CN115304080A - 一种底泥基沸石分子筛及其制备方法和应用 - Google Patents

一种底泥基沸石分子筛及其制备方法和应用 Download PDF

Info

Publication number
CN115304080A
CN115304080A CN202211041667.7A CN202211041667A CN115304080A CN 115304080 A CN115304080 A CN 115304080A CN 202211041667 A CN202211041667 A CN 202211041667A CN 115304080 A CN115304080 A CN 115304080A
Authority
CN
China
Prior art keywords
sediment
molecular sieve
based zeolite
substrate
zeolite molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211041667.7A
Other languages
English (en)
Other versions
CN115304080B (zh
Inventor
黄荣
余光伟
陈剑
欧阳荷
陈梓婷
程明双
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Agricultural University
Original Assignee
South China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Agricultural University filed Critical South China Agricultural University
Priority to CN202211041667.7A priority Critical patent/CN115304080B/zh
Publication of CN115304080A publication Critical patent/CN115304080A/zh
Application granted granted Critical
Publication of CN115304080B publication Critical patent/CN115304080B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4875Sorbents characterised by the starting material used for their preparation the starting material being a waste, residue or of undefined composition
    • B01J2220/4887Residues, wastes, e.g. garbage, municipal or industrial sludges, compost, animal manure; fly-ashes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本发明提供了一种底泥基沸石分子筛及其制备方法和应用。底泥基沸石分子筛一方面可以更好地解决疏浚底泥资源化的问题,比现有的底泥填埋、制作陶粒、建筑砖等处置方式具有更大的附加值,采用底泥合成,相比传统的化学试剂合成,可大大降低成本。同时,底泥基沸石比表面积达到516.3667m2/g,远远大于底泥的比表面积,且比化学试剂合成的沸石表面积有所提高,具备更好的吸附性能。对重金属的吸附实验也表明:底泥基沸石对废水中Cd(Ⅱ)的最大吸附量可达206.64mg/g,吸附性能优异,可见,底泥基沸石可以作为一种低成本、高效、可循环使用的吸附剂处理多种重金属污染废水。

Description

一种底泥基沸石分子筛及其制备方法和应用
技术领域
本发明涉及环境功能材料领域,特别涉及一种底泥基沸石分子筛及其制备方法和应用。
背景技术
黑臭底泥污染对生态环境和人类健康都具有不良影响,底泥有效治理是打好黑臭水体攻坚战的关键。为获得稳定的底泥处理效果,黑臭底泥疏浚成为首选方法。然而,疏浚底泥如何处理处置成为该方法推广应用的难题。现有技术中底泥资源化的方式为堆肥,焚烧或热解、土地利用、填方材料、建材化利用,以及制备陶粒等,其焦点放在底泥整体化直接处理,属于低值化方式。根据底泥各成分的特点,将底泥作为原材料制备对应的环境功能材料,可实现底泥高值化应用,该方面的研究目前比较少见。
合成沸石的方法比较多,最基础的方法是水热合成法,该方法是通过将原料在一定的比例下混合,再反应晶化而成。目前大部分商业化沸石通常采用纯硅铝酸盐试剂制备,完全通过化学试剂合成沸石的成本较高,因此急需一种低成本制备高效沸石的技术方案。
沸石分子筛具有吸附性能强,选择性高,离子交换容量大,是性能优良的吸附剂和催化剂,可以用于净化环境污染。
发明内容
本发明的目的在于克服现有技术的缺点与不足,提供一种底泥基沸石分子筛的制备方法。
本发明的另一目的在于提供上述制备方法制备得到的底泥基沸石分子筛。
本发明的再一目的在于提供上述底泥基分子筛的应用。
本发明的目的通过下述技术方案实现:
一种底泥基沸石分子筛的制备方法,包括如下步骤:
(1)用酸处理底泥后离心,分离上清液和沉淀物;
(2)将离心得到的沉淀物与碱混合后焙烧,与溶剂混合进行水热反应得到底泥基沸石分子筛。
步骤(1)所述的底泥为河底污泥;优选主要成分为二氧化硅和氧化铝的底泥。
步骤(1)所述的底泥的组分为50~80%二氧化硅和20~50%氧化铝;优选为50~70%二氧化硅、10~30%氧化铝、5~10%三氧化二铁、2~5%氧化钙、1~3%氧化钾、0.5~2%氧化镁和0.5~2%氧化钛;进一步优选为55%~65%二氧化硅、15~25%氧化铝、7~9%三氧化二铁、3~4%氧化钙、2~3%氧化钾、1~2%氧化镁和1~2%氧化钛。
步骤(1)所述的底泥为过100~300目筛的底泥;优选为过100目筛的底泥。
步骤(1)所述的酸为盐酸;优选为6mol/L的盐酸。
步骤(1)所述的处理为在30~40℃、100~200r/min下振荡1~3h;优选为在35℃、150r/min下振荡2h。
步骤(1)所述的离心的条件为4000~6000r/min,5~20min;优选为5000r/min,10min。
步骤(1)所述的上清液还使用了0.4~0.5微米的滤头过滤,过滤得到的滤渣与离心得到的沉淀物合并;优选为用0.45微米的水系滤头过滤。
步骤(2)所述的碱为氢氧化钠。
步骤(2)所述的沉淀物与碱的质量比为1:1~2;优选为1:1.4。
步骤(2)所述的混合为混合研磨。
步骤(2)所述的焙烧的条件为以5~20℃/min的速率升温至500~600℃后维持1~2h;优选为以10℃/min的速率升温至550℃后维持1.5h。
步骤(2)所述的溶剂为水;优选为双蒸水。
步骤(2)所述的混合的条件为研磨后按2~10mL/g的比例与溶剂混合,搅拌12~36h;优选为研磨后按5mL/g的比例与溶剂混合,搅拌24h。
步骤(2)所述的水热反应的条件为70~90℃下反应0.5~2h;优选为80℃下反应1h。
优选地,步骤(2)所述的水热反应后还包括过滤、洗涤、烘干,研磨步骤。
一种底泥基沸石分子筛,由上述制备方法制备得到。
上述底泥基沸石分子筛在处理重金属污水中的应用。
本发明相对于现有技术具有如下的优点及效果:
本发明一方面可以更好地解决疏浚底泥资源化的问题,比现有的底泥填埋、制作陶粒、建筑砖等处置方式具有更大的附加值。另一方面,沸石分子筛SZ采用底泥合成,相比传统的化学试剂合成,可大大降低成本。同时,底泥基沸石比表面积达到516.3667m2/g,远远大于底泥的比表面积,且比化学试剂合成的沸石表面积有所提高,具备更好的吸附性能。对重金属的吸附实验也表明:底泥基沸石对废水中Cd(Ⅱ)的最大吸附量可达206.64mg/g,吸附性能优异,且底泥基沸石拥有良好的稳定性和再生性能。对其他三种重金属Cu(Ⅱ),Ni(Ⅱ),Zn(Ⅱ)吸附吸附量分别为99.49mg/g、122.28mg/g和71.39mg/g。由此可见,底泥基沸石可以作为一种低成本、高效、可循环使用的吸附剂处理多种重金属污染废水。
附图说明
图1是原始底泥、底泥基沸石和试剂沸石的SEM照片图;其中(a)为原始底泥,(b)为底泥基沸石,(c)为试剂沸石。
图2是原始底泥、底泥基沸石和试剂沸石的表征结果图;其中(a)为N2吸附-脱附等温线、(b)为孔径分布图、(c)为XRD结果图。
图3是底泥基沸石和试剂沸石在不同条件下对重金属Cd(Ⅱ)吸附能力的影响结果图;其中(a)为不同溶液pH的影响,(b)为不同溶液初始浓度的影响。
图4是原始底泥和底泥基沸石对重金属的吸附效果结果图;其中(a)为Cu(Ⅱ)、(b)为Zn(Ⅱ)、(c)为Ni(Ⅱ)。
图5是再生实验中底泥基沸石对Cd(II)的吸附容量变化结果图。
图6是吸附重金属Cd(II)前后底泥基沸石的FT-IR光谱图和XRD谱图;其中(a)为FT-IR光谱,(b)为XRD谱图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
下面实施方案中若未注明具体试验条件,则通常按照常规试验条件或按照试剂公司所建议的试验条件。所使用的材料、试剂等,若无特殊说明,均为从商业途径得到的试剂和材料。
实施例1底泥基沸石分子筛的制备
底泥样品采集于江门某河涌,通过X射线荧光光谱(XRF)测定其组成成分含量,结果如表1所示。
表1底泥的组成
Figure BDA0003821180410000041
取过100目筛的底泥与6mol/L HCl混合,在35℃、150r/min下振荡2h后,采用转速5000转/分,离心10分钟,上清液用0.45微米的水系滤头过滤,收集滤液保存备用,离心所得沉淀物和过滤所得滤渣合并后用于制备底泥基沸石分子筛。
制备沸石分子筛的步骤为:
用去离子水浸泡滤渣,过滤后于烘箱在105℃下烘干,取滤渣研磨并过100目筛。过筛后底泥与NaOH按质量比1:1.4混合,研磨均匀后装入瓷舟,置于马弗炉内,以10℃/min的速率升温至550℃后维持1.5h,冷却至室温后取出研磨,研磨后按5mL/g的比例与双蒸水混合,于室温下搅拌24h,得到的悬浊液置于聚四氟乙烯内衬的不锈钢反应釜中,放入烘箱80℃下水热反应1h,冷却至室温后过滤、洗涤、烘干,研磨后得到产品,标记为底泥基沸石(Sediment-based Zeolite,SZ)。
同时采用与底泥中相同的硅铝元素质量比,取硅酸钠和偏铝酸钠为原料,在与底泥基沸石完全一致的合成条件下制备相同硅铝比的试剂沸石(RZ),硅酸钠和偏铝酸钠是常用的沸石合成试剂,与直接使用氧化物进行合成的沸石产物性能基本一致,且反应条件更容易控制。
实施例2底泥基沸石分子筛的测试和鉴定
合成材料的结构采用扫描电子显微镜(SEM)、X射线衍射技术(XRD)、傅里叶红外光谱(FT-IR)、全自动比表面积及孔径测试仪(BET)等表征方法进行表征。
原始底泥RM(a)、底泥基沸石SZ(b)和试剂沸石RZ(c)的SEM图像如图1所示。原始底泥具有较大且不规则的片状结构,表面相对较光滑。合成的底泥基沸石和试剂沸石呈粒径较为均匀的颗粒多面体结构,平均粒径分别约为1.34和5.25μm。此外,底泥基沸石的表面比试剂沸石粗糙,颗粒更容易发生团聚现象。
三种样品的XRD谱图如图2(c)所示,RM中的主要晶相为石英(JCPDS46-1045),主峰分别位于2θ=20.80和26.51°处。水热处理后,石英的特征衍射峰强度减小,而在2θ=6.08、9.96、15.34、20.01、23.22和30.86°处出现了X型沸石衍射特征峰,这些结果说明成功合成出底泥基沸石和试剂沸石。
三种样品的N2吸附-脱附等温线如图2(a)所示,原始底泥属于带H3型回滞环的II型等温线,表明原始底泥是无孔或大孔材料,底泥基沸石为带H4型回滞环的IV型等温线,表明底泥基沸石上存在均匀的中孔结构,介孔孔径约为3.7nm。对于试剂沸石,吸附等温曲线可以归类为II型等温曲线,反映了微孔吸附剂的吸附过程。
与原始底泥相比,底泥基沸石的比表面积和总孔体积分别从9.5094m2/g和0.0469cm3/g增加到516.3667m2/g和0.3235cm3/g,平均孔径从19.7393nm减小到2.5057nm(表2)。这些结果表明,与原始底泥相比,底泥基沸石具有更多的微孔结构和更复杂的孔结构。此外,底泥基沸石的平均孔径和总孔体积略高于试剂沸石,如图2(b)所示,这可能与沸石颗粒的聚集有关。从孔径分布图可以看出,底泥基沸石和试剂沸石均以微孔占主导地位(孔径约1.7nm)。
表2三种样品的比表面积、总孔容积和平均孔径
Figure BDA0003821180410000051
实施例3底泥基沸石分子筛去除废水中多金属的性能评价
首先考察底泥沸石分子筛(SZ)和试剂合成的沸石分子筛(RZ)对废水重金属Cd(Ⅱ)吸附的影响。采用分批吸附实验研究溶液pH(2.0~6.0)、Cd(Ⅱ)浓度(190~600mg/L)对Cd(Ⅱ)吸附的影响。所有分批吸附实验均在透明塑料瓶中进行,取20mL CdCl2溶液,加入吸附剂(即实施例1制备得到的底泥沸石分子筛和试剂合成的沸石分子筛)后置于摇床内,在180rpm、25℃下振荡4小时。批处理实验结束后,取过滤后的上清液,用原子吸收分光光度计测定Cd(Ⅱ)浓度,计算Cd(Ⅱ)去除率和吸附量。
结果表明,溶液pH在2~6范围内,SZ与RZ对镉离子的吸附量均随pH的升高而显著增加,结果如图3(a)所示。pH=5.0时,SZ吸附量达到最大值176.04mg/g。吸附剂用量从0.5g/L增加到2.5g/L,Cd(Ⅱ)去除率先迅速升高而后趋于平稳,吸附量则呈直线下降趋势。吸附剂用量影响着吸附点位数量,随着吸附剂用量增加,Cd(Ⅱ)去除率显著升高,是因为更大的吸附剂用量提供了更大的接触面积,更多的吸附点位,但吸附剂总量的增加使得与单位吸附剂结合的Cd(Ⅱ)数量减少,导致单位吸附剂吸附量降低。随着Cd(Ⅱ)溶液浓度从190mg/L升高到600mg/L,SZ和RZ的吸附量均随浓度升高而不断增加,如图3(b)所示,在浓度为510mg/L时达到最大吸附量191.62mg/g和186.11mg/g,底泥基沸石对Cd(Ⅱ)的吸附量大于试剂沸石。
本例同时考察了底泥基沸石分子筛对废水中其他三种常见重金属Cu(Ⅱ),Ni(Ⅱ),Zn(Ⅱ)吸附的影响。分别采用一定质量的金属盐(硝酸铜、硫酸镍和硝酸锌)溶解于去离子水,配置各种重金属废水。通过分批吸附实验研究溶液pH(2.0~6.0)、金属浓度(190~600mg/L)、吸附剂用量(0.5~2.5g/L)和吸附时间(0、1、3、5、10、30、60、120、240min)对吸附性能的影响。所有分批吸附实验均在透明塑料瓶中进行,加入吸附剂后置于摇床内,在180rpm、25℃下振荡4小时。批处理实验结束后,取过滤后的上清液,用原子吸收分光光度计测定各金属的浓度,计算沸石分子筛对各种金属的吸附量。实验结果(图4)表明:底泥基沸石对三种重金属的具有良好的吸附作用,最佳吸附量分别达到99.49mg/g、122.28mg/g和71.39mg/g。
实施例4底泥基沸石的稳定性评价
本例采用底泥基沸石吸附重金属Cd(II)来考察其可再生性能。采用5.0mol/LNaCl溶液作为解吸液,将使用过的底泥基沸石解吸再生,再生后的底泥基沸石继续用于吸附Cd(II),如此循环三次,实验结果如图5所示。经过连续3次循环再生后,再生后的底泥基沸石对Cd(Ⅱ)的吸附量约为新鲜底泥基沸石的88.2%,表明底泥基沸石经过三次再生后仍具备出色的Cd(Ⅱ)吸附能力,再生能力良好。同时对吸附前后的底泥基沸石进行了FTIR、XRD和XPS结构表征。
傅里叶红外光谱仪分析了吸附实验前后底泥基沸石的表面官能团,结果如图6(a)所示。结果表明吸附前后底泥基沸石的表面官能团未发生变化,只是局部一些峰的强度或者位置出现小幅度变化:在3474cm-1和1649cm-1处观察到的峰分别归属于-OH伸缩振动和吸附水的弯曲振动。吸附Cd(II)后,这些峰偏移至3572cm-1和1637cm-1,且强度变弱,这表明Cd(II)通过表面络合或去质子化与-OH发生结合。1487cm-1附近属于T-O-T(T=Si或Al)的外部不对称拉伸,位于1011cm-1附近的峰代表[TO4]四面体中T-O键的伸缩振动,760cm-1处吸收峰归因于Si-O-Si键对称伸缩振动,691cm-1附近吸收峰归因于Al-O键的对称拉伸振动,565cm-1附近吸收峰归因于[TO4]四面体中双环振动,465cm-1附近的吸收峰与Si-O-Al键弯曲振动有关,上述特征峰在吸附后均发生不同程度的偏移或强度衰减现象,表明底泥基沸石中的T-O结构也对Cd(II)的去除起到一定的作用。
吸附前后底泥基沸石的XRD分析图谱如图6(b)所示。2θ=9.94、11.66、15.42、20.02和30.96°处的衍射峰属于X型沸石中所含的硅酸钠(JCPDS 49-0162)和铝硅酸钠(JCPDS 48-0730)。而吸附Cd(II)后这两个峰强度大大降低,同时,吸附Cd后,沸石表面分别于2θ=26.80、30.44和32.18°出现CdAl2O4(JCPDS 34-0071)和Cd2SiO4(JCPDS 27-0062)的峰。这一结果说明Na+与Cd(II)的离子交换在底泥基沸石吸附Cd(II)过程中起主要作用。同时,吸附后,底泥基沸石主要晶相结构保持不变。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种底泥基沸石分子筛的制备方法,其特征在于包括如下步骤:
(1)用酸处理底泥后离心,分离上清液和沉淀物;
(2)将离心得到的沉淀物与碱混合后焙烧,与溶剂混合进行水热反应得到底泥基沸石分子筛。
2.根据权利要求1所述的底泥基沸石分子筛的制备方法,其特征在于:
步骤(1)所述的底泥为河底污泥;
步骤(1)所述的底泥为过100~300目筛的底泥。
3.根据权利要求1所述的底泥基沸石分子筛的制备方法,其特征在于:
步骤(1)所述的酸为盐酸;
步骤(1)所述的处理为在30~40℃、100~200r/min下振荡1~3h;
步骤(1)所述的离心的条件为4000~6000r/min,5~20min。
4.根据权利要求1所述的底泥基沸石分子筛的制备方法,其特征在于:
步骤(2)所述的碱为氢氧化钠;
步骤(2)所述的沉淀物与碱的质量比为1:1~2;
步骤(2)所述的混合为混合研磨。
5.根据权利要求1所述的底泥基沸石分子筛的制备方法,其特征在于:
步骤(2)所述的焙烧的条件为以5~20℃/min的速率升温至500~600℃后维持1~2h。
6.根据权利要求1所述的底泥基沸石分子筛的制备方法,其特征在于:
步骤(2)所述的溶剂为水;
步骤(2)所述的混合的条件为研磨后按2~10mL/g的比例与溶剂混合,搅拌12~36h。
7.根据权利要求1所述的底泥基沸石分子筛的制备方法,其特征在于:
步骤(2)所述的水热反应的条件为70~90℃下反应0.5~2h。
8.根据权利要求1所述的底泥基沸石分子筛的制备方法,其特征在于:
步骤(2)所述的底泥基沸石分子筛在水热反应后还经过过滤、洗涤、烘干,研磨。
9.一种底泥基沸石分子筛,其特征在于:
由权利要求1~8任一所述的制备方法制备得到。
10.权利要求9所述的底泥基沸石分子筛在处理重金属污水中的应用。
CN202211041667.7A 2022-08-29 2022-08-29 一种底泥基沸石分子筛及其制备方法和应用 Active CN115304080B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211041667.7A CN115304080B (zh) 2022-08-29 2022-08-29 一种底泥基沸石分子筛及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211041667.7A CN115304080B (zh) 2022-08-29 2022-08-29 一种底泥基沸石分子筛及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115304080A true CN115304080A (zh) 2022-11-08
CN115304080B CN115304080B (zh) 2024-03-12

Family

ID=83865378

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211041667.7A Active CN115304080B (zh) 2022-08-29 2022-08-29 一种底泥基沸石分子筛及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115304080B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162513A (ja) * 2003-12-01 2005-06-23 Hitachi Ltd 浄水場発生土からのゼオライト化土の製造方法、廃水処理方法および使用済みゼオライト化土の処理方法
JP2005224748A (ja) * 2004-02-16 2005-08-25 Hitachi Ltd ゼオライト化改質土の製造方法
CN101716491A (zh) * 2009-12-14 2010-06-02 昆明理工大学 利用湖泊底泥炭化制备重金属吸附剂的方法
CN106082255A (zh) * 2016-06-22 2016-11-09 河北大学 一种利用水厂污泥高效制备人造沸石的方法及其应用
CN108607505A (zh) * 2018-05-21 2018-10-02 陕西科技大学 利用剩余污泥制备的吸附剂及其制备方法和应用
CN108620018A (zh) * 2018-04-11 2018-10-09 昆明理工大学 利用疏浚滇池底泥制备高温co2吸附剂的方法
CN109621903A (zh) * 2019-01-31 2019-04-16 上海交通大学 一种制备污泥基炭沸石功能材料的方法
MX2018003805A (es) * 2018-03-27 2019-09-30 Centro De Investig Y De Estudios Avanzados Del I P N Metodo para la preparacion de materiales zeoliticos a partir de subproductos industriales y otras materias primas abundantes y de bajo costo, y su uso en el tratamiento de efluentes acuosos contaminados.
CN112237902A (zh) * 2020-10-30 2021-01-19 长安大学 表面类沸石型吸附剂及其制备方法与应用
CN112500126A (zh) * 2020-12-02 2021-03-16 长江勘测规划设计研究有限责任公司 掺加稻壳调理的底泥基沸石陶粒的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162513A (ja) * 2003-12-01 2005-06-23 Hitachi Ltd 浄水場発生土からのゼオライト化土の製造方法、廃水処理方法および使用済みゼオライト化土の処理方法
JP2005224748A (ja) * 2004-02-16 2005-08-25 Hitachi Ltd ゼオライト化改質土の製造方法
CN101716491A (zh) * 2009-12-14 2010-06-02 昆明理工大学 利用湖泊底泥炭化制备重金属吸附剂的方法
CN106082255A (zh) * 2016-06-22 2016-11-09 河北大学 一种利用水厂污泥高效制备人造沸石的方法及其应用
MX2018003805A (es) * 2018-03-27 2019-09-30 Centro De Investig Y De Estudios Avanzados Del I P N Metodo para la preparacion de materiales zeoliticos a partir de subproductos industriales y otras materias primas abundantes y de bajo costo, y su uso en el tratamiento de efluentes acuosos contaminados.
CN108620018A (zh) * 2018-04-11 2018-10-09 昆明理工大学 利用疏浚滇池底泥制备高温co2吸附剂的方法
CN108607505A (zh) * 2018-05-21 2018-10-02 陕西科技大学 利用剩余污泥制备的吸附剂及其制备方法和应用
CN109621903A (zh) * 2019-01-31 2019-04-16 上海交通大学 一种制备污泥基炭沸石功能材料的方法
CN112237902A (zh) * 2020-10-30 2021-01-19 长安大学 表面类沸石型吸附剂及其制备方法与应用
CN112500126A (zh) * 2020-12-02 2021-03-16 长江勘测规划设计研究有限责任公司 掺加稻壳调理的底泥基沸石陶粒的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
翁焕新: "污泥陶粒的性能特征与烧制工艺", 浙江大学学报(工学版), vol. 45, no. 10, pages 1877 - 1883 *
胡频: "粉煤灰基沸石的合成、优化及VOCs吸附性能的研究", 中国优秀硕士学位论文全文数据库工程科技Ⅰ辑, no. 5, pages 4 - 7 *

Also Published As

Publication number Publication date
CN115304080B (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
Bu et al. Synthesis of NaY zeolite from coal gangue and its characterization for lead removal from aqueous solution
Chunfeng et al. Evaluation of zeolites synthesized from fly ash as potential adsorbents for wastewater containing heavy metals
Medina et al. Fly ash from a Mexican mineral coal. II. Source of W zeolite and its effectiveness in arsenic (V) adsorption
Hamdi et al. Removal of phosphate ions from aqueous solution using Tunisian clays minerals and synthetic zeolite
CN110756166A (zh) 一种玉米芯负载镁改性吸附材料及其制备方法与应用
Deng et al. Formation of NaP zeolite from fused fly ash for the removal of Cu (II) by an improved hydrothermal method
Duan et al. Rapid removal of low concentrations of mercury from wastewater using coal gasification slag
CN111715196A (zh) 一种以煤气化细渣为原料制备磁性活性炭NaX分子筛复合材料的方法
AU2020102183A4 (en) Preparation of zeolite 4a from tailings and method for treatment of pb-containing wastewater
CN106587097A (zh) 一种利用微硅粉合成ssz‑13沸石分子筛的方法
CN112934168A (zh) 一种含镁硅胶复合材料及其制备方法与应用
Gao et al. Preparation and characterization of ZSM-5 molecular sieve using coal gangue as a raw material via solvent-free method: Adsorption performance tests for heavy metal ions and methylene blue
Li et al. Utilization of electrolytic manganese residue to synthesize zeolite A and zeolite X for Mn ions adsorption
Kasai et al. Synthesis of zeolite-surface-modified perlite and their heavy metal adsorption capability
Mostafa et al. Utilization of Egyptian kaolin for zeolite-A preparation and performance evaluation
Orjioke et al. Synthesis and characterization of zeolite and its application in adsorption of nickel from aqueous solution
Dignos et al. The comparison of the alkali-treated and acid-treated naturally mined Philippine zeolite for adsorption of heavy metals in highly polluted waters
CN117339551A (zh) 一种对碲具有还原和吸附作用的复合材料合成方法
CN115304080B (zh) 一种底泥基沸石分子筛及其制备方法和应用
Pei et al. Stellerite-seeded facile synthesis of zeolite X with excellent aqueous Cd2+ and Ni2+ adsorption performance
Akinruli et al. Synthesis and characterization of naa zeolite using natural kaolinite clays from nigeria by low temperature hydrothermal method
CN113117643A (zh) 一种改性生物质炭吸附材料及其制备方法和应用、改性生物质炭吸附材料再生的方法
CN111908484A (zh) 一种4a分子筛及其制备方法和应用
Li et al. Utilization of electrolytic manganese residue and bauxite to synthesize zeolite a for pickle liquor adsorption: Characterization, mechanisms and performance
CN113559825B (zh) 一种zif-8/钠基膨润土复合材料的制备方法及产品和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant