剂和15份表面活性剂干燥混合5min,使其分散均匀,水化过程中能够均匀膨胀,最后将充分混合的粉料加入到所述待激发泥浆中,先以150r/min低速搅拌2min,再以270r/min高速搅拌2min,最终得到一种微膨胀地浸固井液,其各项性能如表1所示。
表1实施例1~5所述微膨胀地浸采铀固井液的各项性能测试数据
(注:表中的浓度指的是固井液中所有固体物质占总固井液质量的百分比)
从表1中实施例1~4可以看出,微膨胀地浸固井液随着工业副产品含量的增加,静载抗压强度增大,流动度略有变差,随着含水量的增加其流动度明显改善,但是其静压强度大幅度降低,并且收缩变大,为了保证一定激发剂浓度,对激发剂消耗较大;从实施例3、5可以看出,随着膨胀剂的添加增多,其收缩明显得到改善,直至产生微小膨胀,并且膨胀剂的加入对强度和流动度有略微的损失,但是影响较小。
以上所述仅是本发明的优选实施方式,并非对本发明作任何形式上的限制。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (4)

1.一种微膨胀地浸采铀固井液,其特征在于,具体为以下质量份数的原料制得:
1000份地浸采铀钻孔泥浆、700份工业副产品、220份激发剂、180份激发助剂、40份膨胀剂和15份表面活性剂;
所述工业副产品包括粉煤灰和矿渣微粉,所述工业副产品包括以下质量百分含量的组分:粉煤灰60%和矿渣微粉40%;
所述激发剂为NaOH;
所述激发助剂为Na2SiO3溶液,Na2SiO3溶液的质量分数为40%,Na2SiO3溶液的模数为2.25;
所述膨胀剂为活性氧化镁,比表面积为400m2/kg,由菱镁矿在800℃煅烧制得;
所述表面活性剂为聚羧酸减水剂,粒径为100~300μm,减水率≥45%。
2.权利要求1所述微膨胀地浸采铀固井液的制备方法,其特征在于,包括以下步骤:
将激发剂、激发助剂和地浸采铀钻孔泥浆混合,得到激发泥浆;
将工业副产品、膨胀剂和表面活性剂混合,得到粉料;
将所述粉料与激发泥浆混合进行激发,得到所述微膨胀地浸采铀固井液。
3.根据权利要求2所述的制备方法,其特征在于,所述激发依次在低速搅拌和高速搅拌的条件下进行;所述低速搅拌的转速为140~150r/min,时间为2min;所述高速搅拌的转速为270~280r/min,时间为2min。
4.根据权利要求2所述的制备方法,其特征在于,所述激发剂、激发助剂和地浸采铀钻孔泥浆的混合在低速搅拌下进行;所述低速搅拌的转速为140~150r/min,时间为2min。
CN202210958196.XA 2022-08-11 2022-08-11 一种微膨胀地浸采铀固井液及其制备方法 Active CN115340352B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210958196.XA CN115340352B (zh) 2022-08-11 2022-08-11 一种微膨胀地浸采铀固井液及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210958196.XA CN115340352B (zh) 2022-08-11 2022-08-11 一种微膨胀地浸采铀固井液及其制备方法

Publications (2)

Publication Number Publication Date
CN115340352A CN115340352A (zh) 2022-11-15
CN115340352B true CN115340352B (zh) 2023-08-22

Family

ID=83951535

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210958196.XA Active CN115340352B (zh) 2022-08-11 2022-08-11 一种微膨胀地浸采铀固井液及其制备方法

Country Status (1)

Country Link
CN (1) CN115340352B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170685A1 (ja) * 2014-05-07 2015-11-12 電気化学工業株式会社 セメンティング組成物、セメンティング方法及び坑井掘削方法
CN105295876A (zh) * 2015-10-12 2016-02-03 嘉华特种水泥股份有限公司 一种微膨胀油井水泥
CN105505353A (zh) * 2015-12-31 2016-04-20 新疆中核天山铀业有限公司 一种地浸采铀钻孔固井浆体
CN110092597A (zh) * 2019-05-21 2019-08-06 中国地质大学(北京) 一种地聚物材料、适配缓凝剂及制备的耐高温固井水泥浆
CN112479635A (zh) * 2019-09-11 2021-03-12 中国石油化工股份有限公司 一种耐高温大温差弹韧性水泥浆体系及其制备方法
CN113955979A (zh) * 2020-07-21 2022-01-21 中国石油化工股份有限公司 井下水环境不分散耐高温水泥基固结材料及制备方法
CN114230216A (zh) * 2022-01-11 2022-03-25 中建材中研益科技有限公司 一种钢渣基油井水泥膨胀剂及其在油井水泥中的应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170685A1 (ja) * 2014-05-07 2015-11-12 電気化学工業株式会社 セメンティング組成物、セメンティング方法及び坑井掘削方法
CN105295876A (zh) * 2015-10-12 2016-02-03 嘉华特种水泥股份有限公司 一种微膨胀油井水泥
CN105505353A (zh) * 2015-12-31 2016-04-20 新疆中核天山铀业有限公司 一种地浸采铀钻孔固井浆体
CN110092597A (zh) * 2019-05-21 2019-08-06 中国地质大学(北京) 一种地聚物材料、适配缓凝剂及制备的耐高温固井水泥浆
CN112479635A (zh) * 2019-09-11 2021-03-12 中国石油化工股份有限公司 一种耐高温大温差弹韧性水泥浆体系及其制备方法
CN113955979A (zh) * 2020-07-21 2022-01-21 中国石油化工股份有限公司 井下水环境不分散耐高温水泥基固结材料及制备方法
CN114230216A (zh) * 2022-01-11 2022-03-25 中建材中研益科技有限公司 一种钢渣基油井水泥膨胀剂及其在油井水泥中的应用

Also Published As

Publication number Publication date
CN115340352A (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
WO2021168995A1 (zh) 赤泥基污水处理剂及其制备方法、赤泥基陶粒混凝土及其制备方法与应用
CN104909677B (zh) 一种矿山充填用硅铝基尾砂胶结剂及其制备方法
CN110590198B (zh) 一种钨尾矿胶凝材料及其制备方法
CN105524607B (zh) 一种以高铝粉煤灰为原料制备低密度陶粒支撑剂的方法
CN110304847B (zh) 一种湿磨电石渣激发剂及其制备方法和应用
CN112723843B (zh) 一种弱碱激发镍渣高强混凝土的制备方法
CN106587695B (zh) 由废磷渣湿磨法制备水泥掺合料的方法
CN111302708B (zh) 一种大体量锂渣废弃物综合利用技术及其实现方法
CN111302741B (zh) 一种利用铅锌渣制备的生态胶凝材料及其制备方法
CN113998960B (zh) 改性微纳复合超细掺和料高耐久抗裂混凝土及其制备方法
CN112830699B (zh) 一种水泥掺合料、制备方法及应用
CN114873961B (zh) 一种钼尾矿干混砂浆及其应用方法
CN115028381B (zh) 利用赤泥基湿法研磨固碳的碱激发材料制备方法及应用
CN113968716A (zh) 一种电解锰渣无害化处置方法
CN105502974A (zh) 一种镍矿冶金渣的处理和利用方法
CN105693119B (zh) 一种改性磷渣粉及其制备方法和应用
CN110723917A (zh) 一种电解锰渣的资源化利用方法
CN115340352B (zh) 一种微膨胀地浸采铀固井液及其制备方法
CN116003050A (zh) 一种可固化钨尾矿重金属离子的砂浆及其制备方法
CN106630712A (zh) 一种利用含铜污泥生物浸出渣制备的抗水建筑石膏粉及其制备方法
CN106045360A (zh) 碱矿渣混凝土用膨胀剂及其使用方法
CN114315183B (zh) 一种钢渣基原位生长水化硅酸钙增强水泥基材料的方法
CN115521102A (zh) 一种全固废自密实混凝土及其制备方法
CN114315195B (zh) 一种单组份早强速凝型地聚合物的制备方法
CN114057415A (zh) 多固废凝胶材料、基于该凝胶材料的多固废充填材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant