CN115290721A - 基于适配体的比色和电化学双模式可视化Pb(Ⅱ)电化学传感器 - Google Patents

基于适配体的比色和电化学双模式可视化Pb(Ⅱ)电化学传感器 Download PDF

Info

Publication number
CN115290721A
CN115290721A CN202211033997.1A CN202211033997A CN115290721A CN 115290721 A CN115290721 A CN 115290721A CN 202211033997 A CN202211033997 A CN 202211033997A CN 115290721 A CN115290721 A CN 115290721A
Authority
CN
China
Prior art keywords
electrochemical
aptamer
detection
colorimetric
chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211033997.1A
Other languages
English (en)
Inventor
张妍妍
国琪
尹佳琪
孙霞
郭业民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN202211033997.1A priority Critical patent/CN115290721A/zh
Publication of CN115290721A publication Critical patent/CN115290721A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/27Association of two or more measuring systems or cells, each measuring a different parameter, where the measurement results may be either used independently, the systems or cells being physically associated, or combined to produce a value for a further parameter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

基于适配体的比色和电化学双模式可视化Pb(Ⅱ)电化学传感器的制备方法,属于材料科学与电化学传感器相结合的技术领域;本发明采用功能化适配体来修饰玻碳电极,实现传感器对Pb(Ⅱ)的双模式检测;Pb(Ⅱ)发挥特异性剪切酶作用,剪切适配体,使得Au@Pd NPs功能化的适配体链结合到电极上,以实现电化学信号的增强,采用差分脉冲伏安法,根据电化学信号强度的变化实现Pb(Ⅱ)的电化学检测;Au@Pd NPs的多孔核壳结构为过氧化氢提供充足活性位点,发挥过氧化氢酶作用,催化过氧化氢,引起底物3,3’,5,5’‑四甲基联苯胺的氧化变色,根据颜色变化实现Pb(Ⅱ)的比色检测;本发明制备的Pb(Ⅱ)传感器的最低检测限为0.4 nM,成功应用于食用菌中Pb(Ⅱ)的定量和比色检测,为食用菌安全快速检测奠定基础。

Description

基于适配体的比色和电化学双模式可视化Pb(Ⅱ)电化学传 感器
技术领域
本发明涉及一种电化学传感器和这种传感器的制备方法以及使用方法,属于材料科学与电化学传感器相结合的技术领域。
背景技术
重金属污染已成为一个全球性的环境问题,工业制造、农业生产和运输的废气、液体和固体废物中所含的重金属通过食物链进入环境和人体,造成严重的累积危害;食用菌在世界各地广泛分布,锯末等农业废弃物是食用菌的主要生长基质,它们可以利用生物聚合物(木质纤维素等)作为营养来源;因此,由于环境中的重金属污染,食用菌中的重金属含量较高,将对食品安全造成严重危害。
目前,传统的重金属检测方法,如原子吸收光谱法(AAS)、电感耦合等离子体质谱仪(ICP-MS)、原子荧光光谱法(AFS)和X射线荧光光谱法(XRFS)都依赖于大型设备,不仅成本高昂,而且需要专业人员操作,因此,有必要开发一种成本低、选择性高、稳定性强的重金属检测方法。
电化学检测技术具有检测时间短、特异性强、仪器体积小的特点,适合快速现场检测;金属纳米颗粒易于合成,成本低,具有优异的电催化性能和良好的生物相容性,金钯双金属纳米粒子独特的多孔核壳结构赋予其大比表面积和大量过氧化氢催化位点;在过氧化氢的存在下,基板3,3’,5,5’-四甲基联苯胺(TMB)将其电子转移到纳米材料,并能进一步氧化为蓝色产物(ox TMB);特定适配体和电化学传感器的结合可以大大提高检测重金属离子的灵敏度;脱氧核酶8-17是一种DNA金属酶,在二价金属离子存在下催化RNA酯交换;Pb(II)脱氧核酶由酶链和底物链组成,在靶Pb(II)存在下可将4条底物链拆分为两段,增强了铅离子的特异性检测。
发明内容
本发明的目的在于制备一种基于适配体的双模式可视化Pb(II)电化学传感器,通过提高电化学传感器检测重金属离子的专一性与选择性,将视觉预测和精确的电化学定量结合,实现重金属铅的高效特异性检测。
本发明的技术方案为:所述的一种基于适配体的双模式可视化电化学Pb(II)传感器的制备方法,所用的适配体S2具有铅离子特异性识别位点,可被铅离子特异性剪切;首先在预处理过的电极表面滴加银纳米粒子形成均匀表层,滴加适配体链S1-S2以及一定浓度的铅,铅离子使S2裂解,将S1暴露于电极表面,滴加长链S4与S1杂交,再滴加带有金钯双金属纳米粒子的S3链与S4剩余暴露部分杂交,构建成完整传感器,采用差分脉冲伏安法在最优条件下进行重金属铅的检测。
传感界面的构建:(1)电化学传感器制备前裸玻碳电极的清洗和性能测试,若测试循环伏安曲线中氧化峰和还原峰的电位差≤100 mV,氧化峰和还原峰对称,则所述玻碳电极可使用;(2)清洗好的裸玻碳电极表面滴涂分散均匀纳米银溶液;干燥后,在表面继续滴涂混合均匀的适配体链S1-S2和铅离子,在铅离子的存在下使适配体链裂解,再依次滴入长链S4以及带有金钯双金属纳米粒子的适配体链S3使其与S1杂交,完全干燥后,电化学传感器即制作完成,室温储存备用。
目标离子的电化学检测:采用差分脉冲伏安法利用三电极体系在最佳实验条件下检测重金属铅离子,根据检测结果中溶出电流峰位置与大小进行分析即可获知溶液中所含重金属离子的种类和金属离子的浓度,据此可获得重金属离子浓度信息。
本发明的制备原理为:将纳米银溶液涂覆在玻碳电极表面,形成均匀分布的纳米银表层,滴加适配体S1-S2,在适配体S1的5’端修饰巯基(-SH),利用Ag-S键与电极相连,滴加铅离子后,利用铅离子对S2的剪切作用,使其裂解,将底物链S1暴露于电极上;滴加长链S4与S1杂交,再滴加带有金钯双金属纳米粒子的S3链与S4剩余暴露部分杂交,即得到构建完成的适配体传感器;经上述步骤制备的电化学传感器,操作简便,灵敏度高,抗干扰性与稳定性较好,可以实现快速检测,对样品无特殊要求,不需要复杂的预处理。
与现有技术相比本发明的有益效果在于:本发明提供了一种可以将视觉预测和电化学定量结合的双模式可视化电化学传感器;通过金钯双金属纳米粒子催化过氧化氢使TMB氧化变色的原理,提供了重金属检测视觉上的判断;通过采用适配体作为识别元件,提高了电化学传感器检测重金属离子的专一性与选择性,有效地提高了重金属检测的特异性;另外,此传感器的制备能够用于食用菌中的重金属铅的定量检测,为重金属污染的快速检测便携装置的研制奠定基础。
附图说明
图1电化学生物传感器构建流程图。
图2扫描电子显微镜、透射电子显微镜、能谱元素分析、X射线衍射图谱以及紫外-可见吸收光谱表征图。
图3琼脂糖凝胶电泳表征图。
图4传感器构建过程的导电性研究。
图5电化学传感器的适配体浓度以及检测液pH的优化。
图6测量不同浓度铅离子的差分脉冲伏安曲线及标准曲线。
图7在不同浓度铅离子条件下底液颜色变化图像。
图8传感器构建过程的差分脉冲伏安测试。
图9电化学传感器重现性研究。
图10电化学传感器抗干扰性和稳定性研究。
具体实施方式
实施例:
(1)制备的纳米银用无水乙醇和超纯水洗涤5次,13000转离心10 min,去除上清液,留得的沉淀通过超纯水稀释于4℃下陈化两天后备用;金钯双金属纳米粒子的制备:在沸水浴条件下,将44.5 mg PdCl2溶解在25 mL 20 mM盐酸溶液中制成H2PdCl4水溶液,将H2PdCl4水溶液(10 mM,0.5 mL)、HAuCl4水溶液(10 mM,0.1 mL)和十六烷基氯化吡啶(0.02g)加入到5 mL超纯水中,超声形成均匀的悬浮液,在搅拌条件下将新制备的抗坏血酸水溶液(0.1 M,0.4 mL)快速注入混合溶液中,在35℃静置120 min,离心收集纳米材料(即Au@PdNPs),用超纯水洗涤两次,将得到的Au@Pd NPs重新分散在2 mL超纯水中,4℃储存备用;
(2)适配体链修饰前的预处理:修饰前,将修饰有疏基的适配体链置于10 mM的TCEP中60 min,以解开二硫键,在1.0 mL PBS(10 mM,pH 7.4)中制备了含有1.0 μM酶链和1.0 μM底物链的混合物(S1-S2),将混合物在65℃下孵育10 min,冷却至室温后,在室温下摇床反应12 h,获得的S1-S2溶液存储在4℃下以供进一步使用,为获得S3标记的多孔双金属纳米粒子,将上述制备的S3和0.3 mL的多孔双金属纳米粒子混合到1.2 mL PBS中,在室温下温和摇晃6 h,离心分离后,将所得沉淀物分散在1.0 mL的PBS中,进行目标铅离子检测;
(3)玻碳电极的清洗:玻碳电极修饰前,用0.3 μm的Al2O3于麂皮上抛光至镜面,抛光后用去离子水洗去除表面污物,再移入超声水浴中清洗,每次5 min,重复2次,无水乙醇和去离子水超声清洗,氮气环境下干燥;
(4)玻碳电极的测试:在含有0.1 M KCl和5 mM [Fe(CN)6]3-/4-的0.01 M PBS溶液中跑循环伏安曲线,以测试所述玻碳电极的性能,扫描速度为50 mV/s,扫描电位为-0.1~0.6 V;当所述循环伏安曲线中的氧化还原峰电位差在100 mV以下时,则所述玻碳电极可进一步使用,否则要返回步骤(2)中继续处理所述玻碳电极,直至符合要求;
(5)将纳米银粒子滴加到经过预处理的玻碳电极的表面,干燥后再依次分别滴加适配体链S1-S2、铅离子、长链S4以及带有金钯双金属纳米粒子的S3,待电极表面完全干燥后室温储存备用;
(6)采用三级体系,利用差分脉冲伏安法对适配体浓度、测试底液pH值等实验因素进行优化,铅离子适配体浓度为400 nM,测试底液pH值为7.0;
(7)在最佳测试条件下使用差分脉冲伏安法进行进行浓度梯度定量分析测试,底液PH=7.0,测试用的铅离子浓度区间为1~1000 nM,得到铅离子的最低检测限为0.4 nM,回归方程为ΔI=0.006C+1.321(C:nM,R2=0.990),见附图6;
(8)在测试体系中分别加入铅(400 nM)、钙、镁、锌、铁、镍(4 μM)和混合干扰离子对制备的7种电化学传感器在差分脉冲伏安法下进行测试,以检测其抗干扰性;将传感器保存在4℃冰箱中,每隔3天测试一次,共15天,观察其稳定性;
(9)将食用菌样品灰化后溶于硝酸,加入超纯水制成样品溶液,与缓冲液溶液1:1混合,调节pH,加入铅离子溶液,采用标准添加法分别对平菇、香菇以及海鲜菇中不同浓度的铅离子进行检测,进行实际样品的分析。
此种电化学传感器可检测食用菌中的铅离子,传感器成本低廉,操作简单,抗干扰能力强,稳定性好,特异性强,可同时从视觉与电化学两方面检测重金属,不具毒性,具有较高的检测灵敏度。

Claims (3)

1.基于适配体的比色和电化学双模式可视化Pb(Ⅱ)电化学传感器的制备方法,其特征在于:将精确的电化学定量检测和比色检测相结合,银纳米粒子(Ag NPs)与金钯双金属纳米粒子(Au@Pd NPs)协同增效,Pb(Ⅱ)发挥特异性剪切酶作用,剪切适配体,使得被Au@PdNPs功能化的适配体链结合到电极上,以实现电化学信号的增强,根据电化学信号的变化实现Pb(Ⅱ)的精准检测;同时,Au@Pd NPs作为纳米酶,发挥过氧化氢酶作用,催化过氧化氢,引起底物3,3’,5,5’-四甲基联苯胺(TMB)的氧化变色,以实现Pb(Ⅱ)的可视化预测,根据底液颜色的变化实现Pb(Ⅱ)的比色检测;采用差分脉冲伏安法进行浓度梯度定量分析测试,底液pH=7.0,测试用的Pb(Ⅱ)浓度区间为1~1000 nM,得到Pb(Ⅱ)的最低检测限为0.4 nM,成功应用于食用菌中重金属Pb(Ⅱ)的定量和比色检测。
2.如权利要求1所述的基于电化学模式的Pb(Ⅱ)电化学传感器的制备方法,其特征在于:滴加5 μL银纳米粒子到玻碳电极上,使其形成均匀纳米银表层;滴加适配体链S1-S2,利用银硫键与电极相连;采用DNA金属酶脱氧核酶8-17的酶链和底物链组成Pb(Ⅱ)脱氧核酶,滴加Pb(Ⅱ)后,催化RNA酯交换反应,使S2裂解,将底物链S1暴露于电极上;滴加长链S4与S1杂交,再滴加带有Au@Pd NPs的S3链与S4暴露部分杂交,完成传感器的构建;适配体浓度为400 nM,采用三电极体系,测试底液pH值为7.0。
3.如权利要求1所述的基于比色模式的Pb(Ⅱ)电化学传感器的制备方法,其特征在于:Au@Pd NPs的多孔核壳结构为过氧化氢提供了丰富的活性位点,发挥过氧化氢酶的作用,能够催化过氧化氢,从而加速氧化3,3’,5,5’-四甲基联苯胺(TMB)变为蓝色产物(ox TMB),且随着Pb(Ⅱ)浓度增加,底液从无色加深为蓝色,实现对Pb(Ⅱ)的视觉预测。
CN202211033997.1A 2022-08-26 2022-08-26 基于适配体的比色和电化学双模式可视化Pb(Ⅱ)电化学传感器 Pending CN115290721A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211033997.1A CN115290721A (zh) 2022-08-26 2022-08-26 基于适配体的比色和电化学双模式可视化Pb(Ⅱ)电化学传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211033997.1A CN115290721A (zh) 2022-08-26 2022-08-26 基于适配体的比色和电化学双模式可视化Pb(Ⅱ)电化学传感器

Publications (1)

Publication Number Publication Date
CN115290721A true CN115290721A (zh) 2022-11-04

Family

ID=83831363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211033997.1A Pending CN115290721A (zh) 2022-08-26 2022-08-26 基于适配体的比色和电化学双模式可视化Pb(Ⅱ)电化学传感器

Country Status (1)

Country Link
CN (1) CN115290721A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117990691A (zh) * 2024-04-03 2024-05-07 成都理工大学 核酸染料光氧化tmb电化学可视化传感器及制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070154909A1 (en) * 2005-11-29 2007-07-05 The Regents Of The University Of California Signal-on architecture for electronic, oligonucleotide-based detectors
CN110044993A (zh) * 2019-03-14 2019-07-23 重庆文理学院 一种基于外切酶ⅲ辅助目标物循环与主客体识别的汞离子电传感分析检测方法
CN113899799A (zh) * 2021-10-15 2022-01-07 山东理工大学 一种检测水质中重金属铅、汞的适配体电化学传感器的制备方法
CN114015748A (zh) * 2022-01-06 2022-02-08 中国农业大学 一种基于级联放大快速定量检测阪崎肠杆菌的方法
CN114518359A (zh) * 2022-03-08 2022-05-20 山东理工大学 一种基于g-四联体的双模式卡那霉素适配体传感器的制备方法
CN114813872A (zh) * 2022-04-13 2022-07-29 广东石油化工学院 一种基于H-rGO-Mn3O4纳米酶的电化学/比色双模式检测GP73的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070154909A1 (en) * 2005-11-29 2007-07-05 The Regents Of The University Of California Signal-on architecture for electronic, oligonucleotide-based detectors
CN110044993A (zh) * 2019-03-14 2019-07-23 重庆文理学院 一种基于外切酶ⅲ辅助目标物循环与主客体识别的汞离子电传感分析检测方法
CN113899799A (zh) * 2021-10-15 2022-01-07 山东理工大学 一种检测水质中重金属铅、汞的适配体电化学传感器的制备方法
CN114015748A (zh) * 2022-01-06 2022-02-08 中国农业大学 一种基于级联放大快速定量检测阪崎肠杆菌的方法
CN114518359A (zh) * 2022-03-08 2022-05-20 山东理工大学 一种基于g-四联体的双模式卡那霉素适配体传感器的制备方法
CN114813872A (zh) * 2022-04-13 2022-07-29 广东石油化工学院 一种基于H-rGO-Mn3O4纳米酶的电化学/比色双模式检测GP73的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
QI GUO ET AL.: "Dual-mode colorimetric electrochemical aptamer sensor based on Au@Pd bimetallic nanoparticles for the detection of Pb(II) in edible mushrooms", JOURNAL OF APPLIED ELECTROCHEMISTRY, 16 February 2024 (2024-02-16) *
童设华;姜培航;: "脱氧核酶电化学生物传感器高灵敏测定铅离子", 广东化工, no. 16, 30 August 2017 (2017-08-30) *
翁少煌;林晓;周剑章;刘爱林;林丽清;林新华;: "壳聚糖/碳纳米管修饰电极电化学免疫传感器用于甲胎蛋白检测", 福建医科大学学报, no. 04, 28 August 2012 (2012-08-28) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117990691A (zh) * 2024-04-03 2024-05-07 成都理工大学 核酸染料光氧化tmb电化学可视化传感器及制备方法和应用
CN117990691B (zh) * 2024-04-03 2024-06-11 成都理工大学 核酸染料光氧化tmb电化学可视化传感器及制备方法和应用

Similar Documents

Publication Publication Date Title
Yuan et al. Hemin/G-quadruplex simultaneously acts as NADH oxidase and HRP-mimicking DNAzyme for simple, sensitive pseudobienzyme electrochemical detection of thrombin
Rahmani et al. A novel and high performance enzyme-less sensing layer for electrochemical detection of methyl parathion based on BSA templated Au–Ag bimetallic nanoclusters
CN107543852A (zh) 一种基于功能化金属有机框架材料的电致化学发光传感器
CN110736777A (zh) 基于滚环扩增dna酶和共价有机骨架的电化学-elisa免疫传感器
He et al. A rolling circle amplification signal-enhanced immunosensor for ultrasensitive microcystin-LR detection based on a magnetic graphene-functionalized electrode
CN113588745B (zh) 一种灵敏度可控的Pb2+诱导的双放大电化学发光检测方法
Lin et al. Immobilized Fullerene C60‐Enzyme‐Based Electrochemical Glucose Sensor
Chen et al. Signal on-off ratiometric electrochemical sensor based on semi-complementary aptamer couple for sensitive cadmium detection in mussel
CN110006968B (zh) 基于快速扫描循环伏安技术检测汞离子的电化学生物传感器的制备方法及其应用
CN113061649B (zh) 检测microRNA的表面增强拉曼光谱传感器及其制备方法
CN111579614B (zh) 基于磁性生物复合材料的dna酶和杂交链式反应的电化学生物传感器检测铅离子的方法
CN111398394B (zh) 一种用于氯霉素含量检测的电化学传感器制备方法
CN108469461B (zh) 一种夹心型肺癌标志物电化学传感器的制备方法及应用
CN115290721A (zh) 基于适配体的比色和电化学双模式可视化Pb(Ⅱ)电化学传感器
Cao et al. An ultrasensitive biosensor for virulence ompA gene of Cronobacter sakazakii based on boron doped carbon quantum dots-AuNPs nanozyme and exonuclease III-assisted target-recycling strategy
Wang et al. Fluorescent/electrochemical dual-signal response biosensing strategy mediated by DNAzyme-ferrocene-triggered click chemistry for simultaneous rapid screening and quantitative detection of Vibrio parahaemolyticus
CN111239196A (zh) 一种基于dna水凝胶的铅离子检测设备及其制备和检测方法
Yang et al. A stepwise recognition strategy for the detection of telomerase activity via direct electrochemical analysis of metal–organic frameworks
CN110441535A (zh) 一种基于Pd NCs功能化CuInOS检测降钙素原的电化学免疫传感器的制备方法
Wang et al. A dual-modal electrochemical aptasensor based on intelligent DNA walker with cascade signal amplification powered by Nb. BbvCI for Pb2+
CN113899799A (zh) 一种检测水质中重金属铅、汞的适配体电化学传感器的制备方法
CN106814116A (zh) 一种无标记型丙烯酰胺电化学免疫传感器及其构建方法和应用
Tang et al. Self-assembly synthesis of Ag@ PANI nanocomposites as a tandem enzyme utilizing a highly efficient label-free SERS method to detect saccharides
CN110702760B (zh) 一种检测铀酰离子的纳米金-dna网状结构电化学生物传感器及其制备方法和应用
Koçak et al. Centri-voltammetric determination of molybdenum

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination