CN115323198A - 一种精铟中钴的去除方法 - Google Patents

一种精铟中钴的去除方法 Download PDF

Info

Publication number
CN115323198A
CN115323198A CN202211121502.0A CN202211121502A CN115323198A CN 115323198 A CN115323198 A CN 115323198A CN 202211121502 A CN202211121502 A CN 202211121502A CN 115323198 A CN115323198 A CN 115323198A
Authority
CN
China
Prior art keywords
indium
chloride
refined
cobalt
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211121502.0A
Other languages
English (en)
Inventor
方立浩
罗鑫
成展崧
刘鸿飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Pioneer Precious Metals Material Co ltd
Original Assignee
Guangdong Pioneer Precious Metals Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Pioneer Precious Metals Material Co ltd filed Critical Guangdong Pioneer Precious Metals Material Co ltd
Priority to CN202211121502.0A priority Critical patent/CN115323198A/zh
Publication of CN115323198A publication Critical patent/CN115323198A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B58/00Obtaining gallium or indium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/006General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with use of an inert protective material including the use of an inert gas
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/10General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/14Refining in the solid state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明提供一种精铟中钴的去除方法,包括如下步骤:S1.在惰性氛围中,将铟原料与氯化物混合均匀并加热熔融进行反应;S2.反应结束后,经静置、降温后,分离即可得到精铟。本发明通过使用氯化物对铟中的钴进行熔融萃取,充分利用氯化物熔盐的密度小于铟的密度,氯化物熔盐的熔点高于铟的熔点,能够实现铟与氯化物熔盐分离完全的目的,使得铟的回收率高,且使用后的熔盐,仍可以进行返回使用。创造性的解决了精铟中杂质钴元素的处理问题,工艺简单,操作条件要求低,生产成本低,具有很高的经济效益。

Description

一种精铟中钴的去除方法
技术领域
本发明涉及精铟生产技术领域,尤其是一种精铟中钴的去除方法。
背景技术
铟是电子工业中非常重要的一种金属,例如由铟为原料制备的氧化铟锡(IndiumTin Oxide,ITO)被广泛用作电视、手机、电脑显示器的液晶屏等产品中。应用于制备铟化合物时,对铟的纯度要求很高,须采用4.5N以上纯度的高纯精铟。然而在地壳中铟是极为分散,没有单独矿床的,均是副产于其它主要金属,工业上通过回收烟灰中浓缩的铟来生产,例如锌冶炼和铅冶炼的副产品。因此,铟回收原料中含有大量的Zn、Fe、Cu、Al、Ga、As、Cd、等金属杂质,除这些金属成分外,还含有Ni、Co等微量成分。这些杂质往往对铟的性能影响很大,因此为去除这些金属杂质和回收高纯度铟需要复杂的过程。
现有的铟的回收方法主要有:(A)通过调节pH值以氢氧化物的形式沉淀的方法;(B)通过添加硫化剂以硫化物形式沉淀的方法;(C)通过添加金属Al、Zn、Cd、Zn-Cd合金等进行置换沉淀的方法;(D)通过溶剂萃取、离子交换法回收铟的方法;(E)化学提纯和电解熔炼结合回收的方法。
传统的铟精炼方法中,湿法精炼相结合的方法工艺复杂,周期长,过程中产生的铟损失大,产生大量废水和废气,因此存在精炼成本高的问题。特别是在铟的生产过程中,钴含量的偏高会给进一步的电解精炼纯化造成较大的困难,当钴含量过高时导致烧板。并且精铟锭中要求钴的含量小于5ppm,为达到这个标准,不得不进行二次电解,而导致交货时间长并且增加成本。因此通过简单、快速、高效的工序严格控制杂质钴的含量显得尤为重要。
发明内容
本发明的目的在于,克服现有的精铟的制备过程复杂、成本高的缺陷,提供一种精铟中钴的去除方法。本发明通过使用氯化物对铟中的钴进行熔融萃取,可以实现铟中杂质钴的高效脱除。
为实现上述目的,本发明采用如下技术方案:
一种精铟中钴的去除方法,包括如下步骤:
S1.在惰性氛围中,将铟原料与氯化物混合均匀并加热熔融进行反应;
S2.反应结束后,经静置、降温后,分离即可得到精铟。
本发明通过投入固态氯化物作为熔盐萃取剂,在较低的温度(300~500℃)下就能够使铟中的杂质钴萃取进入到熔盐中,形成氯化钴类的熔盐,从而实现钴的去除,且不会引入其它杂质元素。本发明充分利用熔盐的密度小于铟的密度,熔盐的熔点高于铟的熔点,能够实现铟与熔盐分离完全的目的,使得铟的回收率高,且使用后的熔盐,仍可以进行返回使用。
优选地,所述氯化物为氯化铵、氯化亚铟或三氯化铟中的至少一种。氯化铵与钴反应生成的气体可以排出,不会引入杂质;氯化亚铟和三氯化铟也不会引入新的杂质。所述氯化物与铟的反应式及萃取原理如下:
Figure BDA0003847274580000022
Figure BDA0003847274580000021
Figure BDA0003847274580000023
优选地,所述氯化物为氯化亚铟和三氯化铟的混合物,所述氯化亚铟:三氯化铟的重量比为1:(0.5~2)。选用该复合氯化物,可以进一步提高铟中钴的去除效率。
所述铟原料中,钴含量为20~55ppm/100kg铟。
优选地,所述铟原料与氯化物的重量比为铟原料:氯化物=100:(1~10)。萃取剂氯化物的添加量过少,无法完全去除钴;萃取剂氯化物添加量过多,易造成原料浪费。合适的添加量可以快速、高效的去除铟中的杂质钴。本发明可以在少量萃取剂的添加量下,即可精准去除铟中的杂质钴,大大缩短了除杂工艺以及降低了成本。进一步优选地,重量比铟原料:氯化物=100:5。
优选地,步骤S1.中包括如下步骤:
S11.先将铟原料加热到160~280℃下得到铟液;
S12.向步骤S11.得到的铟液中加入氯化物,边搅拌边加热到300~500℃后,恒温搅拌反应30~120min。
先将铟原料加热熔融成为铟液,有利于其与固态氯化物充分接触反应,提高杂质钴的去除率;进一步升温可以使得萃取剂氯化物变为熔融状态,在搅拌状态下与铟液充分反应,使铟液中的钴杂质进行充分的萃取脱除。本发明通过控制熔盐萃取的温度和时间,能够使铟与熔盐均为液态,形成液-液混合物,利于进行传质,加快萃取反应的进行,提高生产效率。
优选地,所述惰性氛围为由氮气、氩气或氦气中的至少一种气体组成的氛围。在上述反应体系中通入氮气、氩气或氦气,使得坩埚内的空气排出,防止加热过程中铟金属的氧化,能够提高铟金属的回收率。
优选地,步骤S2.中,静置的时间为30~60min。反应结束后静置的作用是排出反应产生的刺激性气体,保障操作人员安全;同时使铟液和氯化物熔盐(这里指反应后的氯化钴产物以及部分未反应的萃取剂)能够分层,便于降温后进行分离。
优选地,步骤S2.中,所述降温为降温至200~250℃。在该温度下,铟仍然为液态,而氯化物已经变为固体状态,可以将铟与氯化物完全分离,且损失较小。
上述工艺在坩埚中进行,所述坩埚的材质需要耐氯化物熔盐腐蚀,所述坩埚的材质为石墨、碳化硅、石英、玻璃、氧化铝、氧化镁或氧化锆中的至少一种。优选石墨和碳化硅。
由上述方法除杂后得到的精铟的精度高,精度可达到4.5N甚至更高。
与现有技术相比,本发明的有益效果是:
本发明通过使用氯化物对铟中的钴进行熔融萃取,充分利用氯化物熔盐的密度小于铟的密度,氯化物熔盐的熔点高于铟的熔点,能够实现铟与氯化物熔盐分离完全的目的,使得铟的回收率高,且使用后的熔盐,仍可以进行返回使用。创造性的解决了精铟中杂质钴元素的处理问题,工艺简单,操作条件要求低,生产成本低,具有很高的经济效益。
附图说明
图1为实施例1的工艺流程示意图。
具体实施方式
为更好的说明本发明的目的、技术方案和优点,下面将结合具体实施例和附图来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。除非特别说明,本发明所用试剂和材料均为市购。
实施例1
本实施例提供一种精铟中钴的去除方法,包括如下步骤(工艺流程示意图如图1所示):
S1.熔融萃取反应
S11.称取100.12kg含钴量为21ppm的精铟(铟锭)置于熔炉反应器的石墨坩埚中,向石墨坩埚中,按照20L/min的流量通入氮气作为保护气,通气时间为5min,保证石墨坩埚中空气被完全排出;盖上反应炉盖后,对坩埚进行升温加热到160℃,待铟锭熔化成铟液;
S12.按照原料铟:氯化物萃取剂的质量比为100:1的比例,称取1.0kg的萃取剂固态氯化铵,通过炉盖的加料孔投入到S11.得到的铟液中,开启石墨搅拌器,升温至300℃,然后保持温度继续进行搅拌反应30min;
S2.反应结束后,静置30min,再关闭加热,降温到200℃后,由坩埚底部阀门放出铟液,转到模具中浇筑成铟锭(97.86kg),并取样检测分析精铟中钴含量为1ppm,钴脱除率为95.24%,达到4.5N精铟的标准。铟的回收率为97.74%。
实施例2
本实施例提供一种精铟中钴的去除方法,包括如下步骤:
S1.熔融萃取反应
S11.称取100.25kg含钴量为30ppm的精铟(铟锭)置于熔炉反应器的石墨坩埚中,向石墨坩埚中,按照20L/min的流量通入氮气作为保护气,通气时间为5min,保证石墨坩埚中空气被完全排出;盖上反应炉盖后,对坩埚进行升温加热到200℃,待铟锭熔化成铟液;
S12.按照原料铟:氯化物萃取剂的质量比为100:4的比例,称取4.0kg的萃取剂固态氯化亚铟,通过炉盖的加料孔投入到S11.得到的铟液中,开启石墨搅拌器,升温至400℃,然后保持温度继续进行搅拌反应60min;
S2.反应结束后,静置30min,再关闭加热,降温到200℃后,由坩埚底部阀门放出铟液,转到模具中浇筑成铟锭(98.32kg),并取样检测分析精铟中钴含量为2ppm,钴脱除率为93.33%,达到4.5N精铟的标准。铟的回收率为99.07%。
实施例3
本实施例提供一种精铟中钴的去除方法,包括如下步骤:
S1.熔融萃取反应
S11.称取101.67kg含钴量为35ppm的精铟(铟锭)置于熔炉反应器的石墨坩埚中,向石墨坩埚中,按照20L/min的流量通入氮气作为保护气,通气时间为5min,保证石墨坩埚中空气被完全排出;盖上反应炉盖后,对坩埚进行升温加热到250℃,待铟锭熔化成铟液;
S12.按照原料铟:氯化物萃取剂的质量比为100:7的比例,称取7.0kg的萃取剂固态三氯化铟,通过炉盖的加料孔投入到S11.得到的铟液中,开启石墨搅拌器,升温至450℃,然后保持温度继续进行搅拌反应90min;
S2.反应结束后,静置30min,再关闭加热,降温到200℃后,由坩埚底部阀门放出铟液,转到模具中浇筑成铟锭(100.83kg),并取样检测分析精铟中钴含量为2ppm,钴脱除率为94.29%,达到4.5N精铟的标准。铟的回收率为99.17%。
实施例4
本实施例提供一种精铟中钴的去除方法,包括如下步骤:
S1.熔融萃取反应
S11.称取100.21kg含钴量为51ppm的精铟(铟锭)置于熔炉反应器的石墨坩埚中,向石墨坩埚中,按照20L/min的流量通入氮气作为保护气,通气时间为5min,保证石墨坩埚中空气被完全排出;盖上反应炉盖后,对坩埚进行升温加热到280℃,待铟锭熔化成铟液;
S12.按照原料铟:氯化物萃取剂的质量比为100:10的比例,称取10.0kg的萃取剂固态三氯化铟,通过炉盖的加料孔投入到S11.得到的铟液中,开启石墨搅拌器,升温至500℃,然后保持温度继续进行搅拌反应120min;
S2.反应结束后,静置30min,再关闭加热,降温到200℃后,由坩埚底部阀门放出铟液,转到模具中浇筑成铟锭(99.54kg),并取样检测分析精铟中钴含量为3ppm,钴脱除率为94.12%,达到4.5N精铟的标准。铟的回收率为99.33%。
实施例5
本实施例提供一种精铟中钴的去除方法,其工艺步骤与实施例1的不同之处在于:步骤S12.中,将1.0kg氯化铵替换为0.5kg氯化亚铟和0.5kg三氯化铟。步骤S2.得到的铟锭中钴含量为0.5ppm,钴脱除率为97.62%,达到4.5N精铟的标准,表明氯化亚铟和三氯化铟组成的混合萃取剂对钴具有更好的去除效果。
铟的回收率为98.66%,这可能是因为使用氯化铵作为萃取剂,氯化铵除了会与钴进行反应外,还避免不了会有部分氯化铵与铟进行卤化反应。
实施例6
本实施例提供一种精铟中钴的去除方法,包括如下步骤:
S1.称取100.12kg含钴量为21ppm的精铟(铟锭)、1.0kg的萃取剂固态氯化铵置于熔炉反应器的石墨坩埚中,向石墨坩埚中,按照20L/min的流量通入氮气作为保护气,通气时间为5min,保证石墨坩埚中空气被完全排出;盖上反应炉盖后,开启石墨搅拌器,对坩埚进行升温加热到300℃,然后保持温度继续进行搅拌反应90min;
S2.反应结束后,静置30min,再关闭加热,降温到200℃后,由坩埚底部阀门放出铟液,转到模具中浇筑成铟锭(97.81kg),并取样检测分析精铟中钴含量为3ppm,钴脱除率为85.71%,达到4.5N精铟的标准。
即,本实施例与实施例1的不同之处在于,本实施例是直接将铟原料与萃取剂氯化物进行共混,直接共混导致萃取不充分,即使将反应时间延长,钴的去除率也较低。铟的回收率为97.69%。
实施例7
本实施例提供一种精铟中钴的去除方法,工艺与实施例1的不同之处在于,步骤S2.中未进行静置,反应结束后直接关闭加热进行降温。步骤S2.得到的铟锭中钴含量为1ppm,钴脱除率为95.24%,达到4.5N精铟的标准。但铟的回收率仅为94.15%,与实施例1相比,回收率较低。
对比例1
本对比例提供一种精铟中钴的去除方法,工艺与实施例1的不同之处在于,步骤S12.中并未继续升温,而是直接在160℃下进行搅拌反应。
骤S2.得到的铟锭中钴含量为18ppm,钴脱除率为14.29%,铟中钴含量超标。铟的回收率为99.21%。
对比例2
本对比例提供一种精铟中钴的去除方法,工艺与实施例2的不同之处在于,步骤S12.中并未继续升温,而是直接在200℃下进行搅拌反应。
骤S2.得到的铟锭中钴含量为25ppm,钴脱除率为16.67%,铟中钴含量超标。铟的回收率为99.04%。
对比例3
本对比例提供一种精铟中钴的去除方法,工艺与实施例1的不同之处在于,反应体系中并未通入保护气体,而是在空气气氛中进行反应。
骤S2.得到的铟锭中钴含量为2ppm,钴脱除率为90.48%,但铟的回收率仅为91.15%,显著降低。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

1.一种精铟中钴的去除方法,其特征在于,包括如下步骤:
S1.在惰性氛围中,将铟原料与氯化物混合均匀并加热熔融进行反应;
S2.反应结束后,经静置、降温后,分离即可得到精铟。
2.根据权利要求1所述的精铟中钴的去除方法,其特征在于,所述氯化物为氯化铵、氯化亚铟或三氯化铟中的至少一种。
3.根据权利要求1所述的精铟中钴的去除方法,其特征在于,所述氯化物为氯化亚铟和三氯化铟的混合物,所述氯化亚铟:三氯化铟的重量比为1:(0.5~2)。
4.根据权利要求1所述的精铟中钴的去除方法,其特征在于,铟原料与氯化物的重量比为铟原料:氯化物=100:(1~10)。
5.根据权利要求1所述的精铟中钴的去除方法,其特征在于,步骤S1.中包括如下步骤:
S11.先将铟原料加热到160~280℃下得到铟液;
S12.向步骤S11.得到的铟液中加入氯化物,边搅拌边加热到300~500℃后,恒温搅拌反应30~120min。
6.根据权利要求1所述的精铟中钴的去除方法,其特征在于,所述惰性氛围为由氮气、氩气或氦气中的至少一种气体组成的氛围。
7.根据权利要求1所述的精铟中钴的去除方法,其特征在于,步骤S2.中静置的时间为30~60min。
8.根据权利要求1所述的精铟中钴的去除方法,其特征在于,步骤S2.中所述降温为降温至200~250℃。
9.根据权利要求1所述的精铟中钴的去除方法,其特征在于,步骤S2.中分层后,下层为得到的液态精铟。
10.根据权利要求9所述的精铟中钴的去除方法,其特征在于,所述精铟的精度≥4.5N。
CN202211121502.0A 2022-09-15 2022-09-15 一种精铟中钴的去除方法 Pending CN115323198A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211121502.0A CN115323198A (zh) 2022-09-15 2022-09-15 一种精铟中钴的去除方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211121502.0A CN115323198A (zh) 2022-09-15 2022-09-15 一种精铟中钴的去除方法

Publications (1)

Publication Number Publication Date
CN115323198A true CN115323198A (zh) 2022-11-11

Family

ID=83930079

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211121502.0A Pending CN115323198A (zh) 2022-09-15 2022-09-15 一种精铟中钴的去除方法

Country Status (1)

Country Link
CN (1) CN115323198A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116219207A (zh) * 2023-03-09 2023-06-06 先导薄膜材料(广东)有限公司 铟锭氯化除铊的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《有色金属工业分析丛书》编辑委员会: "《冶金和金属材料《化工百科全书》专业卷》", 冶金工业出版社, pages: 149 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116219207A (zh) * 2023-03-09 2023-06-06 先导薄膜材料(广东)有限公司 铟锭氯化除铊的方法

Similar Documents

Publication Publication Date Title
KR20210154840A (ko) 배터리 전구체의 제조 방법
KR101450962B1 (ko) 인듐 또는 인듐 합금의 회수 방법 및 장치
CN115323198A (zh) 一种精铟中钴的去除方法
CN111549225B (zh) 一种回收富集低品位贵金属复杂物料中贵金属的方法
CN104073641A (zh) 从失效汽车催化剂中回收贵金属的方法
KR20120074167A (ko) 동 제련 슬래그로부터의 유가금속 회수 방법
EA009888B1 (ru) Способ получения чистого кремния
CN112359227B (zh) 从火法炼镍过程中提钴的方法
US3767383A (en) Refining copper pyrometallurgically by two-stage subatmospheric treatment
Bautista Processing to obtain high-purity gallium
CN1142300C (zh) 铅锑合金冶炼的除砷方法
JP5339762B2 (ja) インジウムメタルの製造方法
CN110564972B (zh) 一种铅电解阳极除铜浮渣的处理方法及处理系统
EP3701053B1 (en) Process for the recovery of metals from cobalt-bearing materials
CN113737027A (zh) 一种从含钨渣料中回收有价金属的方法
KR101453149B1 (ko) In 과 Sn 을 함유하는 합금의 회수 방법 및 ITO 리사이클재의 처리 방법
CN117626005A (zh) 一种从铟中去除镓的方法
US4016055A (en) Method of extracting constituent metal values from polymetallic nodules from the sea
CN117363909B (zh) 一种铝灰回收铝制备铝合金的方法
CN114892018B (zh) 一种分离回收铂锰合金中铂和锰的方法
RU2171856C1 (ru) Способ переработки сульфидных медных концентратов, содержащих никель, кобальт и железо
CN114890428B (zh) 一种用于工业硅炉外精炼的三元造渣剂及其除杂方法
WO1992019699A2 (en) Process for purifying lead using calcium/sodium filter cake
CN118256740A (zh) 一种从萤石尾矿中提取铍元素的方法
CN116219207A (zh) 铟锭氯化除铊的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination