CN115278194B - 一种基于3d工业相机的图像数据处理方法 - Google Patents

一种基于3d工业相机的图像数据处理方法 Download PDF

Info

Publication number
CN115278194B
CN115278194B CN202211154501.6A CN202211154501A CN115278194B CN 115278194 B CN115278194 B CN 115278194B CN 202211154501 A CN202211154501 A CN 202211154501A CN 115278194 B CN115278194 B CN 115278194B
Authority
CN
China
Prior art keywords
sphere
camera
server
industrial camera
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211154501.6A
Other languages
English (en)
Other versions
CN115278194A (zh
Inventor
何浩星
王广凤
荣霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Qingdong Intelligent Technology Co ltd
Original Assignee
Shandong Qingdong Intelligent Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Qingdong Intelligent Technology Co ltd filed Critical Shandong Qingdong Intelligent Technology Co ltd
Priority to CN202211154501.6A priority Critical patent/CN115278194B/zh
Publication of CN115278194A publication Critical patent/CN115278194A/zh
Application granted granted Critical
Publication of CN115278194B publication Critical patent/CN115278194B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/122Improving the 3D impression of stereoscopic images by modifying image signal contents, e.g. by filtering or adding monoscopic depth cues
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/167Synchronising or controlling image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/363Image reproducers using image projection screens

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明涉及图像数据处理技术领域,尤其涉及一种基于3D工业相机的图像数据处理方法,包括:利用3D工业相机以第一预设周期连续捕捉飞行中球体的图像,并将图像上传至服务器;经过预设时长,服务器分析球体的纵向形变量,以判定球体的横向运动趋势;分析球体的横向形变量,以判定球体的纵向运动趋势;分析球体的转速,以判定球体的侧向运动趋势;当球体的运动趋势时,服务器控制运动相机将镜头焦点对准球体落点位置。通过3D工业相机对球体的形变量与转速进行测定的方式预测球体的运动轨迹,并利用运动相机对球体进行实时捕捉,在有效提升了对球体运动的捕捉稳定性的同时,有效提升了对运动预测的精确度。

Description

一种基于3D工业相机的图像数据处理方法
技术领域
本发明涉及图像数据处理技术领域,尤其涉及一种基于3D工业相机的图像数据处理方法。
背景技术
3D工业相机作为一种高精度相机,在对实物的纵向、横向以及深度方面的信息均能有效进行采集,利用3D工业相机可以在工业上对材料进行精确下料。
中国专利公开号:CN114549651A公开了一种基于多面体几何约束的多个3D相机标定方法和设备,基于确定的各个3D相机各自对应的相机坐标系下的角点坐标集合,确定各个3D相机两两之间的标定矩阵,以完成各个3D相机之间的联合标定;
中国专利公开号:CN113655678A公开了一种医学影像系统中3D相机的安装引导方法和装置,根据3D相机的图像成像精度以及各特征点的位置计算得到表征理想ROI在FOV中的空间位置和范围的最佳位置参数并根据最佳位置参数和当前位置参数对3D相机进行位置姿态调整引导。
中国专利公开号:CN111476846A公开了一种多3D相机标定系统及方法,将3D图像进行平面拟合获得平面Plane,在3D图像中计算出指定通孔的位置信息。
由此可见,上述技术方案存在以下问题:无法应用3D工业相机的特性对运动物体进行轨迹捕捉,从而对物体的运动进行预测。
发明内容
为此,本发明提供一种基于3D工业相机的图像数据处理方法。用以克服现有技术中无法应用3D工业相机的特性对运动物体进行轨迹捕捉,从而对物体的运动进行预测的问题。
为实现上述目的,本发明提供一种基于3D工业相机的图像数据处理方法,包括:
步骤S1,利用3D工业相机以第一预设周期连续捕捉飞行中的球体的图像,并将各周期对应的图像按时间顺序上传至服务器;
步骤S2,当所述3D工业相机连续捕捉预设时长时,所述服务器根据所述图像分析所述球体的纵向形变量,以判定所述球体的横向运动趋势;
步骤S3,所述服务器根据所述图像分析所述球体的横向形变量,以判定所述球体的纵向运动趋势;
步骤S4,所述服务器根据所述图像分析所述球体的转速,以判定所述球体的侧向运动趋势;
步骤S5,当所述服务器判定所述球体的运动趋势时,服务器控制运动相机将镜头焦点对准所述球体落点位置。
进一步地,当所述3D工业相机对运动中的所述球体进行捕捉时,3D工业相机通过第一摄像头拍摄图像T1,3D工业相机通过第二摄像头拍摄图像T2,其中,T1和T2分别为所述球体平行于各对应的工业相机所在平面的投影,各投影包含纵向长度信息以及横向长度信息,其中,纵向长度为垂直于水平面的通过投影几何中心的直线与投影轮廓的两交点连线的线段长度,横向长度为平行于水平面的通过投影几何中心的直线与投影轮廓的两交点连线的线段长度。
进一步地,当所述3D工业相机以第一预设周期连续拍摄所述球体预设时长时,所述服务器根据3D工业相机上传的图像对所述球体的运动状态进行判断,对于第i个周期,服务器设定所述第一摄像头拍摄到的图像的几何中心为X1i,所述第二摄像头拍摄到的图像的几何中心为X2i,其中i=1,2,3,…,n,n为预设时长的最大周期数量,服务器中设有第一预设中心偏移距离Xα以及第二预设中心偏移距离Xβ,其中0<Xα<Xβ,第一预设中心偏移距离Xα为最大误差偏移距离,第二预设中心偏移距离Xβ为最大耐受度偏移距离,服务器将X1i与X2i的距离的模
Figure 100002_DEST_PATH_IMAGE001
分别与Xα以及Xβ进行比较,以确定球体的运动趋势,
Figure 203610DEST_PATH_IMAGE001
≤Xα,所述服务器判定所述球体运动方向在所述球体的球心与所述3D工业相机中线的连线上,并根据第i+1个周期与第i个周期的影像进行进一步判断;
若Xα<
Figure 955665DEST_PATH_IMAGE001
≤Xβ,所述服务器判定所述球体运动方向在X1i与X2i的连线上,并根据球体的旋转速度进行进一步判断;
若Xβ<
Figure 712881DEST_PATH_IMAGE001
,所述服务器判定以第一预设周期无法捕捉所述球体,并将拍摄周期缩短至第二预设周期。
进一步地,当所述服务器以所述第一预设周期连续拍摄球体并判定所述球体的运动方向在所述球体的球心与所述3D工业相机中线的连线上时,对于所述第i个周期,所述第一摄像头在该周期中拍摄到所述球体的纵向长度为Z1i,其所述第一摄像头拍摄到球体的横向长度为H1i,服务器将第i+1个周期第一摄像头拍摄到的球体影像与第i个周期第一摄像头拍摄到的球体影像进行对比,以判定球体的运动趋势,
若H1i<H1i+1,所述服务器判定所述球体运动方向为靠近所述3D工业相机方向,同时根据所述第一摄像头拍摄到的横向长度进行进一步判断,
若Z1i≤Z1i+1,所述服务器判定所述球体在想靠近所述3D工业相机方向运动的同时进行旋转,且,旋转轴平行于水平面,并根据所述球体的旋转速度进行进一步判断,以判断球体的运动趋势;
若Z1i>Z1i+1,所述服务器判定所述球体在向靠近所述3D工业相机方向运动的同时进行旋转,且,旋转轴垂直于水平面,并根据所述球体的旋转速度进行进一步判断,以判断所述球体的运动趋势;
若H1i=H1i+1,所述服务器判定所述球体处于悬停状态,并判断球体后续垂直向下运动,同时服务器控制所述运动相机按球体运动趋势进行拍摄;
若H1i>H1i+1,所述服务器判定所述球体运动方向为远离所述3D工业相机方向,同时根据所述第一摄像头拍摄到的横向长度进行进一步判断,
若Z1i<Z1i+1,所述服务器判定所述球体在向远离所述3D工业相机方向运动的同时进行旋转,且,旋转轴平行于水平面,并根据所述球体的旋转速度进行进一步判断,以判断球体的运动趋势;
若Z1i≥Z1i+1,所述服务器判定所述球体在向远离所述3D工业相机方向运动的同时进行旋转,且,旋转轴垂直于水平面,并根据所述球体的旋转速度进行进一步判断,以判断球体的运动趋势。
进一步地,当所述服务器分析所述3D工业相机以所述第一预设周期拍摄球体,且,服务器对球体的旋转速度进行判定时,所述服务器根据第i个周期拍摄到的图像T1i、T2i以及第i+1个周期拍摄到的图像T1i+1、T2i+1计算所述球体在第i个周期的转速Ri,所述服务器中设有第一预设转速Rα、第二预设转速Rβ以及最大转速Rmax,其中0<Rα<Rβ<Rmax,第一预设转速Rα为最大误差转速,第二预设转速Rβ为最大趋势转速,最大转速Rmax为导致悬停转速,将Ri与Rα、Rβ以及Rmax进行比较,以判定球体的运动趋势,
若Ri≤Rα,所述服务器判定所述球体的运动趋势与球体的旋转无关,并不对所述运动相机进行调整;
若Rα<Ri≤Rβ,所述服务器判定所述球体运动受到所述球体旋转的一级影响,并控制所述运动相机以所述球体旋转的对应运动趋势方向调整,用以追踪所述球体运动轨迹;
若Rβ<Ri≤Rmax,所述服务器判定所述球体运动受到所述球体旋转的二级影响,并控制所述3D工业相机与所述运动相机以球体旋转的对应运动趋势方向调整,用以追踪所述球体运动轨迹;
若Rmax<Ri,所述服务器判定所述球体转速大于预设转速,同时判定球体将悬停,并不对所述运动相机进行调整。
进一步地,当所述服务器根据所述预设时长判定所述球体的运动轨迹时,服务器根据运动轨迹的延长线判定球体的地面落点,并控制所述运动相机按球体的运动轨迹捕捉球体的运动路径直至球体落至地面落点。
进一步地,当所述服务器判定所述3D工业相机以所述第一预设周期拍摄球体,且,球体的在第i个周期的运动趋势与第i+1个周期的运动趋势的夹角大于90°时,所述服务器判定球体抵达落点并反弹,并以反弹时间点为起始时间点,以所述第一预设周期对球体连续拍摄所述预设时长,用以判定球体反弹时的运动趋势。
进一步地,当所述服务器判定所述球体转速与第一预设周期同频造成服务器分析失准时,服务器判定控制所述第一摄像头和所述第二摄像头以第二预设周期对球体进行拍摄。
进一步地,当所述服务器分析所述球体向远离所述3D工业相机方向运动时,所述服务器控制所述3D工业相机在经过所述预设时长时重新对焦,以使球体处于3D工业相机的监控范围内。
进一步地,当所述球体在所述预设时长内出现运动趋势改变的情况时,所述服务器判定球体运动停止,并控制运动相机对球体进行对焦。
与现有技术相比,本发明的有益效果在于,通过3D工业相机对球体的形变量与转速进行测定的方式预测球体的运动轨迹,并利用运动相机对球体进行实时捕捉,在有效提升了对球体运动的捕捉稳定性的同时,有效提升了对运动预测的精确度。
进一步地,利用设置工业相机投影平面的方式,对三维物体进行二维化处理,在有效降低了信息处理量的同时,进一步提升了对运动预测的精确度。
进一步地,通过对3D相机不同二维化处理的结果的几何中心的判断的方式,对球体的运动趋势进行预测,在有效提升了信息处理效率的同时,进一步提升了对运动预测的精确度。
进一步地,通过对球体在一段时间内的形变量进行判定的方式,判断球体的运动趋势,在有效降低了球体运动判定难度的同时,进一步提升了对运动预测的精确度。
进一步地,通过对球体的转速进行判定的方式,判断球体的弧线运动趋势,在有效提升了运动相机的追踪能力的同时,进一步提升了对运动预测的精确度。
进一步地,通过将球体运动轨迹延长线作为地面落点的方式预测球体落地的大致范围,在有效降低了球体运动拟合复杂度的同时,进一步提升了对运动预测的精确度。
进一步地,通过将反弹后的球体运动作为新的运动进行判断的方式,在有效降低了对球体连续运动的轨迹进行判断的方式,进一步提升了对运动预测的精确度。
进一步地,在球体旋转速度与第一预设周期同频时,提升图像收集频率,在有效降低了因运动本身导致误差的同时,进一步提升了对运动预测的精确度。
进一步地,当球体的整个运动过程趋于停止时进行及时预测,在有效提升了预测效率的同时,进一步提升了对运动预测的精确度。
附图说明
图1为本发明基于3D工业相机的图像数据处理方法的流程图;
图2为本发明实施例3D工业相机图像处理的结构示意图;
图3为本发明实施例3D工业相机的投影示意图;
图4为本发明实施例球体运动趋势示意图;
其中:1:第一摄像头;11:第一摄像头纵向长度;12:第一摄像头横向长度;2:第二摄像头;21:第二摄像头纵向长度;22:第二摄像头横向长度;3:球体;4:旋转方向;5:运动方向。
具体实施方式
为了使本发明的目的和优点更加清楚明白,下面结合实施例对本发明作进一步描述;应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非在限制本发明的保护范围。
需要说明的是,在本发明的描述中,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
请参阅图1所示,其为本发明基于3D工业相机的图像数据处理方法的流程图,包括:
步骤S1,利用3D工业相机以第一预设周期连续捕捉飞行中的球体的图像,并将各周期对应的图像按时间顺序上传至服务器;
步骤S2,当3D工业相机连续捕捉预设时长时,服务器根据图像分析球体的纵向形变量,以判定球体的横向运动趋势;
步骤S3,服务器根据图像分析球体的横向形变量,以判定球体的纵向运动趋势;
步骤S4,服务器根据图像分析球体的转速,以判定球体的侧向运动趋势;
步骤S5,当服务器判定球体的运动趋势时,服务器控制运动相机将镜头焦点对准球体落点位置。
请参阅图2所示,其为本发明实施例3D工业相机图像处理的结构示意图。
其中,服务器分别与第一摄像头、第二摄像头以及运动相机连接,用以分析第一摄像头以及第二摄像头拍摄到的影像,并控制运动相机进行追踪。
通过3D工业相机对球体的形变量与转速进行测定的方式预测球体的运动轨迹,并利用运动相机对球体进行实时捕捉,在有效提升了对球体运动的捕捉稳定性的同时,有效提升了对运动预测的精确度。
请参阅图3所示,其为本发明实施例3D工业相机的投影示意图。
第一摄像头1以及第二摄像头2拍摄球体3时,其投影落于为垂直于拍摄线的平面,其中,对应第一摄像头1的投影中垂直于水平面的通过投影几何中心的线与投影轮廓交点的线段长度为第一摄像头纵向长度11,平行于水平面的通过投影几何中心的线与投影轮廓交点的线段长度为第一摄像头横向长度12,对应第二摄像头2的投影中垂直于水平面的通过投影几何中心的线与投影轮廓交点的线段长度为第二摄像头纵向长度21,平行于水平面的通过投影几何中心的线与投影轮廓交点的线段长度为第二摄像头横向长度22。
当3D工业相机对运动中的球体进行捕捉时,3D工业相机通过第一摄像头拍摄图像T1,3D工业相机通过第二摄像头拍摄图像T2,其中,T1和T2分别为球体平行于各对应的工业相机所在平面的投影,各投影包含纵向长度信息以及横向长度信息,其中,纵向长度为垂直于水平面的通过投影几何中心的直线与投影轮廓的两交点连线的线段长度,横向长度为平行于水平面的通过投影几何中心的直线与投影轮廓的两交点连线的线段长度。
利用设置工业相机投影平面的方式,对三维物体进行二维化处理,在有效降低了信息处理量的同时,进一步提升了对运动预测的精确度。
具体而言,当3D工业相机以第一预设周期连续拍摄球体预设时长时,服务器根据3D工业相机上传的图像对球体的运动状态进行判断,对于第i个周期,服务器设定第一摄像头拍摄到的图像的几何中心为X1i,第二摄像头拍摄到的图像的几何中心为X2i,其中i=1,2,3,…,n,n为预设时长的最大周期数量,服务器中设有第一预设中心偏移距离Xα以及第二预设中心偏移距离Xβ,其中0<Xα<Xβ,第一预设中心偏移距离Xα为最大误差偏移距离,第二预设中心偏移距离Xβ为最大耐受度偏移距离,服务器将X1i与X2i的距离的模
Figure 917597DEST_PATH_IMAGE001
分别与Xα以及Xβ进行比较,以确定球体的运动趋势,
Figure 116498DEST_PATH_IMAGE001
≤Xα,服务器判定球体运动方向在球体的球心与3D工业相机中线的连线上,并根据第i+1个周期与第i个周期的影像进行进一步判断;
若Xα<
Figure 723059DEST_PATH_IMAGE001
≤Xβ,服务器判定球体运动方向在X1i与X2i的连线上,并根据球体的旋转速度进行进一步判断;
若Xβ<
Figure 654106DEST_PATH_IMAGE001
,服务器判定以第一预设周期无法捕捉球体,并将拍摄周期缩短至第二预设周期。
通过对3D相机不同二维化处理的结果的几何中心的判断的方式,对球体的运动趋势进行预测,在有效提升了信息处理效率的同时,进一步提升了对运动预测的精确度。
具体而言,当服务器以第一预设周期连续拍摄球体并判定所述球体的运动方向在所述球体的球心与所述3D工业相机中线的连线上时,对于第i个周期,第一摄像头在该周期中拍摄到球体的纵向长度为Z1i,其第一摄像头拍摄到球体的横向长度为H1i,服务器将第i+1个周期第一摄像头拍摄到的球体影像与第i个周期第一摄像头拍摄到的球体影像进行对比,以判定球体的运动趋势,
若H1i<H1i+1,服务器判定球体运动方向为靠近3D工业相机方向,同时根据第一摄像头拍摄到的横向长度进行进一步判断,
若Z1i≤Z1i+1,服务器判定球体在想靠近3D工业相机方向运动的同时进行旋转,且,旋转轴平行于水平面,并根据球体的旋转速度进行进一步判断,以判断球体的运动趋势;
若Z1i>Z1i+1,服务器判定球体在向靠近3D工业相机方向运动的同时进行旋转,且,旋转轴垂直于水平面,并根据球体的旋转速度进行进一步判断,以判断球体的运动趋势;
若H1i=H1i+1,服务器判定球体处于悬停状态,并判断球体后续垂直向下运动,同时服务器控制运动相机按球体运动趋势进行拍摄;
若H1i>H1i+1,服务器判定球体运动方向为远离3D工业相机方向,同时根据第一摄像头拍摄到的横向长度进行进一步判断,
若Z1i<Z1i+1,服务器判定球体在向远离3D工业相机方向运动的同时进行旋转,且,旋转轴平行于水平面,并根据球体的旋转速度进行进一步判断,以判断球体的运动趋势;
若Z1i≥Z1i+1,服务器判定球体在向远离3D工业相机方向运动的同时进行旋转,且,旋转轴垂直于水平面,并根据球体的旋转速度进行进一步判断,以判断球体的运动趋势。
通过对球体在一段时间内的形变量进行判定的方式,判断球体的运动趋势,在有效降低了球体运动判定难度的同时,进一步提升了对运动预测的精确度。
具体而言,当服务器分析所述3D工业相机以所述第一预设周期拍摄球体,且,服务器对球体的旋转速度进行判定时,服务器根据第i个周期拍摄到的图像T1i、T2i以及第i+1个周期拍摄到的图像T1i+1、T2i+1计算球体在第i个周期的转速Ri,服务器中设有第一预设转速Rα、第二预设转速Rβ以及最大转速Rmax,其中0<Rα<Rβ<Rmax,第一预设转速Rα为最大误差转速,第二预设转速Rβ为最大趋势转速,最大转速Rmax为导致悬停转速,将Ri与Rα、Rβ以及Rmax进行比较,以判定球体的运动趋势,
若Ri≤Rα,服务器判定球体的运动趋势与球体的旋转无关,并不对运动相机进行调整;
若Rα<Ri≤Rβ,服务器判定球体运动受到球体旋转的一级影响,并控制运动相机以球体旋转的对应运动趋势方向调整,用以追踪球体运动轨迹;
若Rβ<Ri≤Rmax,服务器判定球体运动受到球体旋转的二级影响,并控制3D工业相机与运动相机以球体旋转的对应运动趋势方向调整,用以追踪球体运动轨迹;
若Rmax<Ri,服务器判定球体转速大于预设转速,同时判定球体将悬停,并不对运动相机进行调整。
通过对球体的转速进行判定的方式,判断球体的弧线运动趋势,在有效提升了运动相机的追踪能力的同时,进一步提升了对运动预测的精确度。
请参阅图4所示,其为本发明实施例球体运动趋势示意图。
当服务器判定球体的旋转方向4后,根据其运动趋势判断球体的运动方向5,该运动方向5的延长线与地面交点为落点。
具体而言,当服务器根据预设时长判定球体的运动轨迹时,服务器根据运动轨迹的延长线判定球体的地面落点,并控制运动相机按球体的运动轨迹捕捉球体的运动路径直至球体落至地面落点。
通过将球体运动轨迹延长线作为地面落点的方式预测球体落地的大致范围,在有效降低了球体运动拟合复杂度的同时,进一步提升了对运动预测的精确度。
具体而言,当服务器判定所述3D工业相机以第一预设周期拍摄球体,且,球体的在第i个周期的运动趋势与第i+1个周期的运动趋势的夹角大于90°时,服务器判定球体抵达落点并反弹,并以反弹时间点为起始时间点,以第一预设周期对球体连续拍摄预设时长,用以判定球体反弹时的运动趋势。
通过将反弹后的球体运动作为新的运动进行判断的方式,在有效降低了对球体连续运动的轨迹进行判断的方式,进一步提升了对运动预测的精确度。
具体而言,当3D工业相机因球体转速与第一预设周期同频造成服务器分析失准时,服务器判定以第二预设周期对球体进行拍摄。
具体而言,当服务器分析球体向远离3D工业相机方向运动时,服务器控制3D工业相机在经过预设时长时重新对焦,以使球体处于3D工业相机的监控范围内。
在球体旋转速度与第一预设周期同频时,提升图像收集频率,在有效降低了因运动本身导致误差的同时,进一步提升了对运动预测的精确度。
具体而言,当球体在预设时长内出现运动趋势改变的情况时,服务器判定球体运动停止,并控制运动相机对球体进行对焦。
当球体的整个运动过程趋于停止时进行及时预测,在有效提升了预测效率的同时,进一步提升了对运动预测的精确度。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征做出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。
以上所述仅为本发明的优选实施例,并不用于限制本发明;对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种基于3D工业相机的图像数据处理方法,其特征在于,包括:
步骤S1,利用3D工业相机以第一预设周期连续捕捉飞行中的球体的图像,并将各周期对应的图像按时间顺序上传至服务器;
步骤S2,当所述3D工业相机连续捕捉预设时长时,所述服务器根据所述图像分析所述球体的纵向形变量,以判定所述球体的横向运动趋势;
步骤S3,所述服务器根据所述图像分析所述球体的横向形变量,以判定所述球体的纵向运动趋势;
步骤S4,所述服务器根据所述图像分析所述球体的转速,以判定所述球体的侧向运动趋势;
步骤S5,当所述服务器判定所述球体的运动趋势时,服务器控制运动相机将镜头焦点对准所述球体落点位置;
当所述3D工业相机对运动中的所述球体进行捕捉时,3D工业相机通过第一摄像头拍摄图像T1,3D工业相机通过第二摄像头拍摄图像T2,其中,T1和T2分别为所述球体平行于各对应的工业相机所在平面的投影,各投影包含纵向长度信息以及横向长度信息,其中,纵向长度为垂直于水平面的通过投影几何中心的直线与投影轮廓的两交点连线的线段长度,横向长度为平行于水平面的通过投影几何中心的直线与投影轮廓的两交点连线的线段长度;
当所述3D工业相机以所述第一预设周期连续拍摄所述球体预设时长时,所述服务器根据3D工业相机上传的图像对所述球体的运动状态进行判断,对于第i个周期,服务器设定所述第一摄像头拍摄到的图像的几何中心为X1i,所述第二摄像头拍摄到的图像的几何中心为X2i,其中i=1,2,3,…,n,n为预设时长的最大周期数量,服务器中设有第一预设中心偏移距离Xα以及第二预设中心偏移距离Xβ,其中0<Xα<Xβ,第一预设中心偏移距离Xα为最大误差偏移距离,第二预设中心偏移距离Xβ为最大耐受度偏移距离,服务器将X1i与X2i的距离的模
Figure DEST_PATH_IMAGE001
分别与Xα以及Xβ进行比较,以确定球体的运动趋势,
Figure 793560DEST_PATH_IMAGE001
≤Xα,所述服务器判定所述球体运动方向在所述球体的球心与所述3D工业相机中线的连线上,并根据第i+1个周期与第i个周期的影像进行进一步判断;
若Xα<
Figure 773018DEST_PATH_IMAGE001
≤Xβ,所述服务器判定所述球体运动方向在X1i与X2i的连线上,并根据球体的旋转速度进行进一步判断;
若Xβ<
Figure 615072DEST_PATH_IMAGE001
,所述服务器判定以第一预设周期无法捕捉所述球体,并将拍摄周期缩短至第二预设周期。
2.根据权利要求1所述的基于3D工业相机的图像数据处理方法,其特征在于,当所述服务器以所述第一预设周期连续拍摄球体并判定所述球体的运动方向在所述球体的球心与所述3D工业相机中线的连线上时,对于第i个周期,所述第一摄像头在该周期中拍摄到所述球体的纵向长度为Z1i,其所述第一摄像头拍摄到球体的横向长度为H1i,服务器将第i+1个周期第一摄像头拍摄到的球体影像与第i个周期第一摄像头拍摄到的球体影像进行对比,以判定球体的运动趋势,
若H1i<H1i+1,所述服务器判定所述球体运动方向为靠近所述3D工业相机方向,同时根据所述第一摄像头拍摄到的横向长度进行进一步判断,
若Z1i≤Z1i+1,所述服务器判定所述球体在想靠近所述3D工业相机方向运动的同时进行旋转,且,旋转轴平行于水平面,并根据所述球体的旋转速度进行进一步判断,以判断球体的运动趋势;
若Z1i>Z1i+1,所述服务器判定所述球体在向靠近所述3D工业相机方向运动的同时进行旋转,且,旋转轴垂直于水平面,并根据所述球体的旋转速度进行进一步判断,以判断所述球体的运动趋势;
若H1i=H1i+1,所述服务器判定所述球体处于悬停状态,并判断球体后续垂直向下运动,同时服务器控制所述运动相机按球体运动趋势进行拍摄;
若H1i>H1i+1,所述服务器判定所述球体运动方向为远离所述3D工业相机方向,同时根据所述第一摄像头拍摄到的横向长度进行进一步判断,
若Z1i<Z1i+1,所述服务器判定所述球体在向远离所述3D工业相机方向运动的同时进行旋转,且,旋转轴平行于水平面,并根据所述球体的旋转速度进行进一步判断,以判断球体的运动趋势;
若Z1i≥Z1i+1,所述服务器判定所述球体在向远离所述3D工业相机方向运动的同时进行旋转,且,旋转轴垂直于水平面,并根据所述球体的旋转速度进行进一步判断,以判断球体的运动趋势。
3.根据权利要求2所述的基于3D工业相机的图像数据处理方法,其特征在于,当所述服务器分析所述3D工业相机以所述第一预设周期拍摄球体,且,服务器对球体的旋转速度进行判定时,服务器根据第i个周期拍摄到的图像T1i、T2i以及第i+1个周期拍摄到的图像T1i+1、T2i+1计算所述球体在第i个周期的转速Ri,所述服务器中设有第一预设转速Rα、第二预设转速Rβ以及最大转速Rmax,其中0<Rα<Rβ<Rmax,第一预设转速Rα为最大误差转速,第二预设转速Rβ为最大趋势转速,最大转速Rmax为导致悬停转速,将Ri与Rα、Rβ以及Rmax进行比较,以判定球体的运动趋势,
若Ri≤Rα,所述服务器判定所述球体的运动趋势与球体的旋转无关,并不对所述运动相机进行调整;
若Rα<Ri≤Rβ,所述服务器判定所述球体运动受到所述球体旋转的一级影响,并控制所述运动相机以所述球体旋转的对应运动趋势方向调整,用以追踪所述球体运动轨迹;
若Rβ<Ri≤Rmax,所述服务器判定所述球体运动受到所述球体旋转的二级影响,并控制所述3D工业相机与所述运动相机以球体旋转的对应运动趋势方向调整,用以追踪所述球体运动轨迹;
若Rmax<Ri,所述服务器判定所述球体转速大于预设转速,同时判定球体将悬停,并不对所述运动相机进行调整。
4.根据权利要求3所述的基于3D工业相机的图像数据处理方法,其特征在于,当所述服务器根据所述预设时长判定所述球体的运动轨迹时,服务器根据运动轨迹的延长线判定球体的地面落点,并控制所述运动相机按球体的运动轨迹捕捉球体的运动路径直至球体落至地面落点。
5.根据权利要求4所述的基于3D工业相机的图像数据处理方法,其特征在于,当所述服务器判定所述3D工业相机以所述第一预设周期拍摄球体,且,球体的在第i个周期的运动趋势与第i+1个周期的运动趋势的夹角大于90°时,所述服务器判定球体抵达落点并反弹,并以反弹时间点为起始时间点,以所述第一预设周期对球体连续拍摄所述预设时长,用以判定球体反弹时的运动趋势。
6.根据权利要求5所述的基于3D工业相机的图像数据处理方法,其特征在于,当所述服务器判定所述球体转速与第一预设周期同频造成服务器分析失准时,服务器判定控制所述第一摄像头和所述第二摄像头以第二预设周期对球体进行拍摄。
7.根据权利要求6所述的基于3D工业相机的图像数据处理方法,其特征在于,当所述服务器分析所述球体向远离所述3D工业相机方向运动时,所述服务器控制所述3D工业相机在经过所述预设时长时重新对焦,以使球体处于3D工业相机的监控范围内。
8.根据权利要求7所述的基于3D工业相机的图像数据处理方法,其特征在于,当所述球体在所述预设时长内出现运动趋势改变的情况时,所述服务器判定球体运动停止,并控制运动相机对球体进行对焦。
CN202211154501.6A 2022-09-22 2022-09-22 一种基于3d工业相机的图像数据处理方法 Active CN115278194B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211154501.6A CN115278194B (zh) 2022-09-22 2022-09-22 一种基于3d工业相机的图像数据处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211154501.6A CN115278194B (zh) 2022-09-22 2022-09-22 一种基于3d工业相机的图像数据处理方法

Publications (2)

Publication Number Publication Date
CN115278194A CN115278194A (zh) 2022-11-01
CN115278194B true CN115278194B (zh) 2022-12-23

Family

ID=83755959

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211154501.6A Active CN115278194B (zh) 2022-09-22 2022-09-22 一种基于3d工业相机的图像数据处理方法

Country Status (1)

Country Link
CN (1) CN115278194B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1377605A (en) * 1971-11-01 1974-12-18 Christophers J R Apparatus for simulating the playing of golf strokes
JP2003042716A (ja) * 2001-07-31 2003-02-13 Sumitomo Rubber Ind Ltd ボール弾道計測装置
JP2017102708A (ja) * 2015-12-02 2017-06-08 日本放送協会 オブジェクト追跡装置及びそのプログラム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7292711B2 (en) * 2002-06-06 2007-11-06 Wintriss Engineering Corporation Flight parameter measurement system
JP4109094B2 (ja) * 2002-12-03 2008-06-25 Sriスポーツ株式会社 球体の回転特性と飛行特性の測定方法
US20080021651A1 (en) * 2006-07-18 2008-01-24 John Richard Seeley Performance Assessment and Information System Based on Sports Ball Motion
CN100531373C (zh) * 2007-06-05 2009-08-19 西安理工大学 基于双摄像头联动结构的视频运动目标特写跟踪监视方法
CN103337094B (zh) * 2013-06-14 2016-05-18 西安工业大学 一种应用双目摄像机实现运动三维重建的方法
KR101902283B1 (ko) * 2016-05-26 2018-09-28 주식회사 골프존 물체의 3차원 정보 획득을 위한 카메라 센싱 장치 및 이를 이용한 가상 골프 시뮬레이션 장치
CN108881702B (zh) * 2017-05-09 2020-12-11 浙江凡后科技有限公司 一种多摄像头捕捉物体运动轨迹的系统及方法
CN107481270B (zh) * 2017-08-10 2020-05-19 上海体育学院 乒乓球目标跟踪和轨迹预测方法、装置、存储介质和计算机设备
CN108421237A (zh) * 2018-03-31 2018-08-21 成都云门金兰科技有限公司 基于图像识别的高尔夫球落点预测系统
CN110135284A (zh) * 2019-04-25 2019-08-16 中国地质大学(武汉) 一种基于工业相机的篮球运动员动作捕捉分析装置及方法
CA3131590C (en) * 2020-09-22 2023-08-29 Ji Jun Wang Golf ball set-top detection method, system and storage medium
CN112637445B (zh) * 2021-01-06 2022-12-27 上海市建筑科学研究院有限公司 一种基于多台高频相机三维运动同步测量方法
CN113538550A (zh) * 2021-06-21 2021-10-22 深圳市如歌科技有限公司 高尔夫球感测方法、系统及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1377605A (en) * 1971-11-01 1974-12-18 Christophers J R Apparatus for simulating the playing of golf strokes
JP2003042716A (ja) * 2001-07-31 2003-02-13 Sumitomo Rubber Ind Ltd ボール弾道計測装置
JP2017102708A (ja) * 2015-12-02 2017-06-08 日本放送協会 オブジェクト追跡装置及びそのプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于双目视觉的地面高尔夫感测器设计与关键技术研究;郑阳浩.;《中国优秀硕士学位论文全文数据库(电子期刊)》;20211015;全文 *

Also Published As

Publication number Publication date
CN115278194A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
CN107598977B (zh) 使用视觉和激光测距仪实现机器人自动示教的方法和系统
CN109859272B (zh) 一种自动对焦双目摄像头标定方法及装置
CN108648241B (zh) 一种ptz摄像机现场标定及定焦方法
US9565348B2 (en) Automatic tracking apparatus
CN103024276A (zh) 一种云台摄像机的定位、变焦方法
CN110910459B (zh) 一种对摄像装置的标定方法、装置及标定设备
CN102256109A (zh) 多目标自动跟踪摄像系统及该系统的聚焦方法
CN107728617B (zh) 多目在线标定方法、可移动机器人及系统
CN111080705B (zh) 一种自动对焦双目摄像头标定方法及装置
JP2011030015A5 (zh)
CN110087049A (zh) 自动调焦系统、方法以及投影仪
CN110245569B (zh) 基于射流边缘分析和打击偏差反馈的船舶打击效果评估方法
CN109636857B (zh) 对位方法及标定系统
KR101111503B1 (ko) 전방향 피티지 카메라 제어 장치 및 그 방법
CN109343578A (zh) 一种基于视觉反馈的tdi-ccd相机双目视觉系统视场对齐方法
CN111213159A (zh) 一种图像处理方法、装置及系统
CN115278194B (zh) 一种基于3d工业相机的图像数据处理方法
CN106595601A (zh) 一种无需手眼标定的相机六自由度位姿精确重定位方法
CN105100577A (zh) 一种图像处理方法及装置
CN110445982B (zh) 一种基于六自由度设备的追踪拍摄方法
CN110989645A (zh) 一种基于复眼成像原理的目标空间姿态处理方法
CN107274447B (zh) 深度图像获取装置和深度图像获取方法
JP2013009789A (ja) カメラシステム、撮影システム及び撮影方法
JP6734994B2 (ja) ステレオ計測装置及びシステム
CN107866058A (zh) 一种基于多层映射解析定位的乒乓球运动系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant