CN115286916B - 一种耐高温的定型相变材料和相变气凝胶及其制备方法 - Google Patents

一种耐高温的定型相变材料和相变气凝胶及其制备方法 Download PDF

Info

Publication number
CN115286916B
CN115286916B CN202211206465.3A CN202211206465A CN115286916B CN 115286916 B CN115286916 B CN 115286916B CN 202211206465 A CN202211206465 A CN 202211206465A CN 115286916 B CN115286916 B CN 115286916B
Authority
CN
China
Prior art keywords
phase
change
aerogel
resin
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211206465.3A
Other languages
English (en)
Other versions
CN115286916A (zh
Inventor
邹如强
熊丰
覃木林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN202211206465.3A priority Critical patent/CN115286916B/zh
Publication of CN115286916A publication Critical patent/CN115286916A/zh
Application granted granted Critical
Publication of CN115286916B publication Critical patent/CN115286916B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • C08J2201/0484Elimination of a frozen liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/12Agar-agar; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08J2361/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with monohydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2461/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2461/02Condensation polymers of aldehydes or ketones only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2461/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2461/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08J2461/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08J2461/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明公开了一种耐高温的定型相变材料和相变气凝胶及其制备方法。将水溶性有机相变材料和水凝胶前驱体在高分子前驱体交联‑凝胶化过程中原位封装于交联的树脂高分子骨架中形成水凝胶块体,直接将水凝胶块体烘干得到耐高温的定型相变材料,或者,将水凝胶块体冷冻干燥得到相变气凝胶。本发明的定型相变材料具有耐高温、阻燃特性和定型相变特性,适用于建筑围护结构以及火灾等极端防护设备。所衍生的相变气凝胶隔热材料为多孔结构,具有抗压强度大、耐高温和固态相变的特点,且有一定的阻燃性,本征热导率低,相比于传统的有机气凝胶更加耐受高温,更加安全;相比于传统陶瓷气凝胶,则拥有更低的生产成本和力学耐受性。

Description

一种耐高温的定型相变材料和相变气凝胶及其制备方法
技术领域
本发明涉及定型相变材料及衍生的相变气凝胶,具体说,涉及一种耐高温的定型相变材料及衍生的相变气凝胶隔热材料及其制备方法。
背景技术
随着技术快速发展和极端天气的侵袭,隔热材料和相变储热材料在航天、国防、储能、民用等诸多层面都有迫切的需求。隔热材料可以有效隔绝热量传递,维持大温差下温度稳定;相变储热材料则可以通过相变存储大量热并保持温度不变。两者结合,在保持热稳定和定型相变特点的情况下,可在保持低热导率特点的同时,实现在相变范围内的隔热增强,以及对保护侧的温度控制。如民用水相的隔热保温、电池组冬季热管理、极端高温环境人体暴露防护等场景中,同样的隔热防护参数下,相变过程和潜热存储的存在可显著提升系统的隔热效果。
目前将相变材料用于隔热应用的复合材料和系统设计,以多层结构或混合相为主,且大多并未兼顾高温稳定性。如:中国专利ZL 201510020962.8以耐火材料层和相变材料层堆叠成耐高温隔热层级材料,耐火层接触高温侧,相变层接触低温侧;申请号为202010658252.9的中国专利申请利用相变材料层、陶瓷纤维层组装得到层,可延长隔热时间并控制保护侧温度预警时长;中国专利ZL 201610438599.6以气凝胶为载体对相变材料进行浸渍封装,封装后复合材料内部仍残留孔隙,增强隔热能力,所得材料热导率在0.1~0.5 W/mK,且形状稳定;中国专利ZL 201210064888.6则以聚氨酯为壳,聚乙二醇为核,得到相变微球,用作隔热涂料的粉体,微球的空心结构和粉体与粘结剂的界面热阻起到了绝热的作用。上述技术兼顾了相变和隔热特性,但所用相变材料无法耐受高温,应用性受限,而且以层状或是填充物组装,整体热导率过高,隔热效果不一定强过普通多孔隔热材料。
发明内容
针对目前航天军工民生事业对于先进隔热材料的需求,本发明的目的是提供一种耐高温的定型相变材料及衍生的相变气凝胶隔热材料。
在本发明的第一方面,提供了一种耐高温的定型相变材料,是将水溶性有机相变材料和水凝胶前驱体在高分子前驱体交联-凝胶化过程中原位封装于交联的树脂高分子骨架中而得到的定型相变材料。
本发明的定型相变材料以限域的有机相变材料实现储热控温功能,以交联的树脂高分子骨架增强机械强度和热稳定性,所得定型相变材料相变完全后能够维持稳定固态,且因为热固性骨架的存在,该定型相变材料在远超过熔点的高温下,依旧能维持固态,不出现泄露。
上述耐高温的定型相变材料中,所述水溶性有机相变材料可选自聚乙二醇(优选分子量1000至100000)、聚氧化乙烯、赤藓糖醇、木糖醇、季戊四醇等中的一种或多种;所述水凝胶前驱体可选自琼脂糖、壳聚糖、明胶、海藻酸钠、甲壳素等中的一种或多种。其中,所述水溶性有机相变材料和水凝胶前驱体的质量比在1~30范围内。
形成所述交联的树脂高分子骨架的树脂为热固性树脂,可选自三聚氰胺-甲醛树脂、糠醛-苯酚树脂、糠醛-丙酮树脂、糠醛自聚合树脂、有机硅树脂、水溶性聚氨酯树脂等中的一种或多种。
上述定型相变材料可通过简单的冻干技术,直接得到衍生的相变气凝胶隔热材料,同样具有优异的储热、隔热、阻燃和热稳定性能,相对于普通气凝胶,具有更强的隔热效果,在日常水箱隔热保温、电池组冬季控温、极端高温人体暴露防护等应用场景中更具优势。
在本发明的第二方面,提供了上述耐高温的定型相变材料及衍生的相变气凝胶隔热材料的制备方法,包括以下步骤:
1)将水凝胶前驱体和水溶性有机相变材料溶于水中,充分混合得到澄清溶液;
2)将热固性树脂预聚体加入到步骤1)获得的澄清溶液中,搅拌均匀,静置除泡;
3)密封加热诱发树脂聚合,并与水凝胶前驱体发生交联,形成水凝胶块体;
4)直接将水凝胶块体烘干得到耐高温的定型相变材料,或者,将水凝胶块体冷冻干燥得到相变气凝胶。
上述制备方法中,步骤1)中所述水凝胶前驱体可选用琼脂糖、壳聚糖、明胶、海藻酸钠、甲壳素等中的一种或多种,其添加量为水质量的1 %到5 %。
所述水溶性有机相变材料可选自聚乙二醇、聚氧化乙烯、赤藓糖醇、木糖醇、季戊四醇等中的一种或多种,其添加量为水质量的5 %到30 %。
步骤2)中添加的热固性树脂预聚体可以是三聚氰胺-甲醛树脂预聚体、糠醛-苯酚树脂预聚体、糠醛-丙酮树脂预聚体、糠醛自聚合树脂预聚体、有机硅树脂预聚体、水溶性聚氨酯树脂预聚体等中的一种或多种,其添加量依水凝胶前驱体的官能团数量和触发交联反应的计算比例决定,一般占水质量的1%到4%。
所述热固性树脂预聚体的制备为本领域的公知常识,例如将三聚氰胺和甲醛按摩尔比1:3混合后在70-80 ℃下加热搅拌反应5-10分钟,直到白色的浑浊液体转为无色澄清溶液,得到三聚氰胺-甲醛树脂预聚体,其他热固性树脂预聚体的制备方法于此不再赘述。
上述步骤3)中,触发交联反应的方法为升温至70~90 ℃密闭保温1~4 h,然后降至室温。
上述步骤4)中,将水凝胶块体材料置于真空环境中,加热至烘干,得到耐高温的定型相变材料。
上述步骤4)中,冷冻干燥的方法优选为:将水凝胶块体于液氮环境完全浸泡冷冻或者底部浸泡定向冷冻后,进行真空冷冻干燥处理,参数为气压0.1~80 Pa,冷阱温度为-40~ -80 ℃,干燥时间和程序设定视样品分量及形状而定。
本发明制备的定型相变材料具有耐高温、阻燃特性以及定型相变特性;所衍生的相变气凝胶隔热材料为多孔结构,其孔径分布在1~30 μm范围,密度分布在20~ 400 mg/cm3,具有抗压强度大、耐高温和固态相变的特点,且有一定的阻燃性,热导率分布在0.02~0.08 W/mk,相变潜热在80~ 160 J/g,相比于传统的有机气凝胶更加耐受高温,更加安全;相比于传统陶瓷气凝胶,则拥有更低的生产成本和力学耐受性。本发明与现有技术相比,具有如下有益效果:
(1)本发明合成的新型定型相变材料,依托水溶性相变成分的相变温度在35~130℃可调,焓值可达160 J/g,可耐受200 ℃高温不出现融化和泄露,具有阻燃特性。该定型相变材料既可以适用于建筑围护结构,也可以适用于火灾现场等极端防护设备。同时使用过程无毒副作用,无挥发爆燃危险,符合领域相关标准。
(2)采用热固性树脂交联形成的气凝胶骨架,具有优异的高温稳定性和阻燃特性,保证相变气凝胶材料在相变完全乃至极端高温的条件下,依然可保持形态稳定,其孔-壁结构不会崩塌,依旧保持着媲美普通气凝胶材料的隔热效果,其本征热导率低至0.025W/mk,优于绝大多数现有技术。
(3)本发明的制备方法操作简单,设备要求极低,原料选择范围大,成本低廉,且不涉及危险化学反应,仅靠溶液-溶胶-凝胶法的绿色方法即可得到均一的复合相变材料,与其他现有方法相比,有极大的成本优势和环保优势。
附图说明
图1显示了实施例1中所用原材料的化学结构及反应机理,其中,三聚氰胺和甲醛反应形成三聚氰胺-甲醛预聚体,再形成完全聚合体树脂。
图2为实施例1中制备的相变气凝胶与非相变气凝胶(不添加聚乙二醇6000的有机气凝胶)的隔热效果理论模拟对比图,在该理论模型中,在恒温300℃的加热铜台上放置相变气凝胶和普通气凝胶两种隔热材料,厚度均为15毫米,本征热导率均为0.05 W/mk,其中A是加热500 s后两种气凝胶隔热材料42℃相变等温线的位移图,B是加热1000 s后两种气凝胶隔热材料的温度分布,说明相变潜热的存在可以大幅提高材料的隔热能力。
图3展示了在实施例1中,相变气凝胶和非相变气凝胶两种材料在底部加热台300℃加热情况下,气凝胶顶部温度与中部温度随时间变化的记录。
图4为实施例1中制备得到的颗粒状定型相变材料的实物照片。
图5为实施例1中制备得到的圆柱状大块相变气凝胶材料的实物照片。
图6显示了在实施例1中,直径5 cm、重10 g的圆柱状相变气凝胶抗压3 kg砝码无可视变形。
图7为实施例1中制备得到的相变气凝胶样品在110 ℃加热24小时前后的微观形貌的扫描电镜照片,其中:A、B分别是加热前的低倍、高倍电镜照片,C、D分别是加热后的低倍、高倍电镜照片。
图8为展示实施例1中制备得到的相变气凝胶样品在丁烷喷枪火焰下燃烧时的阻燃和自熄灭效果的照片,其中:A显示在1300℃火焰加热下燃烧的情况;B显示移开喷枪火焰后,气凝胶自熄灭并表面包覆一层致密碳层;C显示气凝胶在高温引燃又自熄灭后,内部成分在外表碳层的保护下维持原状的情况。
具体实施方式
下面结合附图,通过实施例对本发明进行详述,应理解,这些实施例仅用于说明本发明而不用于限制本发明的保护范围。
实施例1
向1 kg去离子水中加入40 g壳聚糖,200 g聚乙二醇6000,搅拌充分溶解,得到澄清溶液后,加入22 g三聚氰胺-甲醛树脂预聚体(三聚氰胺和甲醛的摩尔比为1:3)(各原材料的化学结构参见图1),室温搅拌均匀后,置于80 ℃鼓风干燥箱中密封加热3小时,然后冷却至室温,得到水凝胶块体。将此水凝胶块体置于托盘放于真空烘箱中100 ℃加热干燥,除去水,得到耐高温相变材料块体。将水凝胶块体置于液氮中浸没1小时,再用冻干机进行冷冻干燥(参数:气压维持小于40 Pa,冷阱低于-40 ℃,持续72小时以上),除去水得到相变气凝胶。
图2所示为将所得相变气凝胶参数代入简化模型进行隔热效果理论模拟,在300℃铜板加热情况下,15 毫米高的相变气凝胶和非相变气凝胶(制备时不添加聚乙二醇6000)在隔热效果上的对比,模拟结果显示,相变功能的存在显著减缓了气凝胶高温等温线的上升。图3为非相变气凝胶与相变气凝胶两种隔热材料在接近300 ℃的底部加热台加热下,材料的温度上升情况对比。其温度记录显示相变气凝胶在初期相变完全之前隔热效果更好,而相变完成之后,隔热效果也并未变得很差。
图4显示本实施例100℃烘干的耐高温定型相变材料颗粒,其受热远超相变温度而未发生熔化、聚集,证明其耐高温的稳定性良好。
图5是本实施例制备的直径5 cm、重10 g的圆柱形相变气凝胶材料的照片,图6展示了其抗压能力,在重3 kg的砝码重压下,该圆柱形相变气凝胶材料无任何可视变形,可认为抗压强度高。
图7是本实施例制备得到的相变气凝胶样品在110 ℃加热24小时前后的微观形貌的扫描电镜照片,A、B和C、D对比可知,所得相变气凝胶材料相变后其孔结构保存完好。
图8 显示本实施例制备得到的相变气凝胶样品在高达1300℃的丁烷火焰引燃后,移去火焰立刻自熄灭,且内部成分在外表碳层的保护下维持原状,证明了该相变气凝胶的阻燃和自熄灭效果。
本实施例所得耐高温定型相变材料和相变气凝胶的焓值均为128 J/g,相变温度均为54 ℃,均具有高温稳定性和阻燃特性。所得相变气凝胶瞬态热线法测得热导率为0.044 W/mK,直径5 cm圆柱体相变气凝胶可承受3 kg重物压力,110 ℃加热前后精细结构不发生变化,且拥有阻燃和自熄灭的功能。
实施例2
向1 kg去离子水中加入40 g明胶,100 g赤藓糖醇,搅拌充分溶解,得到澄清溶液后,加入40 g糠醛-苯酚树脂预聚体(糠醛和苯酚的摩尔比为3:2),室温搅拌均匀后,置于80℃鼓风干燥箱中密封加热3小时,然后冷却至室温,得到水凝胶块体。将此水凝胶块体置于托盘放于真空烘箱中100 ℃加热干燥,除去水,得到耐高温相变材料块体。将水凝胶块体置于液氮中浸没1小时,再用冻干机进行冷冻干燥(参数:气压维持小于40 Pa,冷阱低于-40℃,持续72小时以上),除去水得到相变气凝胶。所得耐高温相变材料和相变气凝胶焓值均为118 J/g,相变温度均为113 ℃,均具有高温稳定性和阻燃特性。所得相变气凝胶瞬态热线法测得热导率为0.05 W/mK,150 ℃加热前后其孔结构不发生坍塌。
实施例3
向1 kg去离子水中加入40 g琼脂糖,300 g聚乙二醇6000,搅拌充分溶解,得到澄清溶液后,加入35 g糠醛自聚合树脂预聚体,室温搅拌均匀后,置于80 ℃鼓风干燥箱中密封加热3小时,然后冷却至室温,得到水凝胶块体。将此水凝胶块体置于托盘放于真空烘箱中100 ℃加热干燥,除去水,得到耐高温相变材料块体。将水凝胶块体置于液氮中浸没2小时,再用冻干机进行冷冻干燥(参数:气压维持小于70 Pa,冷阱低于-40 ℃,持续72小时以上),除去水得到相变气凝胶。所得耐高温相变材料和相变气凝胶焓值均为145 J/g,相变温度均为56 ℃,均具有高温稳定性和阻燃特性。所得相变气凝胶瞬态热线法测得热导率为0.07 W/mK,110 ℃加热前后其孔结构不发生坍塌。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (7)

1.一种相变气凝胶,其特征在于,是将水溶性有机相变材料和水凝胶前驱体在高分子前驱体交联-凝胶化过程中原位封装于交联的树脂高分子骨架中形成水凝胶块体,然后冷冻干燥得到的气凝胶材料,其中,所述水溶性有机相变材料选自聚乙二醇、聚氧化乙烯、赤藓糖醇、木糖醇、季戊四醇中的一种或多种;形成所述交联的树脂高分子骨架的树脂为热固性树脂,所述热固性树脂选自三聚氰胺-甲醛树脂、糠醛-苯酚树脂、糠醛-丙酮树脂、糠醛自聚合树脂、有机硅树脂、水溶性聚氨酯树脂中的一种或多种。
2.如权利要求1所述的相变气凝胶,其特征在于,所述水凝胶前驱体选自琼脂糖、壳聚糖、明胶、海藻酸钠、甲壳素中的一种或多种。
3.如权利要求1所述的相变气凝胶,其特征在于,所述水溶性有机相变材料和水凝胶前驱体的质量比在1~30范围内。
4.如权利要求1所述的相变气凝胶,其特征在于,所述相变气凝胶为多孔结构,其孔径分布在1~30 μm范围,密度分布在20~ 400 mg/cm3,热导率分布在0.02~0.08 W/mk,相变潜热在80~ 160 J/g。
5.一种制备相变气凝胶的方法,其特征在于,包括以下步骤:
1)将水凝胶前驱体和水溶性有机相变材料溶于水中,充分混合得到澄清溶液,其中所述水溶性有机相变材料自聚乙二醇、聚氧化乙烯、赤藓糖醇、木糖醇、季戊四醇中的一种或多种;
2)将热固性树脂预聚体加入到步骤1)获得的澄清溶液中,搅拌均匀,静置除泡,其中所述热固性树脂预聚体选自三聚氰胺-甲醛树脂预聚体、糠醛-苯酚树脂预聚体、糠醛-丙酮树脂预聚体、糠醛自聚合树脂预聚体、有机硅树脂预聚体、水溶性聚氨酯树脂预聚体中的一种或多种;
3)密封加热诱发树脂聚合,并与水凝胶前驱体发生交联,形成水凝胶块体;
4)将水凝胶块体冷冻干燥得到相变气凝胶。
6.如权利要求5所述的方法,其特征在于,步骤1)中所述水凝胶前驱体选自琼脂糖、壳聚糖、明胶、海藻酸钠、甲壳素中的一种或多种,其添加量为水质量的1 %到5 %;所述水溶性有机相变材料添加量为水质量的5 %到30 %。
7.如权利要求5所述的方法,其特征在于,步骤3)中升温至70~90 ℃触发交联反应,密闭保温1~4 h,然后降至室温;步骤4)中,将水凝胶块体于液氮环境完全浸泡冷冻或者底部浸泡定向冷冻后,进行真空冷冻干燥处理,得到相变气凝胶。
CN202211206465.3A 2022-09-30 2022-09-30 一种耐高温的定型相变材料和相变气凝胶及其制备方法 Active CN115286916B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211206465.3A CN115286916B (zh) 2022-09-30 2022-09-30 一种耐高温的定型相变材料和相变气凝胶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211206465.3A CN115286916B (zh) 2022-09-30 2022-09-30 一种耐高温的定型相变材料和相变气凝胶及其制备方法

Publications (2)

Publication Number Publication Date
CN115286916A CN115286916A (zh) 2022-11-04
CN115286916B true CN115286916B (zh) 2023-03-24

Family

ID=83834954

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211206465.3A Active CN115286916B (zh) 2022-09-30 2022-09-30 一种耐高温的定型相变材料和相变气凝胶及其制备方法

Country Status (1)

Country Link
CN (1) CN115286916B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117903490B (zh) * 2024-03-19 2024-06-07 北京大学 一种空心球增强纤维素气凝胶绝热材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101709104B (zh) * 2009-09-25 2011-05-11 大连工业大学 三维凝胶网络载体和一种定形相变复合材料
CN103468223A (zh) * 2013-09-30 2013-12-25 天津工业大学 一种相变储能材料大胶囊及其制备方法
CN114561191B (zh) * 2020-11-27 2023-08-25 中国科学院大连化学物理研究所 一种跨季节长期储能的定型相变材料及其制备和应用
CN114921230B (zh) * 2022-05-13 2023-07-18 武汉工程大学 一种高导热和储热相变复合材料的制备方法

Also Published As

Publication number Publication date
CN115286916A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
Du et al. Preparation and characterization of flame-retardant nanoencapsulated phase change materials with poly (methylmethacrylate) shells for thermal energy storage
Shen et al. Shape-stabilized hydrated salt/paraffin composite phase change materials for advanced thermal energy storage and management
US5731360A (en) Compression molding of aerogel microspheres
Al‐Muhtaseb et al. Preparation and properties of resorcinol–formaldehyde organic and carbon gels
CN115286916B (zh) 一种耐高温的定型相变材料和相变气凝胶及其制备方法
JP2017523584A (ja) 受動的断熱材
KR101592967B1 (ko) 난연제 및 그 제조방법
Huang et al. A novel bifunctional microencapsulated phase change material loaded with ZnO for thermal energy storage and light–thermal energy conversion
Zhang et al. Biomass homogeneity reinforced carbon aerogels derived functional phase‐change materials for solar–thermal energy conversion and storage
CN106753437A (zh) 一种低热值二氧化硅气凝胶复合材料及其制备方法
Jing et al. Long‐Term Infrared Stealth by Sandwich‐Like Phase‐Change Composites at Elevated Temperatures via Synergistic Emissivity and Thermal Regulation
CN115710117A (zh) 一种气凝胶复合材料及其制备方法、应用
CN111841457B (zh) 一种金属离子/磷酸锆气凝胶及其制备方法与复合相变储能材料
KR101950680B1 (ko) 난연액을 이용한 난연 코팅 스티로폼의 제조방법 및 이에 의해 제조된 난연 코팅 스티로폼
CN116041774B (zh) 一种耐高温酞腈树脂气凝胶及其制备方法和应用
CN113502059A (zh) 一种建筑外墙用阻燃定形相变材料及其制备方法
CN107828054A (zh) 一种含磷氮元素的热固性聚酯高分子阻燃剂及其制备方法和应用
Zhao et al. Cross-linked poly (N-hydroxymethyl acrylamide)/polyethylene glycol eutectic microspheres with an interpenetrating polymer network as a composite phase change material
KR101436371B1 (ko) 계면을 이용한 에어로겔 복합 재료 제조 방법
CN108640660B (zh) 一种制备泡沫氧化铝和泡沫铝/氧化铝复合材料的方法
CN115011311B (zh) 一种复合相变材料及其制备方法和应用
Lin et al. Preparation and characterization of double-shell phase change material microcapsules with flame retardancy and temperature regulation capability as low-emission building fillers
KR101848413B1 (ko) 파라핀 오일을 이용한 마이크로캡슐 형태의 축냉재 및 이의 제조방법
CN114106411A (zh) 一种阻燃自熄型生物质气凝胶相变复合蓄热材料制备方法
Srinivasaraonaik et al. Synthesis of encapsulation of binary mixture by silica and its performance in pure cementitious system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant