CN115261854B - 一种耐化学腐蚀膜层复配防护涂层及制备方法 - Google Patents

一种耐化学腐蚀膜层复配防护涂层及制备方法 Download PDF

Info

Publication number
CN115261854B
CN115261854B CN202210911362.0A CN202210911362A CN115261854B CN 115261854 B CN115261854 B CN 115261854B CN 202210911362 A CN202210911362 A CN 202210911362A CN 115261854 B CN115261854 B CN 115261854B
Authority
CN
China
Prior art keywords
nicr
protective coating
layer
corrosion resistant
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210911362.0A
Other languages
English (en)
Other versions
CN115261854A (zh
Inventor
何东青
梁爽
尚伦霖
李文生
成波
翟海民
张辛健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University of Technology
Original Assignee
Lanzhou University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University of Technology filed Critical Lanzhou University of Technology
Priority to CN202210911362.0A priority Critical patent/CN115261854B/zh
Publication of CN115261854A publication Critical patent/CN115261854A/zh
Application granted granted Critical
Publication of CN115261854B publication Critical patent/CN115261854B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/324Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal matrix material layer comprising a mixture of at least two metals or metal phases or a metal-matrix material with hard embedded particles, e.g. WC-Me
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供了一种耐化学腐蚀膜层复配防护涂层及制备方法,属于防腐蚀涂层技术领域。本发明的耐化学腐蚀膜层复配防护涂层依次包括Cr3C2‑NiCr金属陶瓷支撑层、NiCr过渡层、Cr粘接层、Cr→C梯度过渡层和DLC薄膜。本发明所述耐化学腐蚀膜层复配防护涂层,能够避免苛刻环境下腐蚀性成分通过DLC薄膜的柱状结构间隙或DLC薄膜表面缺陷如针孔等直接接触金属基体形成微观闭塞电池,进一步加速DLC薄膜的剥落,降低金属工件的服役寿命。

Description

一种耐化学腐蚀膜层复配防护涂层及制备方法
技术领域
本发明涉及防腐蚀涂层技术领域,尤其涉及一种耐化学腐蚀膜层复配防护涂层及制备方法。
背景技术
类金刚石碳基(Diamond-like carbon,简称DLC)薄膜作为一种亚稳态长程无序的非晶碳膜以其高硬度、优异的耐磨性、生物相容性、耐腐蚀性等性能,被广泛的应用于机械、医疗、光学、声学等多个领域,具有良好的应用前景。尽管DLC薄膜在腐蚀介质中有着良好的化学惰性且其几乎不与酸、碱及有机溶液反应,能够作为金属工件表面防护层,较好的阻碍腐蚀液的渗入,但由于DLC薄膜在沉积过程中不可避免的会产生贯穿性缺陷(如:针孔、柱状边界等),且在高载条件下由于其较差的承载能力而易开裂和剥落,导致其无法满足重载腐蚀等苛刻条件下的服役需求。
DLC薄膜的耐腐蚀性能主要取决于薄膜结构、膜基结合强度、薄膜致密度等因素,这些因素彼此之间相互联系从而影响DLC薄膜的耐腐蚀性能。目前,改善DLC薄膜耐腐蚀性的主要方法有调节沉积参数、异质元素掺杂及梯度过渡层设计等方法。适当调节DLC薄膜的沉积参数可以有效控制DLC薄膜的微观结构从而得到表面更为光滑,结构更为致密的DLC薄膜,但其本质上并未消除膜基界面不匹配,膜基结合力差的影响,腐蚀性离子仍会通过DLC薄膜表面的孔洞渗入基体,在膜基界面处形成闭塞原电池破坏金属基体与DLC薄膜的结合从而加速DLC薄膜的剥落。DLC薄膜中掺杂异质元素如Cr、Si、Ti等元素可以有效的降低薄膜内应力,减少薄膜的微裂纹和针孔的数量从而改善DLC薄膜的耐腐蚀性能,但腐蚀一旦发生,掺杂异质元素仍无法避免腐蚀液与基体的直接接触,同时也会造成基体的损伤及薄膜附着力下降从而导致DLC薄膜失效脱落。设计一定厚度的中间梯度过渡层能够增加DLC薄膜的附着力,减少薄膜空隙和缺陷,避免腐蚀介质中的活性离子通过薄膜表面的缺陷直接接触基体或形成微观腐蚀电池,可实现薄膜耐腐蚀性能的大幅度提升。此外,通过设计合理结构能有效减小薄膜内应力,从而使薄膜力学性能、摩擦学性能、耐腐蚀性能达到平衡。因此,开发并设计一定厚度的中间梯度过渡层有助于大幅度提高DLC的耐腐蚀性能且相对经济有效、应用前景广泛。
发明内容
有鉴于此,本发明的目的是提供一种耐化学腐蚀膜层复配防护涂层,能够避免苛刻环境下腐蚀性成分通过DLC薄膜的柱状结构边界或DLC薄膜表面缺陷如针孔等直接接触金属基体形成微观闭塞电池,进一步加速DLC薄膜的剥落,降低金属工件的服役寿命。
本发明耐化学腐蚀膜层复配防护涂层,在金属基体表面依次包括Cr3C2-NiCr金属陶瓷支撑层、NiCr过渡层、Cr粘接层、Cr→C梯度过渡层和DLC薄膜。
优选的,所述Cr3C2-NiCr金属陶瓷支撑层由Cr3C2和NiCr的复合粉末构成,其中Cr3C2和NiCr的质量比为质量比为2~8:2~8。本发明Cr3C2-NiCr金属陶瓷支撑层材料采用的是商用团聚Cr3C2-20%NiCr粉末和Cr3C2-80%NiCr粉末。
优选的,所述Cr3C2-NiCr金属陶瓷支撑层的厚度为100~300μm。
优选的,所述NiCr过渡层的厚度为100~300nm。
优选的,所述Cr粘接层的厚度为100~250nm。
优选的,所述Cr→C梯度过渡层的厚度为100~300nm。
优选的,所述DLC薄膜的厚度为1~3μm。
本发明的另一目的是提供一种耐化学腐蚀膜层复配防护涂层的制备方法,包括以下步骤:
(1)将金属基底试样表面用刚玉喷砂粗化处理,并对基体试样进行预热,然后采用超音速火焰喷涂(HVOF)Cr3C2-NiCr复合粉末,在试样表面形成Cr3C2-NiCr金属陶瓷支撑层;
(2)将步骤(1)中的试样自然冷却,然后用200目~3000目的砂纸逐级打磨且抛光至镜面无明显划痕,表面粗糙度Ra≤0.03μm;然后依次用无水乙醇和丙酮超声清洗15min,其中超声温度为25℃,超声功率为600W,最后将打磨清洗后的试样放置烘箱中80℃烘干备用;
(3)将步骤(2)烘干后的试样固定于闭合场非平衡磁控溅射样品台上,使用Ar+在真空为2~5×10-4Pa,偏压为-400~-500V,转速为4~5RPM的条件下轰击试样表面;然后将纯度为99.99%的Ni、Cr靶和石墨靶相间放置,在偏压为-50~-100V,基底温度为160~180℃的条件下,以500~900W的功率溅射5~10min,Cr、Ni靶溅射电流为2.0~3.5A,以在试样表面形成NiCr过渡层;
(4)关闭Ni靶,单独溅射Cr靶5~15min,以在试样表面形成Cr粘接层;
(5)在5~15分钟内将Cr靶的功率线性下降至0W,同时C靶功率由0W线性上升2200W,以在Cr粘接层之上沉积Cr→C梯度过渡层;
(6)C靶功率保持2200W持续沉积2~5h得到DLC薄膜。
优选的,步骤(1)所述预热的温度为200℃,预热时间为5min。
优选的,步骤(1)所述超音速火焰喷涂的条件为:氧气压力0.9MPa,氧气流速55m3/h,丙烷压力0.9MPa,丙烷流速0.45L/min,送粉速率40g/min,喷涂距离160mm。
Cr3C2-NiCr金属陶瓷支撑层拥有较为优异的机械物理性能,引入金Cr3C2-NiCr金属陶瓷支撑层作为中间层能够较好的解决DLC薄膜与金属基底膜层物理错配的问题。此外,Cr3C2-NiCr金属陶瓷支撑层与DLC薄膜组成的双层结构耐腐蚀性显著提升,大大延长了DLC薄膜的服役寿命。这是由于:1)金属陶瓷支撑层的引入能够改善薄膜的柱状生长结构,使薄膜致密化;2)金属陶瓷支撑层作为硬质支撑层能够显著提升薄膜承载能力避免因高载条件下基底变形而引起的薄膜开裂;3)金属陶瓷支撑层的引入能使接触应力梯度传递,避免承载过程中因膜基界面应力集中引起的薄膜开裂;4)具有化学惰性的DLC薄膜为金属陶瓷支撑层封孔,阻止腐蚀液的渗入。
本发明制备的防护涂层由依次在基体上制备的Cr3C2-NiCr金属陶瓷支撑涂层、NiCr过渡层、Cr粘接层、Cr→C梯度过渡层与顶层DLC薄膜组成。Cr3C2-NiCr金属陶瓷支撑层作为硬质支撑层实现负载条件下DLC薄膜应力梯度过渡,提升DLC薄膜的承载能力。NiCr过渡层实现了DLC薄膜与金属陶瓷支撑层电位的过渡,避免活性离子进入膜层界面因电位差过大造成的金属陶瓷层的电化学溶解。另外,Cr粘接层与DLC薄膜之间存在Cr含量逐渐减少,C含量逐渐增加的Cr→C梯度过渡层,Cr元素与C元素高度相溶,Cr含量的逐渐减少使得Cr元素与C键合形成碳化物纳米晶相嵌埋在DLC薄膜之中,能够进一步降低DLC薄膜内应力,改善DLC薄膜的高脆性。本发明设计制备的膜层复配防护涂层各层结合良好,拥有优异的承载能力,耐腐蚀性能较传统表面改性技术大幅度提高,显著提升金属零部件在腐蚀环境下的服役寿命。
与现有技术相比,本发明具有以下有益效果:
本发明提供了一种耐化学腐蚀膜层复配防护涂层,由Cr3C2-NiCr金属陶瓷支撑层、NiCr过渡层、Cr粘接层、Cr→C梯度过渡层和DLC薄膜构成。多重过渡层的引入并未降低DLC薄膜固有的机械性能和摩擦学性能,同时还避免了DLC薄膜柱状结构的形成,避免了因柱状边界作为离子通道产生的腐蚀,且降低了薄膜内应力,实现了重载条件下接触应力的梯度过渡,显著提升了DLC薄膜承载能力及耐腐蚀性能。
耐化学腐蚀膜层复配防护涂层中多重过渡层的引入一方面减少了DLC薄膜的缺陷,阻碍了腐蚀介质中的活化离子接触基体产生破坏。另一方面,Cr3C2-NiCr金属中间支撑层、NiCr过渡层以及Cr粘接层中Cr元素含量较高,Cr在腐蚀条件下生成的腐蚀产物成钝化态且结构致密,能进一步阻碍腐蚀夜的渗入。此外,在重度腐蚀环境下Cr元素在Cr→C层中的梯度过渡有助于Cr元素的扩散,避免产生金属陶瓷层因贫铬区和富铬区电位差过大形成腐蚀原电池。
耐化学腐蚀膜层复配防护涂层中多重过渡层的引入可有效改善膜基界面结合状态,金属陶瓷支撑层有助于解决膜基界面物理参数错配问题,Cr→C层中Cr元素的梯度过渡能够增强DLC薄膜的附着力。当腐蚀发生时,疏松的金属腐蚀产物会聚集在膜基结合处,DLC薄膜与金属基体的界面弱结合会导致DLC薄膜与基体分离,并形成鼓包、裂纹和脱落等,加速零部件腐蚀失效。多重过渡层的引入使金属基体与DLC薄膜形成强结合,有助于上述问题的改善,延长了化学腐蚀环境下金属零部件的服役寿命。
附图说明
图1为实施例1中Cr3C2-20%NiCr/NiCr/Cr/Cr→C/DLC耐化学腐蚀膜层复配防护涂层的结构示意图;
图2为实施例1中Cr3C2-20%NiCr/NiCr/Cr/Cr→C/DLC耐化学腐蚀膜层复配防护涂层的SEM截面图;
图3为实施例1中Cr3C2-20%NiCr/NiCr/Cr/Cr→C/DLC耐化学腐蚀膜层复配防护涂层表面未腐蚀前(a)和腐蚀之后(b)的形貌对比;
图4为实施例1中Cr3C2-20%NiCr/NiCr/Cr/Cr→C/DLC耐化学腐蚀膜层复配防护涂层的开路电位测试图;
图5为实施例1中Cr3C2-20%NiCr/NiCr/Cr/Cr→C/DLC耐化学腐蚀膜层复配防护涂层的电化学阻抗图谱;
图6为实施例1中Cr3C2-20%NiCr/NiCr/Cr/Cr→C/DLC膜层复配防护涂层的动电位极化Tafel测试曲线。
具体实施方式
下面结合实施例对本发明作进一步说明。
实施例1
一种耐化学腐蚀膜层复配防护涂层的制备方法,步骤如下:
(1)将金属基底(316L不锈钢)表面用刚玉喷砂粗化处理后,进行200℃预热5min,然后在2小时内,在氧气压力为0.9MPa,氧气流速为55m3/h,丙烷压力为0.9MPa,丙烷流速为0.45L/min,送粉速率为40g/min,喷涂距离为160mm的条件下进行超音速火焰喷涂(HVOF)喷涂Cr3C2-20%NiCr金属陶瓷涂层,厚度为200μm;
(2)将自然冷却的试样切割成尺寸为20×10×20mm的试块,喷涂后试样表面用200目~3000目逐级打磨且抛光至镜面无明显划痕,表面粗糙度Ra≤0.03μm;然后分别用无水乙醇和丙酮超声清洗15min,超声温度25℃,超声功率600W,最后将打磨清洗后的试样放置烘箱中80℃烘干备用;
(3)将所制试样固定于闭合场非平衡磁控溅射样品台上,在背景真空为2×10-4Pa时,偏压为-400V,转速为5RPM的条件下使用Ar+轰击试样表面;将纯度为99.99%的Ni、Cr靶和石墨靶相间放置,以避免靶材之间的相互污染,在偏压为-70V,基底温度保持在180℃的条件下,设定Cr、Ni靶溅射电流为3.5A,并以900W的功率溅射10min,制备厚度为256nm的NiCr过渡层;
(4)关闭Ni靶,单独溅射Cr靶10min,制备厚度约为200nm的Cr粘接层;
(5)随后在15min内将Cr靶的功率线性下降至0W,同时C靶功率由0W线性上升2200W,制备厚度约为300nm的Cr→C梯度过渡层;
(6)C靶功率保持2200W持续沉积4h得到DLC薄膜,薄膜厚度为2.4μm。记为Cr3C2-20%NiCr/NiCr/Cr/Cr→C/DLC膜层复配防护涂层。
图1为实施例1耐化学腐蚀膜层复配防护涂层示意图。
对实施例1制备的耐化学腐蚀膜层复配防护涂层进行性能测试,方法如下:
将制备好的试样放入酒精、丙酮中分别超声处理15min,随后干燥备用。
将未镀膜的单一Cr3C2-20%NiCr涂层试样、未喷涂中间层的单一DLC薄膜试样以及耐化学腐蚀膜层复配防护涂层分别编号记为1,2,3,将1,2,3号试样用全透明环氧树脂AB胶封住薄膜或涂层边缘,冷却24h后进行电化学测试。
将冷却好的试样在3.5wt.%NaCl中浸泡30min待其开路电位(OCP)稳定后,使用上海辰华电化学工作站监测其开路电位的变化趋势,时间为30min。随后对其在0.01~1×105Hz范围内测量其电化学阻抗。在-2~2V范围内,扫描速率为2mV/s的条件下进行动电位极化测试得到其相关参数并使用外推法计算其自腐蚀电流密度,自腐蚀电位及极化电阻。
图2为实施例1中Cr3C2-20%NiCr/NiCr/Cr/Cr→C/DLC耐化学腐蚀膜层复配防护涂层的SEM截面图。可以看出中间金属陶瓷支撑层与金属基体结合良好,厚度约为203μm,金属陶瓷支撑层上是约为256nm的NiCr过渡层,由于Cr元素能与C键键合形成CrxCy化合物,故在过渡层上下两端未出现明显的界限,间接说明其梯度过渡的作用。过渡层之上是约为200nm的Cr粘接层,Cr元素到表层DLC薄膜之间Cr元素梯度减少,最终以纳米晶的结构出现在DLC薄膜之中。
图3为实施例1中Cr3C2-20%NiCr/NiCr/Cr/Cr→C/DLC耐化学腐蚀膜层复配防护涂层表面未腐蚀前(a)和腐蚀之后(b)的形貌对比。从图中可以看出腐蚀前后Cr3C2-20%NiCr/NiCr/Cr/Cr→C/DLC膜层复配防护涂层表面并无明显变化,未出现空洞、裂纹等缺陷的产生,说明Cr3C2-20%NiCr/NiCr/Cr/Cr→C/DLC膜层复配防护涂层较好的耐腐蚀性能。
图4为实施例1中Cr3C2-20%NiCr/NiCr/Cr/Cr→C/DLC耐化学腐蚀膜层复配防护涂层的开路电位测试图。开路电位是指试样在不加任何负载条件下得到的电位,该电位值越正,说明其腐蚀倾向越低,腐蚀越不容易发生。Cr3C2-20%NiCr/NiCr/Cr/Cr→C/DLC膜耐化学腐蚀膜层复配防护涂层的开路电位稳定在-41mV上下。单一DLC薄膜的开路电位稳定在-132mV,而单一Cr3C2-20%NiCr涂层的开路电位稳定在-267mV左右。本实施例中的多重过渡层的加入大幅度减小了DLC薄膜的腐蚀倾向,该膜层复配防护涂层能够较好的保护基体。
图5为实施例1中Cr3C2-20%NiCr/NiCr/Cr/Cr→C/DLC耐化学腐蚀膜层复配防护涂层的电化学阻抗图谱。阻抗图谱中阻抗弧半径越大,意味着工件阻抗越大,腐蚀环境下的活性离子越不容易通过涂层接触金属基体,工件越耐腐蚀。单一DLC薄膜的阻抗为7.9×104Ω·cm2,Cr3C2-20%NiCr/NiCr/Cr/Cr→C/DLC膜层复配防护涂层的阻抗为2.6×105Ω·cm2较单一DLC薄膜提高了近3倍,较单一Cr3C2-NiCr涂层提高了3个数量级。说明为本实施例Cr3C2-20%NiCr/NiCr/Cr/Cr→C/DLC膜层复配防护涂层具有优异的耐腐蚀性能。
图6为实施例1中Cr3C2-20%NiCr/NiCr/Cr/Cr→C/DLC膜层复配防护涂层的动电位极化Tafel测试曲线。
实施例2
一种耐化学腐蚀膜层复配防护涂层的制备方法,步骤如下:
(1)将金属基底(316L不锈钢)表面用刚玉喷砂粗化处理后,进行200℃预热5min,在2小时内,在氧气压力为0.9MPa,氧气流速为55m3/h,丙烷压力为0.9MPa,丙烷流速为0.45L/min,送粉速率为40g/min,喷涂距离为160mm的条件下进行超音速火焰喷涂(HVOF)喷涂Cr3C2-20%NiCr金属陶瓷涂层,厚度为300μm;
(2)将自然冷却的试样切割成尺寸为20×10×20mm的试块,喷涂后试样表面用200目~3000目逐级打磨且抛光至镜面无明显划痕,表面粗糙度Ra≤0.03μm;然后分别用无水乙醇和丙酮超声清洗15min,超声温度25℃,超声功率600W,最后将打磨清洗后的试样放置烘箱中80℃烘干备用;
(3)将所制试样固定于闭合场非平衡磁控溅射样品台上,在背景真空为2×10-4Pa时,偏压为-400V,转速为5RPM的条件下使用Ar+轰击试样表面;将纯度为99.99%的Ni、Cr靶和石墨靶相间放置,以避免靶材之间的相互污染;在偏压为-70V,基底温度保持在180℃的条件下,Cr、Ni靶溅射电流为3.5A,以功率为900W条件下溅射10min,制备厚度约为250nm的NiCr过渡层;
(4)关闭Ni靶,单独溅射Cr靶10min,制备厚度约为200nmCr粘接层;
(5)随后在10min内将Cr靶的功率线性下降至0W,同时C靶功率由0W线性上升2200W,制备厚度约为200nm的Cr→C梯度过渡层;
(6)C靶功率保持2200W持续沉积3h得到DLC薄膜,薄膜厚度为2.02μm。记为Cr3C2-20%NiCr/NiCr/Cr/Cr→C/DLC膜层复配防护涂层。
实施例3
一种耐化学腐蚀膜层复配防护涂层的制备方法,步骤如下:
(1)将金属基底(316L不锈钢)表面用刚玉喷砂粗化处理后,进行200℃预热5min,在2小时内,在氧气压力为0.9MPa,氧气流速为55m3/h,丙烷压力为0.9MPa,丙烷流速为0.45L/min,送粉速率为40g/min,喷涂距离为160mm的条件下进行超音速火焰喷涂(HVOF)喷涂Cr3C2-80%NiCr金属陶瓷涂层,厚度为200μm;
(2)将自然冷却的试样切割成尺寸为20×10×20mm的试块,喷涂后试样表面用200目~3000目逐级打磨且抛光至镜面无明显划痕,表面粗糙度Ra≤0.03μm;然后分别用无水乙醇和丙酮超声清洗15min,超声温度25℃,超声功率600W,最后将打磨清洗后的试样放置烘箱中80℃烘干备用;
(3)将所制试样固定于闭合场非平衡磁控溅射样品台上,在背景真空为2×10-4Pa时,偏压为-400V,转速为5RPM的条件下使用Ar+轰击试样表面;将纯度为99.99%的Ni、Cr靶和石墨靶相间放置,以避免靶材之间的相互污染;在偏压为-70V,基底温度保持在180℃的条件下,Cr、Ni靶溅射电流为3.5A,以功率为900W条件下溅射5min,制备厚度约为150nm的NiCr过渡层;
(4)关闭Ni靶,单独溅射Cr靶5min,制备厚度约为100nm Cr粘接层。
(5)随后在5min内将Cr靶的功率线性下降至0W,同时C靶功率由0W线性上升2200W,制备厚度约为100nm的Cr→C梯度过渡层;
(6)C靶功率保持2200W持续沉积4.8h得到DLC薄膜,薄膜厚度为2.74μm。记为Cr3C2-80%NiCr/NiCr/Cr/Cr→C/DLC膜层复配防护涂层。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

1.一种耐化学腐蚀膜层复配防护涂层,其特征在于,在金属基体表面依次包括Cr3C2-NiCr金属陶瓷支撑层、NiCr过渡层、Cr粘接层、Cr→C梯度过渡层和DLC薄膜;
所述耐化学腐蚀膜层复配防护涂层的制备方法,包括以下步骤:
(1)将金属基底试样表面用刚玉喷砂粗化处理,并对基体试样进行预热,然后采用超音速火焰喷涂Cr3C2-NiCr复合粉末,在试样表面形成Cr3C2-NiCr金属陶瓷支撑层;
(2)将步骤(1)中的试样自然冷却,然后用200目~3000目的砂纸逐级打磨且抛光至镜面无明显划痕,表面粗糙度Ra≤0.03μm;然后依次用无水乙醇和丙酮超声清洗15min,其中超声温度为25℃,超声功率为600W,最后将打磨清洗后的试样放置烘箱中80℃烘干备用;
(3)将步骤(2)烘干后的试样固定于闭合场非平衡磁控溅射样品台上,使用Ar+在真空为2~5×10-4Pa,偏压为-400~-500V,转速为4~5RPM的条件下轰击试样表面;然后将纯度为99.99%的Ni、Cr靶和石墨靶相间放置,在偏压为-50~-100V,基底温度为160-180℃的条件下,以500~900W的功率溅射5~10 min,Cr、Ni靶溅射电流为2.0~3.5A,以在试样表面形成NiCr过渡层;
(4)关闭Ni靶,单独溅射Cr靶5~15 min,以在试样表面形成Cr粘接层;
(5)在5~15分钟内将Cr靶的功率线性下降至0W,同时C靶功率由0W线性上升2200W,以在Cr粘接层之上沉积Cr→C梯度过渡层;
(6)C靶功率保持2200W持续沉积2~5h得到DLC薄膜。
2.根据权利要求1所述的耐化学腐蚀膜层复配防护涂层,其特征在于,所述Cr3C2-NiCr金属陶瓷支撑层由Cr3C2和NiCr的复合粉末构成,其中Cr3C2和NiCr的质量比为质量比为2~8:2~8。
3.根据权利要求1所述的耐化学腐蚀膜层复配防护涂层,其特征在于,所述Cr3C2-NiCr金属陶瓷支撑层的厚度为100~300μm。
4.根据权利要求1所述的耐化学腐蚀膜层复配防护涂层,其特征在于,所述NiCr过渡层的厚度为100~300nm。
5.根据权利要求1所述的耐化学腐蚀膜层复配防护涂层,其特征在于,所述Cr粘接层的厚度为100~250nm。
6.根据权利要求1所述的耐化学腐蚀膜层复配防护涂层,其特征在于,所述Cr→C梯度过渡层的厚度为100~300nm。
7.根据权利要求1所述的耐化学腐蚀膜层复配防护涂层,其特征在于,所述DLC薄膜的厚度为1~3μm。
8.根据权利要求7所述耐化学腐蚀膜层复配防护涂层,其特征在于,步骤(1)所述预热的温度为200℃,预热时间为5min。
9.根据权利要求7所述耐化学腐蚀膜层复配防护涂层,其特征在于,步骤(1)所述超音速火焰喷涂的条件为:氧气压力0.9MPa,氧气流速55m3/h,丙烷压力0.9MPa,丙烷流速0.45L/min,送粉速率40g/min,喷涂距离160mm。
CN202210911362.0A 2022-07-30 2022-07-30 一种耐化学腐蚀膜层复配防护涂层及制备方法 Active CN115261854B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210911362.0A CN115261854B (zh) 2022-07-30 2022-07-30 一种耐化学腐蚀膜层复配防护涂层及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210911362.0A CN115261854B (zh) 2022-07-30 2022-07-30 一种耐化学腐蚀膜层复配防护涂层及制备方法

Publications (2)

Publication Number Publication Date
CN115261854A CN115261854A (zh) 2022-11-01
CN115261854B true CN115261854B (zh) 2023-09-29

Family

ID=83748092

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210911362.0A Active CN115261854B (zh) 2022-07-30 2022-07-30 一种耐化学腐蚀膜层复配防护涂层及制备方法

Country Status (1)

Country Link
CN (1) CN115261854B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534455A (zh) * 2011-12-28 2012-07-04 中国科学院宁波材料技术与工程研究所 一种注塑机螺杆表面的热喷涂复合梯度涂层及其制备方法
CN105525258A (zh) * 2014-09-29 2016-04-27 中国科学院宁波材料技术与工程研究所 用于铝合金表面的防腐耐磨Cr-DLC涂层及其制备方法
CN106435584A (zh) * 2016-10-18 2017-02-22 安徽工业大学 一种热喷涂‑pvd复合涂层及其制备方法
CN109898064A (zh) * 2019-03-29 2019-06-18 中南大学 一种DLC/Me-C复合薄膜及其制备方法
CN111218638A (zh) * 2020-01-14 2020-06-02 兰州理工大学 一种球阀硬密封面耐磨蚀复合防护涂层及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20153615A1 (it) * 2015-09-14 2017-03-14 Freni Brembo Spa Metodo per realizzare un disco freno e disco freno per freni a disco

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534455A (zh) * 2011-12-28 2012-07-04 中国科学院宁波材料技术与工程研究所 一种注塑机螺杆表面的热喷涂复合梯度涂层及其制备方法
CN105525258A (zh) * 2014-09-29 2016-04-27 中国科学院宁波材料技术与工程研究所 用于铝合金表面的防腐耐磨Cr-DLC涂层及其制备方法
CN106435584A (zh) * 2016-10-18 2017-02-22 安徽工业大学 一种热喷涂‑pvd复合涂层及其制备方法
CN109898064A (zh) * 2019-03-29 2019-06-18 中南大学 一种DLC/Me-C复合薄膜及其制备方法
CN111218638A (zh) * 2020-01-14 2020-06-02 兰州理工大学 一种球阀硬密封面耐磨蚀复合防护涂层及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
超音速喷涂Cr_3C_2-25NiCr复合涂层的组织及电化学特性研究;沈婕等;《热喷涂技术》;第1卷(第2期);第48-52页 *
高承载高耐磨Cr3C2-NiCr/DLC复合涂层制备及摩擦学行为;尚伦霖等;《摩擦学学报》;第42卷(第4期);第752页 *

Also Published As

Publication number Publication date
CN115261854A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
CN110055496B (zh) 一种在核用锆合金基底表面制备Cr涂层的制备工艺
CN107587133B (zh) 一种钨探针复合类金刚石涂层及其制备方法
CN107022740A (zh) 一种超硬多层复合类金刚石涂层及其制备方法
CN109852943B (zh) 核用锆合金表面CrN涂层的制备方法及产品
CN112410728B (zh) 高Cr含量CrB2-Cr涂层的制备工艺
CN103920185A (zh) 一种Mo金属掺杂复合类金刚石涂层钛合金人工骨关节及其制备方法
CN1743503A (zh) 一种含铬类金刚石薄膜及其制备方法
CN104726822A (zh) 一种基于CrC镀层的高速精密球轴承及其制作方法
CN105970215B (zh) 一种轴承的复合层制备方法及其轴承
CN102560393A (zh) 镀膜件及其制造方法
CN110670038A (zh) 具有自润滑和耐磨性能的AlCrN/MoS2纳米复合薄膜及其制备方法
Zhao et al. Enhanced tribological and corrosion properties of DLC/CrN multilayer films deposited by HPPMS
CN115261854B (zh) 一种耐化学腐蚀膜层复配防护涂层及制备方法
Zhao et al. Effect of the bias-graded increment on the tribological and electrochemical corrosion properties of DLC films
CN102808161B (zh) 口腔烤瓷用钛瓷TiN/ZrTiSiN复合过渡阻挡层制备工艺
CN103774092B (zh) 一种在镁合金表面制备导电且耐腐蚀涂层的方法
CN107881469B (zh) 类金刚石复合涂层及其制备方法与用途以及涂层工具
CN110265668A (zh) 氢燃料电池金属双极板及其制备方法
CN114293148A (zh) 一种钛合金表面修复与强化功能涂层一体化的涂层材料及其制备方法和应用
CN112391593B (zh) 一种高Cr含量、韧性好的CrB2-Cr涂层及其制备工艺
CN114774857A (zh) 一种TiAlCrN微纳米涂层及其制备方法
CN107937914A (zh) 一种在不锈钢表面的新颖过渡层上制备金刚石薄膜的方法
CN111979543A (zh) 一种基于摩擦诱导催化形成自润滑非晶碳膜的涂层材料及其制备方法
AU2021105054A4 (en) Wear-resistant and Corrosion-resistant Nano-multilayer Protective Coatings on Titanium Alloy and Preparation Method Thereof
CN216550673U (zh) 一种液压元件用多层结构防护涂层

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant