CN115305397A - 一种Mo-V合金、制备方法及其应用 - Google Patents

一种Mo-V合金、制备方法及其应用 Download PDF

Info

Publication number
CN115305397A
CN115305397A CN202210387743.3A CN202210387743A CN115305397A CN 115305397 A CN115305397 A CN 115305397A CN 202210387743 A CN202210387743 A CN 202210387743A CN 115305397 A CN115305397 A CN 115305397A
Authority
CN
China
Prior art keywords
alloy
powder
vanadium
mixing
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210387743.3A
Other languages
English (en)
Other versions
CN115305397B (zh
Inventor
冯鹏发
段琳琳
党晓明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinduicheng Molybdenum Co Ltd
Original Assignee
Jinduicheng Molybdenum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinduicheng Molybdenum Co Ltd filed Critical Jinduicheng Molybdenum Co Ltd
Priority to CN202210387743.3A priority Critical patent/CN115305397B/zh
Publication of CN115305397A publication Critical patent/CN115305397A/zh
Application granted granted Critical
Publication of CN115305397B publication Critical patent/CN115305397B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/17Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/18Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by using pressure rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/006Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of flat products, e.g. sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/12Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/026Spray drying of solutions or suspensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/17Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging
    • B22F2003/175Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging by hot forging, below sintering temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/18Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by using pressure rollers
    • B22F2003/185Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by using pressure rollers by hot rolling, below sintering temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fluid Mechanics (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种Mo‑V合金、制备方法及其应用,Mo‑V合金成份按添加质量计,包括0.04%~5%V,余量为Mo和不可避免的杂质;按制品中残留质量计,包括0.03%~0.04%V,余量为Mo和不可避免的杂质,所述不可避免的杂质的总和在合金中的质量含量不超过0.03%。制备方法包括合金原料粉末的制备、粉末冶金法制备合金坯过程,合金原料粉末的制备过程中,钒是以粒径不大于100nm的钒粉或纳米钒粉悬浊液的形式加入MoO2粉,氢气还原得到Mo‑V合金粉,或以粒径不大于100nm的钒粉的形式加入钼粉,混合得到Mo‑V合金粉。本发明的Mo‑V合金具有稳定的高塑性和优异的工艺适应性,制备过程成分适用范围很宽,易于控制。

Description

一种Mo-V合金、制备方法及其应用
技术领域
本发明属于粉末冶金技术领域,具体涉及一种Mo-V合金、制备方法及其应用。
背景技术
目前,工业应用的钼合金主要为碳化物沉淀强化合金、稀土氧化物弥散强化合金、气泡强化合金、连续固溶强化合金。
碳化物沉淀强化钼合金主要依靠固溶到钼基体的Ti、Zr、Hf等活性元素时效析出与C元素反应生成的细小碳化物(TiC、ZrC、HfC)沉淀相,在高温下起到强化作用,主要牌号有TZM、TZC、ZHM(Mo-0.5Zr-1.5Hf-0.2C)、 ZHM4(Mo-1.2Hf-0.4Zr-0.15C)、ZHM6(Mo-1.5Hf-0.5Zr-0.19C)、ZHM7 (Mo-1.8Hf-0.6Zr-0.23C)、ZHM8(Mo-2.1Hf-0.7Zr-0.27C)等多种牌号。
稀土氧化物弥散强化钼合金通过稀土氧化物细小质点的弥散强化作用而达到提高合金强度的目的,La2O3是工业最常用的稀土氧化物,Y2O3与CeO2复合作用具有优异的综合强韧化效果。
气泡强化钼合金(Mo-AKS合金)主要依靠微量添加的K、Al、Si元素在高温下形成钾泡,来提高钼合金的高温力学性能。
一般地,钼合金的各种强化机制之间有着密切的关联,在1400~1500℃之间,Ti、Zr、Hf元素从钼基体中析出,碳化物强化作用最为明显;在 1500~1800℃之间,碳化物软化或分解为单质元素而固溶,从而沉淀强化效果减弱,此温度下高熔点稀土氧化物的弥散强化效果显著;高于2000℃时,稀土氧化物开始软化,而气泡强化作用显著。
无论是析出元素形成的化合物,还是直接加入的化合物,它们与Mo原子的错配度很大,难以形成冶金结合,且这些化合物多为硬脆颗粒,因此,碳化物沉淀强化钼合金、稀土氧化物弥散强化钼合金、气泡强化钼合金的强度与塑性往往不能兼顾,大多数钼合金在强化的同时引起脆化。
连续固溶强化合金主要指钼钨、钼铼系列合金,依靠大量合金元素与 Mo形成固溶体来提高钼合金的耐热强度和硬度。Mo、W同为体心立方结构,可形成连续固溶体,且W的熔点高达3410℃,因此Mo-W系列合金具有优异的高温强度。但由于W原子半径过大,使钼基体产生很大的晶格畸变,加工性能变差,从而限制了Mo-W合金的应用。Re具有熔点高(3170℃)、密度大(21.02g/cm3)、强度高、塑性良好、无塑-脆转变现象、弹性模量非常高(其弹性模量仅次于Os)等优点,可以提高钼金属的再结晶温度和高温性能,大幅度地降低塑-脆转变温度。目前主要的Mo-Re合金有Mo-5Re、 Mo-41Re、Mo-50Re等合金。由于铼的价格非常昂贵,Mo-Re合金仅局限于实验室研究,不具备工业应用的条件。
发明内容
针对现有钼合金存在的技术问题,本发明的目的是提供一种成本廉价、具有高塑性的连续固溶强化钼合金,即Mo-V合金、制备方法及其应用。
为达到上述目的,本发明采用如下技术方案:
一种Mo-V合金,Mo-V合金成份按添加质量计,包括0.04%~5%V,余量为Mo和不可避免的杂质;按制品中残留质量计,包括0.03%~0.04%V,余量为Mo和不可避免的杂质,所述不可避免的杂质的总和在合金中的质量含量不超过0.03%。
本发明还公开一种Mo-V合金的制备方法,首先将粒径不大于100nm的钒粉或纳米钒粉悬浊液加入MoO2粉中得到MoO2-V混合粉末,氢气还原MoO2-V 混合粉末得到Mo-V合金粉末,或将粒径不大于100nm的钒粉加入钼粉,混合得到Mo-V合金粉;
接着将所述Mo-V合金粉压制成生坯,在氢气气氛烧结炉中,通过2~3h、 2.5~3.5h、6h的加热,从室温顺序升温至800℃、1100℃、1500℃,然后通过 6~8h的加热升温至1740℃,并保温6h,最后随炉冷却即得。
进一步的,所述获得MoO2-V混合粉末过程包括将粒径不大于100nm的钒粉与去离子水混合制得纳米钒粉悬浊液,将纳米钒粉悬浊液喷淋到二氧化钼粉末中,干燥后即得;
或将MoO2粉与粒径不大于100nm的钒粉在三维混料机中,按(1~1.5):1 的球料比加入球磨介质,混合即得。
进一步的,所述获得Mo-V合金粉末过程包括将钼粉与粒径不大于100nm 的钒粉在三维混料机中,按(1~1.5):1的球料比加入球磨介质,混合即得。
进一步的,所述球磨介质为钼球,粒径为
Figure RE-GDA0003879241590000031
混合时间为8~24h。
进一步的,包括以下步骤:
(1)将粒径不大于100nm的钒粉与去离子水混合搅拌25~40min,制得纳米钒粉悬浊液,将纳米钒粉悬浊液喷淋到二氧化钼粉末中,干燥后即得混合粉末;
(2)经过800min氢气还原得到Mo-V合金粉,然后进行筛分和合批;
(3)合批后Mo-V合金粉装入不同形状的胶套中,在冷等静压机中,经过150~200MPa保压8~10min,成为Mo-V合金生坯;Mo-V合金生坯包括 Mo-V合金板生坯、Mo-V合金棒生坯;
(4)将Mo-V合金生坯装入中频感应烧结炉或电阻烧结炉进行烧结,得到Mo-V合金烧结坯;
(5)将Mo-V合金烧结棒坯经过1200~1400℃的自由锻、轧制或旋锻开坯,然后加工成棒材、杆材、丝材;Mo-V合金烧结板坯经过1250~1300℃的热态轧制和冷态轧制,加工成Mo-V合金板材后去应力退火即得。
可选的,包括以下步骤:
(1)将粒径不大于100nm的钼粉与钒粉在三维混料机中,按(1~1.5):1 的球料比加入钼球,混合8~24h,获得Mo-V合金粉末;
(2)合批后Mo-V合金粉经过压制、烧结、压力加工和退火处理,加工成棒材、杆材、丝材、板材和制品。
具体的,所述烧结是指在氢气气氛下,通过2h、2.5h、6h的加热,顺序升温至800℃、1100℃、1500℃,然后通过6h的加热升温至1740℃,并保温6h,最后随炉冷却。
本发明所述的Mo-V合金的制备方法用于制备Mo-V合金棒材、杆材、丝材、板材和制品。
本发明与现有钼合金相比具有以下的有益效果:
(1)Mo-V合金具有稳定的高塑性。经过约95%变形量的Mo-V合金棒材的室温和1100℃的断后伸长率分别达36%~47.5%、27.8%~46.6%,远高于传统钼合金的塑性。从锻造棒纵截面看,晶粒纤维化不明显,大部分为长5~20μm、宽1~3μm的头尾搭接“鹅卵石”状晶粒(图4、图10),这种组织保证Mo-V合金在拉伸变形时具有优异的塑性储备。与传统钼合金的撕裂断口不同,Mo-V 合金拉伸断口出现明显的缩颈(图5、图11、图15),具有典型的断裂韧窝特征(图6、图12、图16),这种韧窝形貌与镍基变形高温合金相当。
(2)在V元素的加入质量不超过5%时,无论加入质量多少,还原为钼粉后就趋于一致,最终制品中固溶元素V的含量都保持在0.03%~0.04%(质量) 的水平,因此制备过程成分适用范围很宽,易于控制。
(3)Mo-V合金具有优异的工艺适应性。Mo-V的粒度分布呈标准正态分布,粒度分布非常窄,d0.9与d0.1的差值仅为18~28μm(图1、图7);颗粒形貌非常圆整,尺寸均匀,颗粒直径约为2μm(图2、图8、图13)。这种均匀圆整的颗粒形貌保证了Mo-V合金易于烧结,采用最高烧结温度为1740℃的低温连续烧结工艺,即可获得9.98~9.97g/cm3的烧结坯密度,且显微组织均为 10~15μm的均匀细晶(图3、图9、图14)。
以下结合说明书和具体实施方式对本发明做具体说明。
附图说明
图1为Mo-0.04V合金粉末粒度分布。
图2为Mo-0.04V合金粉末颗粒形貌。
图3为Mo-0.04V合金烧结坯金相。
图4为Mo-0.04V合金锻造态纵截面断口组织。
图5为Mo-0.04V合金拉伸缩颈形貌。
图6为Mo-0.04V合金拉伸断口形貌。
图7为Mo-0.06V合金粉末粒度分布。
图8为Mo-0.06V合金粉末颗粒形貌。
图9为Mo-0.06V合金烧结坯金相。
图10为Mo-0.06V合金锻造态纵截面断口组织。
图11为Mo-0.06V合金拉伸缩颈形貌。
图12为Mo-0.06V合金拉伸断口形貌。
图13为Mo-5V合金粉末颗粒形貌。
图14为Mo-5V合金烧结坯金相。
图15为Mo-5V合金拉伸缩颈形貌。
图16为Mo-5V合金拉伸断口形貌。
图17为Mo-0.12V合金1980℃返烧坯金相。
图18为Mo-0.12V合金拉深钼舟照片。
图19为Mo-5.5V合金压制生坯照片。
具体实施方式
以下给出本发明的具体实施例,需要说明的是本发明并不局限于以下具体实施例,凡在本申请技术方案基础上做的等同变换均落入本发明的保护范围。
本发明的技术原理,即Mo、V元素具备形成稳定固溶体的所有条件如下:
一是Mo、V均为体心立方结构,溶质和溶剂元素具有相同的晶体结构,保证了形成Mo-V连续固溶体的必要条件;
二是Mo、V的原子半径分别为0.136nm、0.134nm,溶剂原子半径rA和溶质原子半径rB的相对差Δr=(rA-rB)/rA仅为1.47%,远低于14%-15%的门槛值,有利于溶质和溶剂的大量互溶;
三是Mo、V的电负性分别为1.47、1.53,电负性差仅为3.8%,电负性差越小,越容易形成稳定的固溶体而不可能形成金属间化合物;
四是按照电子浓度e/a=(fAxA+fBxB)/100(式中,fA、fB、xA、xB分别为溶剂、溶质的原子价及其摩尔百分比),即使V元素加入量达到上限的 Mo-5V合金的e/a值仅为0.2,远低于1.4的门槛值,固溶体稳定而不可能析出第二相。
本发明还需要说明的是:Mo-V合金成份按添加质量计,包括0.04%~5%V,余量为Mo和不可避免的杂质;按制品中残留质量计,包括0.03%~0.04% V,余量为Mo和不可避免的杂质。其中,不可避免的杂质元素包括Fe、K、 Ni、Al、Ca、Mg、Si、P、Pb、Cd等低熔点元素,Cr、W等同族元素,C、O、 N等气体元素等。
Mo-V合金的制备过程包括合金原料粉末的制备、粉末冶金法制备合金坯和压力加工过程,合金原料粉末制备合金过程中的钒元素是以V单质粉末或悬浊液的形式加入MoO2粉末(还原),或以V单质粉末的形式加入Mo粉中的。
本发明公开一种Mo-V合金的制备方法,包括将二氧化钼粉与粒径不大于 100nm的钒粉混合获得MoO2-V混合粉末,将MoO2-V混合粉末氢气还原得到 Mo-V合金粉,将Mo-V合金粉压制成生坯,然后在氢气气氛烧结炉中,通过 2~3h、2.5~3.5h、6h的加热,从室温顺序升温至800℃、1100℃、1500℃,然后通过6~8h的加热升温至1740℃,并保温6h,最后随炉冷却即得;MoO2-V 混合粉末中钒粉加入质量为0.03%~3.75%,所得Mo-V合金中V元素占比为 0.03%~0.04%。
本发明中获得MoO2-V混合粉末方式包括将粒径不大于100nm的钒粉与去离子水混合搅拌制得纳米钒粉悬浊液,采用纳米喷雾掺杂技术 (ZL201310175538.1),在双锥掺杂喷雾真空干燥机的料罐中,将纳米钒粉悬浊液喷淋到二氧化钼粉末中,干燥后即得。
在采用纳米喷雾掺杂技术(ZL201310175538.1)时,开启料罐旋转系统,同时注入小于100℃(优选50~90℃)的循环水加热料罐;在料罐旋转受热的同时,在线搅拌喷雾罐接入小于1MPa(优选0.4~0.8MPa)的压缩空气,将纳米钒粉悬浊液均匀喷淋到MoO2粉末中,形成MoO2-V混合粉末。
本发明一种获得Mo-V合金粉的方式包括将钼粉与粒径不大于100nm的钒粉在三维混料机中,按(1~1.5):1的球料比加入钼球,混合即得。
本发明所用试剂若未作特殊说明,均市售可得。
实施例1、Mo-0.04V合金棒制备
本实施例给出一种Mo-V合金的制备方法,本实施例中,MoO2-V混合粉末中钒粉加入质量为0.03%,将所得Mo-V合金称为Mo-0.04V合金。
包括以下步骤:
步骤1,称取MoO2粉60kg和粒径不大于100nm的钒粉18g,将钒粉与 900ml去离子水混合搅拌30min,得到纳米钒粉悬浊液;将纳米钒粉悬浊液注入在线搅拌喷雾罐中,并开启在线搅拌;将MoO2粉倒入双锥掺杂喷雾真空干燥机的料罐中,开启料罐旋转系统,同时注入85℃的循环水加热料罐;在料罐旋转受热的同时,在线搅拌喷雾罐接入0.6MPa的压缩空气,将纳米钒粉悬浊液均匀喷淋到MoO2粉末中,形成MoO2-V混合粉末;喷淋结束后关闭喷雾阀门,开启料罐的真空系统和循环水加热系统,对MoO2-V混合粉末进行干燥。本实施例采用纳米喷雾掺杂技术(ZL201310175538.1)。
步骤2,从经过干燥的MoO2-V混合粉末中取出5kg,其余55kgMoO2-V 混合粉末保留在双锥掺杂喷雾真空干燥机的料罐中。在温区为910℃、930℃、 960℃、960℃、940℃的五温区炉中,经过800min氢气还原,5kg MoO2-V 混合粉末变为3.7kg Mo-0.04V合金粉,进行-200目筛分;
步骤3,Mo-0.04V合金粉装入胶套中,在冷等静压机中,经过180MPa 保压8min,成为Mo-0.04V合金棒生坯;
步骤4,将Mo-0.04V合金棒生坯装入中频感应烧结炉,在氢气气氛下,采用如下烧结工艺得到
Figure RE-GDA0003879241590000081
烧结棒坯;
Figure RE-GDA0003879241590000091
步骤5,Mo-0.04V合金烧结棒坯经过1280℃、一火三道次的自由锻和旋锻,加工成
Figure RE-GDA0003879241590000092
棒材,并进行950℃×0.5h去应力退火。
本实施例还原所得Mo-0.04V合金粉的V含量为0.0360%(质量),粒度分布呈标准正态分布(图1),粒度分布非常窄,d0.1、d0.5、d0.9依次为7.104μm、 16.123μm、35.289μm;颗粒形貌非常圆整,尺寸均匀,颗粒直径约为2μm(图 2)。Mo-0.04V合金烧结坯中V元素残留量为0.0345%(质量),密度为 9.97g/cm3,显微组织均为10~15μm的均匀细晶(图3)。
Figure RE-GDA0003879241590000094
烧结棒坯锻至
Figure RE-GDA0003879241590000095
从锻件纵截面看,晶粒纤维化不明显,大部分为长5~20μm、宽1~3μm的头尾搭接的“鹅卵石”状晶粒(图4),这种组织保证Mo-V合金具有优异的塑性指标,5根试样的室温力学性能的再现性非常优异(表1)。
表1去应力态Mo-0.04V合金棒材的室温力学性能
Figure RE-GDA0003879241590000093
2根试样的1100℃抗拉强度、屈服强度、断后伸长率分别为179.1MPa、 98.9MPa、30.7%,179.2MPa、97.3MPa、32.8%。1100℃拉伸断口出现明显的缩颈(图5),均为典型的韧窝(图6),这种韧窝形貌与镍基变形高温合金相当,在钼合金中极为少见。如果说这种断口为韧窝,其它钼合金的断口只能称为撕裂断口,根本不能称为韧窝。这种韧窝断口进一步验证了Mo-V合金较高的断裂韧性。
实施例2:Mo-0.06V合金棒制备
同实施例1,不同的是,在本实施例中,MoO2-V混合粉末中钒粉加入质量为0.045%,将所得Mo-V合金称为Mo-0.06V合金。
在实施例1保留在双锥掺杂喷雾真空干燥机的料罐中的55kgMoO2-V混合粉末中再喷淋加入8.25g粒径不大于100nm的钒粉,得到MoO2-V混合粉末,其后干燥、还原、筛分、压制、烧结、锻造、退火等工序与实施例1相同,加工成
Figure RE-GDA0003879241590000101
合金棒材。
还原所得Mo-0.06V合金粉的V含量为0.0407%,粒度分布呈标准正态分布(图7),粒度分布非常窄,d0.1、d0.5、d0.9依次为5.848μm、12.591μm、27.653μm;颗粒形貌非常圆整,尺寸均匀,颗粒直径约为2μm(图8)。
Figure RE-GDA0003879241590000102
合金烧结坯中V元素残留量为0.0367%(质量),密度为 9.90g/cm3,显微组织均为10~15μm的均匀细晶(图9)。
Figure RE-GDA0003879241590000103
烧结棒坯锻至
Figure RE-GDA0003879241590000104
从锻件纵截面看,晶粒纤维化不明显,大部分为长4~10μm、宽1~3μm的头尾搭接的“鹅卵石”状晶粒(图10)。3根试样的室温抗拉强度、屈服强度、断后伸长率分别为603MPa、547MPa、36.0%, 606MPa、558MPa、36.5%,599MPa、552MPa、38.0%;1根试样的1100℃抗拉强度、屈服强度、断后伸长率分别为187.6MPa、110.4MPa、27.8%。1100℃拉伸断口出现明显的缩颈(图11)和典型的韧窝(图12)。这种韧窝断口进一步验证了Mo-V合金较高的断裂韧性。
实施例3:Mo-5V合金棒制备
将本实施例所得Mo-V合金称为Mo-5V合金。
具体为称取Mo粉3.515kg和粒径不大于100nm的钒粉185g,倒入三维混料机中,加入
Figure RE-GDA0003879241590000111
钼球,每混合4.5h冷却1h,总机械合金化时间13.5h,获得Mo-5V合金粉末,-200目筛分后,压制、烧结、锻造、退火等工序与实施例1相同,加工成
Figure RE-GDA0003879241590000112
合金棒材。
机械合金化过程中,Mo-5V合金粉的V含量未发生变化,粒度分布因球磨作用转变为标准正态分布,球磨作用将颗粒形貌圆整化、离散化(图13);
Figure RE-GDA0003879241590000113
烧结坯中V元素残留量与实施例1和实施例2相近,为0.0333% (质量),密度为9.95g/cm3,显微组织均为10-15μm的均匀细晶(图14)。
Figure RE-GDA0003879241590000114
烧结棒坯锻至
Figure RE-GDA0003879241590000115
后,3根试样的室温抗拉强度、屈服强度、断后伸长率分别为596MPa、577MPa、37.5%,601MPa、561MPa、44.5%, 608MPa、554MPa、39.0%,室温力学性能的再现性良好,未出现机械合金化制备的传统钼合金的力学性能不均匀现象;1根试样的1100℃抗拉强度、屈服强度、断后伸长率分别为188.3MPa、105.4MPa、29.3%。1100℃拉伸断口出现明显的缩颈(图15)和的韧窝(图16)。
实施例4Mo-0.12V合金粉制备
Figure RE-GDA0003879241590000116
棒坯和单重8.5kg板坯
同实施例1,不同的是,本实施例中,MoO2-V混合粉末中钒粉加入质量为0.09%,将所得Mo-V合金称为Mo-0.12V合金。包括以下步骤:
步骤1,称取MoO2粉180kg和粒径不大于100nm的钒粉162g,掺杂、干燥、还原、筛分、压制、烧结与实施例1相同,得到1根
Figure RE-GDA0003879241590000117
烧结棒坯和2块39×192×192mm烧结板坯;
步骤2,将
Figure RE-GDA0003879241590000118
烧结棒坯切割成
Figure RE-GDA0003879241590000119
两段;其中,(1)
Figure RE-GDA00038792415900001110
棒坯经过温度1350℃、一火二道次的锻造和旋锻,得到
Figure RE-GDA0003879241590000121
钼棒,进而进行950℃×0.5h去应力退火;(2)
Figure RE-GDA0003879241590000122
棒坯按照下述工艺进行1980℃二次烧结,以验证Mo-V合金的工艺适应性;
Figure RE-GDA0003879241590000123
1块39×192×192mm烧结板坯经过温度1250℃、一火二道次的热轧后,变形成为厚度为5mm的热轧板,切割成5×385×385mm钼板,用于拉深钼舟;另1块39×192×192mm烧结板坯经过温度1250℃、一火二道次的热轧至厚度为2mm,进而冷轧至厚度为0.5mm,进行750℃×0.5h去应力退火,用于杯突值测试。
还原所得Mo-0.12V合金粉的费氏粒度为4.17μm,松装密度为1.09g/cm3,粒度分布呈正态分布,d0.1、d0.5、d0.9依次为5.023μm、10.575μm、23.815μm。
Figure RE-GDA0003879241590000124
棒坯的金相均为10-15μm的均匀细晶。
Figure RE-GDA0003879241590000125
锻造棒950℃×0.5h退火态的室温和1100℃的力学性能如表2所示,其室温强度、高温强度与Plansee公司TZM合金的水平相当,室温断后伸长率远大于Plansee公司的TZM合金水平(约2%)。
表2 Mo-0.12V合金棒材去应力态力学性能
Figure RE-GDA0003879241590000126
Figure RE-GDA0003879241590000127
烧结棒坯经过1980℃超高温二次烧结工艺后,制得晶粒尺寸50~400μm的不均匀晶粒组织,除了晶粒局部长大外,无其他异常现象(图17)。2根试样的1100℃抗拉强度、屈服强度、断后伸长率分别为155.8MPa、 67.2MPa、42.8%;158.0MPa、70.1MPa、46.6%。如此高的反复烧结温度并未破坏其力学性能,而传统钼合金烧结坯经过反复烧结后均出现脆断现象,可见Mo-V合金具有优异的工艺适应性。
Mo-0.12V合金拉深钼舟的照片如图18所示。厚度为0.5mm的Mo-0.12V 合金冷轧板材的Erichsen杯突值为6.85mm、6.58mm、6.79mm,高于同等规格传统钼合金6.0mm的水平。
对比例1
本对比例与实施例1~4不同的是,Mo-V合金成份按添加质量计,添加为5.5%V的Mo-5.5V合金压制生坯的照片,如图19所示,过大的V元素加入量导致Mo-V合金生坯无法整体成型,说明其并不能成功得到本发明所要的Mo-V合金。
以上详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。

Claims (9)

1.一种Mo-V合金,其特征在于,Mo-V合金成份按添加质量计,包括0.04%~5%V,余量为Mo和不可避免的杂质;按制品中残留质量计,包括0.03%~0.04%V,余量为Mo和不可避免的杂质,所述不可避免的杂质的总和在合金中的质量含量不超过0.03%。
2.一种Mo-V合金的制备方法,其特征在于,首先将粒径不大于100nm的钒粉或纳米钒粉悬浊液加入MoO2粉中得到MoO2-V混合粉末,氢气还原MoO2-V混合粉末得到Mo-V合金粉末,或将粒径不大于100nm的钒粉加入钼粉,混合得到Mo-V合金粉;
接着将所述Mo-V合金粉压制成生坯,在氢气气氛烧结炉中,通过2~3h、2.5~3.5h、6h的加热,从室温顺序升温至800℃、1100℃、1500℃,然后通过6~8h的加热升温至1740℃,并保温6h,最后随炉冷却即得。
3.根据权利要求2所述的Mo-V合金的制备方法,其特征在于,所述获得MoO2-V混合粉末过程包括将粒径不大于100nm的钒粉与去离子水混合制得纳米钒粉悬浊液,将纳米钒粉悬浊液喷淋到二氧化钼粉末中,干燥后即得;
或将MoO2粉与粒径不大于100nm的钒粉在三维混料机中,按(1~1.5):1的球料比加入球磨介质,混合即得。
4.根据权利要求2所述的Mo-V合金的制备方法,其特征在于,所述获得Mo-V合金粉末过程包括将钼粉与粒径不大于100nm的钒粉在三维混料机中,按(1~1.5):1的球料比加入球磨介质,混合即得。
5.根据权利要求3和4所述的Mo-V合金的制备方法,其特征在于,所述球磨介质为钼球,粒径为
Figure FDA0003594361400000011
混合时间为8~24h。
6.根据权利要求2和3所述的Mo-V合金的制备方法,其特征在于,包括以下步骤:
(1)将粒径不大于100nm的钒粉与去离子水混合搅拌25~40min,制得纳米钒粉悬浊液,将纳米钒粉悬浊液喷淋到二氧化钼粉末中,干燥后即得混合粉末;
(2)经过800min氢气还原得到Mo-V合金粉,然后进行筛分和合批;
(3)合批后Mo-V合金粉装入不同形状的胶套中,在冷等静压机中,经过150~200MPa保压8~10min,成为Mo-V合金生坯;Mo-V合金生坯包括Mo-V合金棒生坯、Mo-V合金板生坯;
(4)将Mo-V合金生坯装入中频感应烧结炉或电阻烧结炉进行氢气气氛烧结,得到Mo-V合金烧结坯;
(5)将Mo-V合金烧结棒坯经过1200~1400℃的自由锻、轧制或旋锻开坯,然后加工成棒材、杆材、丝材;Mo-V合金烧结板坯经过1250~1300℃的热态轧制和冷态轧制,加工成Mo-V合金板材后去应力退火即得。
7.根据权利要求4所述的Mo-V合金的制备方法,其特征在于,包括以下步骤:
(1)将粒径不大于100nm的钼粉与钒粉在三维混料机中,按(1~1.5):1的球料比加入钼球,混合8~24h,获得Mo-V合金粉末;
(2)合批后Mo-V合金粉经过压制、烧结、压力加工和退火处理,加工成棒材、杆材、丝材、板材和制品。
8.根据权利要求6或7所述的Mo-V合金的制备方法,其特征在于,所述烧结是指在氢气气氛下,通过2h、2.5h、6h的加热,顺序升温至800℃、1100℃、1500℃,然后通过6h的加热升温至1740℃,并保温6h,最后随炉冷却。
9.权利要求2~8任一所述的Mo-V合金的制备方法用于制备Mo-V合金棒材、杆材、丝材、板材和制品。
CN202210387743.3A 2022-04-13 2022-04-13 一种Mo-V合金、制备方法及其应用 Active CN115305397B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210387743.3A CN115305397B (zh) 2022-04-13 2022-04-13 一种Mo-V合金、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210387743.3A CN115305397B (zh) 2022-04-13 2022-04-13 一种Mo-V合金、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN115305397A true CN115305397A (zh) 2022-11-08
CN115305397B CN115305397B (zh) 2023-12-12

Family

ID=83854869

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210387743.3A Active CN115305397B (zh) 2022-04-13 2022-04-13 一种Mo-V合金、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN115305397B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3720990A (en) * 1969-01-13 1973-03-20 Mallory & Co Inc P R Liquid phase sintered molybdenum base alloys
JPH0885840A (ja) * 1994-09-19 1996-04-02 Hiroaki Kurishita モリブデン合金及びその製造方法
JP2013199695A (ja) * 2012-03-26 2013-10-03 Hitachi Powdered Metals Co Ltd 焼結合金およびその製造方法
CN106715738A (zh) * 2014-04-23 2017-05-24 奎斯泰克创新公司 韧性高温钼基合金
CN109371274A (zh) * 2018-10-31 2019-02-22 西北有色金属研究院 一种高性能粉末冶金tzm钼合金的制备方法
US20210164074A1 (en) * 2018-08-31 2021-06-03 The Boeing Company High-strength titanium alloy for additive manufacturing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3720990A (en) * 1969-01-13 1973-03-20 Mallory & Co Inc P R Liquid phase sintered molybdenum base alloys
JPH0885840A (ja) * 1994-09-19 1996-04-02 Hiroaki Kurishita モリブデン合金及びその製造方法
JP2013199695A (ja) * 2012-03-26 2013-10-03 Hitachi Powdered Metals Co Ltd 焼結合金およびその製造方法
CN103361571A (zh) * 2012-03-26 2013-10-23 日立粉末冶金株式会社 烧结合金及其制造方法
CN106715738A (zh) * 2014-04-23 2017-05-24 奎斯泰克创新公司 韧性高温钼基合金
US20210164074A1 (en) * 2018-08-31 2021-06-03 The Boeing Company High-strength titanium alloy for additive manufacturing
CN109371274A (zh) * 2018-10-31 2019-02-22 西北有色金属研究院 一种高性能粉末冶金tzm钼合金的制备方法

Also Published As

Publication number Publication date
CN115305397B (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
CN108950343B (zh) 一种基于高熵合金的wc基硬质合金材料及其制备方法
WO2021027824A1 (zh) 一种钨基合金材料及其制备方法
CN109338160B (zh) 一种可铸锻固溶体钨合金及制备方法
CN108080644B (zh) 一种高强韧化金属基复合材料的粉末冶金制备方法
CN109306420B (zh) 一种高性能钨合金棒材及其制备方法
CN109402479B (zh) 一种高耐磨强韧性NbC基轻质金属陶瓷合金及其制备方法
US11389859B2 (en) Method for production of performance enhanced metallic materials
EP1234894A1 (en) Corrosion resistant, high strength alloy and a method for manufacturing the same
CN112195363B (zh) 一种500~600℃用高强钛合金及其加工方法
CN109338193B (zh) 一种无芯-环结构金属陶瓷合金及其制备方法
CN111826550B (zh) 一种中等强度耐硝酸腐蚀钛合金
CN113718154B (zh) 超高强韧性高密度高熵合金及其制备方法
CN111020414A (zh) 一种用于700~750℃的短纤维增强高温钛合金棒材的制备方法
CN114369776B (zh) 一种提高(Ce+Yb)复合改性亚共晶Al-Si-Mg-Cu-Cr合金强度的方法
CN106702241A (zh) 硼强化高密度高强度钨镍钴合金及制备方法
CN107043870B (zh) 一种高Si含量高温钛合金及其制备方法
CN116463523B (zh) 原位自生纳米氧化物碳化物协同增韧细晶钼合金及其制备方法
CN109811236B (zh) 一种高性能硬质合金材料的制备方法
EP2130935B1 (en) Sintered binary aluminum alloy powder, and method for production thereof
CN115305397A (zh) 一种Mo-V合金、制备方法及其应用
CN114082939B (zh) 一种耐腐蚀的不锈钢线材
CN113862542A (zh) 纳米级硅化物和Laves相增强难熔高熵合金材料及其制备方法
JPS62196306A (ja) 複層タングステン合金の製造方法
CN114717446B (zh) 一种高强度粉末冶金钛合金及其制备方法
KR102578988B1 (ko) 계층적 NiAl/Ni2TiAl 석출물을 포함하는 고엔트로피 합금 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant