CN115286478A - Ni-Cu合金通过选择性加氢与芳环保护机制催化制取木质素衍生酚类单体 - Google Patents

Ni-Cu合金通过选择性加氢与芳环保护机制催化制取木质素衍生酚类单体 Download PDF

Info

Publication number
CN115286478A
CN115286478A CN202210837937.9A CN202210837937A CN115286478A CN 115286478 A CN115286478 A CN 115286478A CN 202210837937 A CN202210837937 A CN 202210837937A CN 115286478 A CN115286478 A CN 115286478A
Authority
CN
China
Prior art keywords
catalyst
alloy
lignin
reaction
selectivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210837937.9A
Other languages
English (en)
Other versions
CN115286478B (zh
Inventor
刘中秋
虞园园
应安国
刘玉静
王美莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qufu Normal University
Original Assignee
Qufu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qufu Normal University filed Critical Qufu Normal University
Priority to CN202210837937.9A priority Critical patent/CN115286478B/zh
Publication of CN115286478A publication Critical patent/CN115286478A/zh
Application granted granted Critical
Publication of CN115286478B publication Critical patent/CN115286478B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8474Niobium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/22Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by reduction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/17Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
    • C07C29/19Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds in six-membered aromatic rings
    • C07C29/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds in six-membered aromatic rings in a non-condensed rings substituted with hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/01Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by replacing functional groups bound to a six-membered aromatic ring by hydroxy groups, e.g. by hydrolysis
    • C07C37/055Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by replacing functional groups bound to a six-membered aromatic ring by hydroxy groups, e.g. by hydrolysis the substituted group being bound to oxygen, e.g. ether group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明属于新材料合成技术领域,公开了具有丰富氧空位且由内部电子转移驱动催化的Ni‑Cu/Fe3O4@Nb2O5合金催化剂的制备方法及其催化生产木质素衍生酚类单体。本发明提供的Ni‑Cu/Fe3O4@Nb2O5合金催化剂由具有内核Fe3O4磁性纳米粒子、能提供氧空位的Nb2O5外壳和具有内部电子转移的Ni‑Cu合金共沉淀/热处理反应制得。(1)、本发明通过Ni‑Cu合金内部电子转移使富集电子的Cu物种实现H2的高效活化产生大量的H*氢溢流到载体的氧空位中,缺少电子的Ni物种实现对中间产物的苯环锚定防止过度氢化。(2)、丰富氧空位富集H*且有效吸附活化芳醚键,使芳醚键极易断裂以生产酚类单体。此催化剂重复使用6次,未发现反应收率明显下降。此催化剂在重质碳资源升级为高附加值化学产品上具有良好的工业化前景。

Description

Ni-Cu合金通过选择性加氢与芳环保护机制催化制取木质素 衍生酚类单体
技术领域
本发明属于新材料合成技术领域,具体涉及制备木质素基酚类单体的技术领域,尤其涉及一种用于制备木质素衍生酚类单体的由内部电子转移驱动催化的Ni-Cu合金催化剂及其制备方法和应用。
背景技术
化石燃料的大量消耗和日益枯竭带来了许多严重的问题,例如大气污染、能源危机、全球变暖等。然而,化石燃料的可再生能源替代方案已经克服了上述缺点。全世界每年大约产生1.5-1.8亿吨木质素,其中95%以上的木质素要么作为廉价燃料燃烧,要么作为废物丢弃,造成了严重的资源浪费和环境污染。木质素是由丰富的芳香亚基组成的生物聚合物,在可持续生产高附加值的芳香族化合物(单体芳烃和酚类)方面具有巨大潜力。其中,单体酚在酚醛树脂、医药、农药等领域的广泛应用使其成为最重要的工业化学品。目前,可持续生产单体酚的主要工业工艺是石油基异丙苯制苯酚工艺。因此,单体酚的价格受原油价格影响较大。由于石油资源迅速枯竭以及单体酚极大的需求量,可持续的木质素衍生单体酚替代石油基单体酚的方案引起了广泛关注。
目前,木质素衍生单体酚的生产方式多种多样,如氧化、水解、热解、催化加氢裂化等。其中,富氢环境下催化加氢裂化是最有效和最流行的策略。负载金属的催化剂在该催化加氢裂化过程中充当了活性氢物种和H2之间的桥梁。此外,富氢体系可以防止焦炭沉积在催化剂表面,从而保持其出色的催化性能并提高其稳定性。这些发现促进了高效和可持续的催化加氢裂化的发展。尽管贵金属催化剂在H2气氛下的木质素加氢裂化中表现出优异的性能,但其在芳环深度加氢脱氧生产环烷烃方面的高催化活性和高选择性不利于最终生产木质素衍生单体酚。此外,鉴于贵金属催化剂的短缺和高价以及易失活,非贵金属负载型催化剂相比来说是更合适的选择。非贵金属催化剂的较高催化效率值与较高的氢气压力值显着相关。然而,在富氢环境下将木质素高效催化加氢裂化成单体酚,同时保持其芳香结构极具挑战性。
合金催化剂具有两种金属物种之间的几何和集合效应以及由一种给电子金属物种和另一种受电子金属物种的相互影响引发的配位效应,在许多研究领域引起了极大的兴趣,包括能量存储、分离和催化。其中,将 Ni 与其他过渡金属(Pt、Rh、Pd、Ru、Fe、Co、Cu 等)合金化,以提高催化剂的活性、稳定性和抗焦性。特别是,将镍与如铜合金化很有吸引力,其性能明显优于其相应的单金属催化剂。Ni-Cu合金化是最有前途的合金化之一,并且已经进行了许多研究以通过优化合金成分、粒度、载体/织构促进剂、制备方法和反应条件来提高它们的性能。据我们所知,文献中没有关于Ni-Cu合金催化剂催化木质素加氢裂化的报道。并且,很少有研究深入讨论合金纳米颗粒中Ni/Cu物种通过合金内电子转移对H2有效活化和芳环选择性保护的共生效应。
发明内容
为克服相关技术中存在的问题,本发明提供了一种用于制备木质素衍生酚类单体的由内部电子转移驱动催化的Ni-Cu合金催化剂及其制备方法和应用。
本发明提供的催化剂是一种高效、环境友好的、具有合金内的电子转移、丰富的氧空位和明确介孔结构的Ni-Cu合金催化剂,其制备方法包括:
1)内核Fe3O4磁性纳米粒子的制备方法为:将FeCl3•6H2O(10.0 mmol)溶解在乙二醇(60.0 mL)中,然后将无水乙酸钠(6.0 g)和聚乙二醇(2.0 mL)加入所得混合溶剂中,混合均匀后将其搅拌2 h,随后倒入水热釜 (100.0 mL) 中,并在 200 oC下保持12 h。
2)具有核壳结构的Fe3O4@Nb2O5载体的制备方法为:Fe3O4纳米颗粒(0.3 g)、十六烷基三甲基溴化铵(0.6 g)、H2O(100.0 mL)和水合铌酸铵(V)草酸络合物(2.0 g)的混合物超声30 min,然后将混合溶液转移到250 mL圆底烧瓶中。再加入 NH3•H2O(25 wt.%,10.0 mL),在N2气氛下60 oC反应4 h,然后将混合物倒入水热釜(100.0 mL)。将水热釜在200 oC下保持12 h。最后将所得固体在N2气氛下以3 oC/min的速率升温至600 oC保持6 h,降至室温。
3)Ni-Cu/Fe3O4@Nb2O5合金催化剂制备方法为:在三颈烧瓶(250 mL)中将理论量的NiCl2•H2O和CuCl2溶于H2O(100 mL)。在60 oC下,滴加NH3•H2O水溶液(2.5 wt.%, 100 mL),使Ni/Cu双金属源逐渐沉积在Fe3O4@Nb2O5纳米颗粒表面。反应12 h后,得到的沉淀物通过外磁场收集,洗涤干燥后,在N2气氛下将所得固体在管式炉中以 3 oC/min加热速率升温至900oC的煅烧6 h,然后冷却至室温。最终Ni-Cu/Fe3O4@Nb2O5催化剂在管式炉中以20 mL/min的H2流量下,以5 oC/min的速率达到300 oC在下还原2 h。
4)木质素衍生酚类单体制备方法为:将正己烷与Cu-Ni合金催化剂和木质素于高压釜中混合,初始氢压为2 MPa,反应温度为180 oC,反应时间为15 h,制备得到木质素衍生酚类单体。
在根据本发明的一个实施案例中,所述双金属源Ni元素和Cu元素的质量比分别为10:0,0:10,10:5,10:10,10:15。
在根据本发明的一个实施案例中,所述Fe3O4@Nb2O5载体,比表面积为125.4 m2g-1,平均孔直径8.01 nm,孔容为0.26 cm3g-1
在根据本发明的一个实施案例中,所述10Ni-10Cu/Fe3O4@Nb2O5合金催化剂,比表面积为117.3 m2g-1,平均孔直径7.30 nm,孔容为0.22 cm3g-1
在根据本发明的一个实施案例中,所述木质素衍生酚类单体共有16种,其中含量最高的为苯酚(30.51 wt.%)。
在根据本发明的一个实施案例中,所述木质素总转化率84.51%,木质素衍生酚类单体的选择性为68.42%(苯酚占36.10%,4-乙基苯酚占16.10%)。
结合上述的所有技术方案,本发明所具备的优点及积极效果为:
1)Ni-Cu/Fe3O4@Nb2O5通过一种方便高效的共沉淀-热处理方法合成,共沉淀方法使双金属源分散均匀。
2)合金内部的两种活性物种Ni和Cu由于电负性的差异,Ni物种的电子向Cu物种转移,形成的富含电子的Cu对H2具有更强的活化能力,促进产生的H*溢出到载体的氧空位,缺电子的Ni物种对芳环具有较强的锚定作用防止了芳环过度氢化,两者协同作用促进高选择性生产木质素衍生酚类单体。
3)外壳Nb2O5使此Ni-Cu/Fe3O4@Nb2O5合金催化剂在高温还原下产生极其丰富的氧空位且这些氧空位能够储存由金属氢溢流过来的H*,并且对木质素衍生的低聚物中的芳醚键具有较强的吸附作用,此两点为高选择性生产木质素衍生酚类单体创造了条件。
4)内核Fe3O4纳米颗粒起到骨架强化剂的作用,使Ni-Cu/Fe3O4@Nb2O5合金催化剂具备明确的介孔孔道:明确的介孔孔道增强了H2的吸附量,增加了底物的浓度。
5)在催化反应结束后利用的Ni-Cu/Fe3O4@Nb2O5合金催化剂通过磁性回收装置,极易将其从反应混合物中分离出来,方便下次使用。
6)相对温和的条件下制备木质素衍生酚类单体保证实际生产过程中的安全问题,同时将反应设备的耗损降低。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是本发明的一个实施案例中,所述的Ni-Cu/Fe3O4@Nb2O5合金催化剂的制备流程图。
图2是本发明实施例提供的通过Ni-Cu/Fe3O4@Nb2O5合金催化剂磁性回收装置:利用外部磁场将Ni-Cu/Fe3O4@Nb2O5合金催化剂从反应混合物中分离出来原理图。
图3是本发明实施例提供的实施例12中的木质素衍生酚类单体的总离子色谱图。
图4是本发明实施例提供的实施例13中Ni-Cu/Fe3O4@Nb2O5合金催化剂催化木质素转化后的循环利用图。
具体实施方式
以下将结合实施例对本发明做进一步说明,本发明的实施例仅用于说明本发明的技术方案,并非限定本发明。
实施例1
10Ni-10Cu/Fe3O4@Nb2O5合金催化剂制备方法为:
在三颈烧瓶(250 mL)中将0.1215 g的NiCl2•H2O和0.0881 g的CuCl2溶于H2O(100mL)。在60 oC下,使用恒压滴液漏斗逐渐滴加NH3•H2O水溶液(2.5 wt.%, 100 mL),使Ni-Cu双金属源逐渐沉积在Fe3O4@Nb2O5 纳米颗粒表面。反应12 h后,得到的沉淀物通过外磁场收集,洗涤干燥后,在 N2气氛下将Ni-Cu/Fe3O4@Nb2O5 纳米球在管式炉中以 3 oC/min加热速率升温至900 oC的煅烧 6h,然后冷却至室温。最终10Ni-10Cu/Fe3O4@Nb2O5催化剂在煅烧炉中以 20 mL/min的 H2流量下,以5 oC/min的速率达到300 oC在下还原2 h。
实施例2
在哈氏合金高压釜(100 mL)中加入苯氧基乙苯(1 mmol)、Ni比Cu的质量比为10:10的10Ni-10Cu/Fe3O4@Nb2O5合金催化剂(50 mg)和正己烷(20 mL)。在初始氢气压力2 MPa、反应温度为180 oC、搅拌速度为200 rpm和反应时间为2 h的条件下进行反应。反应时间结束后,立即将高压釜在冰水浴中迅速冷却。使用GC-MS对液体产物进行定性分析,并通过与真实化合物的峰保留时间和质谱进行比较进行鉴定。苯氧基乙苯加氢裂解的转化率为100%。其中产物中苯酚的选择性为50%,乙苯的选择性为50%。
实施例3
除了Ni和Cu质量比为10:0,其他反应条件和测定方法均同实施例2,苯氧基乙苯加氢裂解的转化率为100%。其中产物中苯酚的选择性为8.67%,乙苯的选择性为17.67%,环己醇的选择性为16.58%,乙基环己烷的选择性为20.58%,环己烷的选择性为13.00%。
实施例4
除了Ni和Cu质量比为0:10,其他反应条件和测定方法均同实施例2,苯氧基乙苯加氢裂解的转化率为13.45%。其中产物中苯酚的选择性为50%,乙苯的选择性为50%,环己醇的选择性为0%,乙基环己烷的选择性为0%,环己烷的选择性为0%。
实施例5
除了Ni和Cu质量比为10:5,其他反应条件和测定方法均同实施例2,苯氧基乙苯加氢裂解的转化率为100%。其中产物中苯酚的选择性为29.37%,乙苯的选择性为40.38%,环己醇的选择性为10.37%,乙基环己烷的选择性为5.98%,环己烷的选择性为6.63%。
实施例6
除了Ni和Cu质量比为10:15,其他反应条件和测定方法均同实施例2,苯氧基乙苯加氢裂解的转化率为87.35%。其中产物中苯酚的选择性为50%,乙苯的选择性为50%,环己醇的选择性为0%,乙基环己烷的选择性为0%,环己烷的选择性为0%。
实施例7
将10Ni/Fe3O4@Nb2O5和10Cu/Fe3O4@Nb2O5机械混合,其他反应条件和测定方法均同实施例2,苯氧基乙苯加氢裂解的转化率为100%。其中产物中苯酚的选择性为30.35%,乙苯的选择性为11.17%,环己醇的选择性为22.18%,乙基环己烷的选择性为17.48%,环己烷的选择性为10.26%。
实施例8
除了10Ni-10Cu/Fe3O4@Nb2O5合金催化剂(60 mg),其他反应条件和测定方法均同实施例2,苯氧基乙苯加氢裂解的转化率为100%。其中产物中苯酚的选择性为47.11%,乙苯的选择性为49.02%,环己醇的选择性为2.89%,乙基环己烷的选择性为0.98%,环己烷的选择性为0%。
实施例9
除了初始氢气压力为3 MPa,其他反应条件和测定方法均同实施例2,苯氧基乙苯加氢裂解的转化率为100%。其中产物中苯酚的选择性为38.31%,乙苯的选择性为42.32%,环己醇的选择性为11.69%,乙基环己烷的选择性为7.68%,环己烷的选择性为0%。
实施例10
除了反应温度为160oC,其他反应条件和测定方法均同实施例2,苯氧基乙苯加氢裂解的转化率为78.19%。其中产物中苯酚的选择性为41.68%,乙苯的选择性为44.47%,环己醇的选择性为8.32%,乙基环己烷的选择性为5.53%,环己烷的选择性为0%。
实施例11
除了反应时间为1 h,其他反应条件和测定方法均同实施例2,苯氧基乙苯加氢裂解的转化率为47.81%。其中产物中苯酚的选择性为50%,乙苯的选择性为50%,环己醇的选择性为0%,乙基环己烷的选择性为0%,环己烷的选择性为0%。
实施例12
在哈氏合金高压釜(100 mL)中加入碱木质素(200 mg)、Ni比Cu的质量比为10:10的10Ni-10Cu/Fe3O4@Nb2O5合金催化剂(100 mg)和正己烷(20 mL)。在初始氢气压力2 MPa、反应温度为180 oC、搅拌速度为200 rpm和反应时间为15 h的条件下进行反应。反应时间结束后,立即将高压釜在冰水浴中迅速冷却。使用GC-MS对液体产物进行定性分析,并通过与真实化合物的峰保留时间和质谱进行比较进行鉴定。其中,木质素总转化率84.51%,木质素衍生酚类单体的收率为57.82 wt%。所述木质素衍生酚类单体共有16种,其中产物中相对收率最高的酚类单体分别为苯酚(30.51 wt.%)和4-乙基苯酚(13.61 wt.%)。
实施例13
在哈氏合金高压釜(100 mL)中加入碱木质素(200 mg)、Ni比Cu的质量比为10:10的10Ni-10Cu/Fe3O4@Nb2O5合金催化剂(100 mg)和正己烷(20 mL)。在初始氢气压力2 MPa、反应温度为180 oC、搅拌速度为200 rpm和反应时间为15 h的条件下进行反应。反应时间结束后,立即将高压釜在冰水浴中迅速冷却。使用GC-MS对液体产物进行定性分析,并通过与真实化合物的峰保留时间和质谱进行比较进行鉴定。其中,木质素总转化率75.62%,其中产物中相对收率最高的酚类单体分别为苯酚(25.40 wt.%)和4-乙基苯酚(10.3 wt.%)。催化剂重复使用6次,未发现收率有明显下降,具体如图4所示。
需要说明的是,上述发明内容及具体实施方式意在证明本发明所提供技术方案的实际应用,不应解释为对本发明保护范围的限定。本领域技术人员在本发明的精神和原理内,当可作各种修改、等同替换、或改进。本发明的保护范围以所附权利要求书为准。

Claims (13)

1.一种富氢条件下制备木质素衍生的酚类单体的方法,其特征在于,所述方法包括以Ni-Cu/Fe3O4@Nb2O5合金催化剂为催化剂,以正己烷为溶剂,在180 oC和2 MPa初始氢压反应条件下在哈氏合金高压釜中反应15 h制备酚类单体的方法。
2.一种富氢条件下苯氧基乙苯加氢裂解的方法,其特征在于,所述方法包括以Ni-Cu/Fe3O4@Nb2O5合金催化剂为催化剂,以正己烷为溶剂,相对温和条件下进行苯氧基乙苯加氢裂解反应,得到相应的苯酚和乙苯的方法。
3.如权利要求1所述的方法,其特征在于,所述木质素衍生酚类单体共有16种,其中含量最高的为苯酚(30.51 wt.%)。
4.如权利要求1所述的方法,其特征在于,所述木质素总转化率84.51%,木质素衍生酚类单体的选择性为68.42%(苯酚占36.10%,4-乙基苯酚占16.10%)。
5.如权利要求1所述的方法,其特征在于,所述催化剂具有因其Ni-Cu内部具有电子转移,主要是通过Ni-Cu双金属源共沉淀和热处理的方法制备。
6.如权利要求1所述的方法,其特征在于,所述催化剂Fe3O4@Nb2O5具有载体丰富的氧空位,其载体属于非还原氧化物,利用H2还原和Ni-Cu合金之间的强相互作用促进了氧空位的产生。
7.如权利要求1所述的方法,其特征在于,反应结束后,通过外部磁场将催化剂和产物分离,倒出上层清液即为产品。
8.如权利要求7所述的方法,其特征在于,反应结束后,Ni-Cu/Fe3O4@Nb2O5合金催化剂经过60 ℃真空干燥10 h后重复使用,反应效果未发现明显下降。
9.如权利要求2所述的方法,其特征在于,所述苯氧基乙苯的加入量为1 mmol。
10.如权利要求2所述的方法,其特征在于,所述催化剂的加入量为10-60 mg。
11.如权利要求2所述的方法,其特征在于,加氢反应温度为150-200 oC。
12.如权利要求2所述的方法,其特征在于,加氢反应时间为0.5-3 h。
13.如权利要求2所述的方法,其特征在于,溶剂正己烷的量为20 mL。
CN202210837937.9A 2022-07-17 2022-07-17 Ni-Cu合金通过选择性加氢与芳环保护机制催化制取木质素衍生酚类单体 Active CN115286478B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210837937.9A CN115286478B (zh) 2022-07-17 2022-07-17 Ni-Cu合金通过选择性加氢与芳环保护机制催化制取木质素衍生酚类单体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210837937.9A CN115286478B (zh) 2022-07-17 2022-07-17 Ni-Cu合金通过选择性加氢与芳环保护机制催化制取木质素衍生酚类单体

Publications (2)

Publication Number Publication Date
CN115286478A true CN115286478A (zh) 2022-11-04
CN115286478B CN115286478B (zh) 2023-11-24

Family

ID=83823542

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210837937.9A Active CN115286478B (zh) 2022-07-17 2022-07-17 Ni-Cu合金通过选择性加氢与芳环保护机制催化制取木质素衍生酚类单体

Country Status (1)

Country Link
CN (1) CN115286478B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106753549A (zh) * 2016-12-20 2017-05-31 中国科学院广州能源研究所 一种木质素解聚轻质酚类产物加氢处理制备烃类燃料的方法
CN109810722A (zh) * 2019-02-22 2019-05-28 中国科学技术大学 一种催化解聚木质素的方法
CN112371170A (zh) * 2020-11-07 2021-02-19 江苏大学 一种异质结纳米复合催化剂及其制备方法和应用
CN112569944A (zh) * 2020-12-09 2021-03-30 中国科学院兰州化学物理研究所 一种NiCu合金加氢催化剂、其制备方法与应用
CN114588910A (zh) * 2022-03-15 2022-06-07 福州大学 一种用于木质素解聚的Ni-Zn负载型催化剂的制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106753549A (zh) * 2016-12-20 2017-05-31 中国科学院广州能源研究所 一种木质素解聚轻质酚类产物加氢处理制备烃类燃料的方法
CN109810722A (zh) * 2019-02-22 2019-05-28 中国科学技术大学 一种催化解聚木质素的方法
CN112371170A (zh) * 2020-11-07 2021-02-19 江苏大学 一种异质结纳米复合催化剂及其制备方法和应用
CN112569944A (zh) * 2020-12-09 2021-03-30 中国科学院兰州化学物理研究所 一种NiCu合金加氢催化剂、其制备方法与应用
CN114588910A (zh) * 2022-03-15 2022-06-07 福州大学 一种用于木质素解聚的Ni-Zn负载型催化剂的制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OPRIS CRISTINA ET AL: "Lignin fragmentation over magnetically recyclable composite Co@Nb2O5@Fe3O4 catalysts" *
ZHANG LE ET AL: "Efficient Ni-Cu/AC Bimetal Catalyst for Hydrogenolysis of Lignin to Produce High-Value-Added Chemicals" *

Also Published As

Publication number Publication date
CN115286478B (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
Ding et al. Transforming energy with single-atom catalysts
Navarro-Jaén et al. Highlights and challenges in the selective reduction of carbon dioxide to methanol
CN110756225B (zh) 一种金属/MOFs纳米催化剂及其制备方法与应用
CN113083308B (zh) 一种高比表面积亲水性活性炭为载体的镍基催化剂在催化加氢水解方面的应用
CN105817254A (zh) 一种具有多孔膜结构的铁基催化剂在费托反应中的应用
CN102942971A (zh) 雷尼镍做为浆态床合成甲烷催化剂的应用
CN107500296A (zh) 一种棒状β‑Mo2C的可控合成及其在逆水汽变换反应中的应用
Fu et al. Recent advances in metal–organic framework based heterogeneous catalysts for furfural hydrogenation reactions
Zhang et al. Hydrodeoxygenation of lignin-derived phenolics to cycloalkanes over Ni–Co alloy coupled with oxophilic NbOx
CN112675865A (zh) 一种高活性、高稳定性担载镍催化剂及其制备方法和应用
CN112691690A (zh) 一种负载型双金属氮化物催化剂及其制备方法与应用
Wang et al. Anchoring Co on CeO2 nanoflower as an efficient catalyst for hydrogenolysis of 5-hydroxymethylfurfural
Zhang et al. Understanding the reaction route of selectively converting furfural to furan over the alkali-induced Co-Mo2C heterostructure
Li et al. Green and highly selective hydrogenation of lignin-derived aromatics at low temperature over Ru-Fe bimetallic nanoparticles supported on porous nitrogen-doped carbon
CN115286478B (zh) Ni-Cu合金通过选择性加氢与芳环保护机制催化制取木质素衍生酚类单体
CN114984952B (zh) 一种碳包覆铜材料及其制备方法和应用
CN113813991B (zh) 膦酸改性的钌金属负载铌基氧化物催化剂的制备方法及其应用
Zhang et al. MoOx regulating Ni-based catalyst anchored on N-doped carbon microspheres for catalytic hydrogenation of nitroarenes
Hao et al. Selective Hydrogenation of 5-Hydroxymethylfurfural to 2, 5-Dimethylfuran Over Popcorn-Like Nitrogen-Doped Carbon-Confined CuCo Bimetallic Catalyst
CN111715252B (zh) 一种催化合成有机化合物的方法及其催化剂和应用
CN111068662B (zh) 一种金属纳米催化剂及其制备方法和应用
CN109796305B (zh) 一种采用复合型催化剂制备环己醇的方法
Ji et al. Renewable biomass-derived hollow carbon sphere for efficient transformation of lignin-derived phenols to high value chemicals
Zhu et al. In-situ construction of N-doped hollow carbon polyhedral cage anchored Co-Ni dual binding sites as nanoreactor for efficient real lignin oil hydrodeoxygenation
CN115106088B (zh) 一种NiFe磁性纳米催化剂材料的制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant