CN115259258A - 一种污水单塔汽提工艺 - Google Patents

一种污水单塔汽提工艺 Download PDF

Info

Publication number
CN115259258A
CN115259258A CN202210832561.2A CN202210832561A CN115259258A CN 115259258 A CN115259258 A CN 115259258A CN 202210832561 A CN202210832561 A CN 202210832561A CN 115259258 A CN115259258 A CN 115259258A
Authority
CN
China
Prior art keywords
sewage
tower
separation
stripping
controlling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210832561.2A
Other languages
English (en)
Inventor
齐明臣
王耀伟
栾波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Chambroad Petrochemicals Co Ltd
Original Assignee
Shandong Chambroad Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Chambroad Petrochemicals Co Ltd filed Critical Shandong Chambroad Petrochemicals Co Ltd
Priority to CN202210832561.2A priority Critical patent/CN115259258A/zh
Publication of CN115259258A publication Critical patent/CN115259258A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/16Hydrogen sulfides
    • C01B17/167Separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/024Purification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • C02F2103/365Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds from petrochemical industry (e.g. refineries)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physical Water Treatments (AREA)

Abstract

本发明涉及一种污水单塔汽提工艺,包括以下步骤:将蒸汽直接改进污水汽提塔釜,蒸汽直接参与污水离子组分汽提分离过程汽提塔顶温度控制、压力控制、汽提塔上部8层塔盘温度控制,稳定控制塔顶酸性气中硫化氢含量95%以上;汽提塔侧线抽氨系统第三次分离的冷凝器温度控制及压力控制,精准控制氨水中的硫化物含量控制2000mg/L以内且氨水无色透明。本发明提供的加热优化方法可降低蒸汽消耗量,提高污水汽提效果,大幅度缩短污水汽提装置开工调整时间控制24h内。塔顶酸性气硫化氢含量控制95%以上,侧线抽氨系统产出氨气经吸收产出的氨水硫化物含量降低,提高了氨水及酸性气的质量品质,提升装置环保与经济竞争力。

Description

一种污水单塔汽提工艺
技术领域
本发明属于环保技术领域,涉及到石油化工污水处理技术,具体涉及一种污水单塔汽提工艺。
背景技术
随着国内经济的发展,炼油能力也持续抬升,现炼油项目基本上为石化产业基地的炼化一体化项目。随着石油化工行业扩建提升产能的同时,不可避免的产生的工业废水也是与日俱增。
炼化废水中含有各种有机物,直接排放会对环境产生严重的污染,因此,所有的炼化废水均需要进行处理后,达到国家排放标准才准许向自然环境中排放。在对炼化废水进行初步处理时,通常是先进行油类回收,即可以回收一定量的废油,又可减轻污水处理厂的处理负担及处理成本,因此,如何高效节能处理工业废水并回收部分组分,比如氨氮、硫化氢等成为目前行业的迫切需求。
发明内容
本发明的目的是提供一种污水单塔汽提工艺,以解决现污水处理厂的处理负担较重且处理成本高,有些组分无法回收的问题。
为实现上述目的,本申请是通过以下技术方案实现的:
一种污水单塔汽提工艺,包括以下步骤:
S1、将蒸汽管路与污水汽提塔釜连接,蒸汽直接参与污水离子组分汽提分离过程;
S2、控制污水汽提塔顶温度30-60℃、压力0.4-0.6MPa、汽提塔上部8层塔盘温度110-130℃;
S3、控制侧线抽出比8%-10%,侧线抽出的气体第一次分离前温度控制110-140℃、第一次分离的冷凝罐压力控制0.3-0.45MPa,分离得到粗氨气;
S4、步骤S3得到的粗氨气在第二次分离前温度控制80-100℃、第二次分离的冷凝罐压力控制0.2-0.35Mpa,分离得到精制氨气;
S5、步骤S4得到的精制氨气在第三次分离前温度控制20-50℃,第三次分离的冷凝罐压力控制0.15-0.25MPa,经过深度固硫,控制氨气中的硫化物含量<2000mg/L,得到低硫含量的高浓度氨气;
S6、汽提塔顶抽出高纯度的硫化氢。
进一步的,步骤S2中,控制污水汽提塔底温度为140-160℃。
进一步的,污水汽提塔的进料由冷进料和热进料两路组成,其中热进料的进料口位于污水汽提塔的侧线抽出口的上方,冷进料的进料口位于污水汽提塔的塔顶,且污水汽提塔冷热进料比1:4-1:7,冷进料温度控制30-40℃,热进料温度控制145-160℃。
进一步的,热进料经过第二次分离的冷凝器、第一次分离的冷凝器、净化水-酸性水换热器分别进行换热后进入污水汽提塔。
进一步的,所述污水汽提塔的侧线抽出口位于汽提塔上部8层塔盘范围内。
进一步的,步骤S3中的侧线抽出比为侧线抽出的汽体量与进料量的比值。
本发明的有益效果是:
本技术方案通过对污水单塔汽提的改进工艺,缓解现污水汽提装置能耗需求大的问题,并且对精制氨气中的硫化氢固硫效果影响较大,且有利于提高污水汽提的经济效益。
附图说明
图1为本发明实施例1的工艺流程图。
附图标记说明
1—污水汽提塔,2—第一次分离换热器,3—第一次分离的冷凝罐,4—第二次分离的换热器,5—第二次分离的冷凝罐,6—第三次分离的换热器,7—第三次分离的冷凝罐。
具体实施方式
以下通过实施例对本发明的技术方案进行详细的说明,以下的实施例仅是示例性的,仅能用来解释和说明本发明的技术方案,而不能解释为是对本发明技术方案的限制。
本申请提供一种污水单塔汽提工艺,包括以下步骤:
S1、将蒸汽管路与污水汽提塔釜连接,蒸汽直接参与污水离子组分汽提分离过程;污水汽提塔的进料由冷进料和热进料两路组成,其中热进料的进料口位于污水汽提塔的侧线抽出口的上方,冷进料的进料口位于污水汽提塔的塔顶,且污水汽提塔冷热进料比1:4-1:7,冷进料温度控制30-40℃,热进料温度控制145-160℃。热进料经过第二次分离的冷凝器、第一次分离的冷凝器、净化水-酸性水换热器分别进行换热后进入污水汽提塔。
S2、控制污水汽提塔顶温度30-60℃、压力0.4-0.6MPa、汽提塔上部8层塔盘温度110-130℃;控制污水汽提塔底温度为140-160℃。
S3、控制侧线抽出比(侧线抽出的汽体量与进料量的比值)8%-10%,侧线抽出的气体第一次分离前温度控制110-140℃、第一次分离的冷凝罐压力控制0.3-0.45MPa,分离得到粗氨气;所述污水汽提塔的侧线抽出口位于汽提塔上部8层塔盘范围内。
S4、步骤S3得到的粗氨气在第二次分离前温度控制80-100℃、第二次分离的冷凝罐压力控制0.2-0.35Mpa,分离得到精制氨气。
S5、步骤S4得到的精制氨气在第三次分离前温度控制20-50℃,第三次分离的冷凝罐压力控制0.15-0.25MPa,经过深度固硫,控制氨气中的硫化物含量<2000mg/L,得到低硫含量的高浓度氨气。
实施例1
本实施例提供的污水单塔汽提工艺的工艺流程图参见图1所示,具体包括以下步骤:
S1、将蒸汽直接改进污水汽提塔釜,控制污水汽提塔底温度140℃。
S2、调整控制污水汽提塔顶温度45℃、压力0.5MPa、汽提塔上部8层塔盘(灵敏板)温度120℃,控制污水汽提塔冷热进料比1:4,冷进料温度控制30℃,热进料温度控制145℃,分离得到高纯度的硫化氢气体。
S3、污水汽提塔侧线合适位置抽出大量富氨气及水蒸气,经第一次分离的冷凝罐3进行高温分水,得到粗氨气。控制侧线抽出比(侧线抽出量/加工量)8%,第一次分离的冷凝罐前温度110℃、压力控制0.3MPa,分离得到高浓度粗氨气。
S4、将步骤S3分离得到的高浓度粗氨气,经第二次分离的冷凝罐5低温固硫得到进一步精制的氨气。控制第二次分离的冷凝罐前温度80℃、压力0.2MPa。
S5将步骤S4精制得到的氨气经第三次分离的冷凝罐7深度固硫,得到低硫含量的高浓度氨气。控制第三次分离的冷凝罐前温度35℃,压力0.2MPa。
实施例2
本实施例提供的污水单塔汽提工艺,具体包括以下步骤:
S1、将蒸汽直接改进污水汽提塔釜,控制污水汽提塔底温度160℃。
S2、调整控制污水汽提塔顶温度60℃、压力0.6MPa、汽提塔上部8层塔盘(灵敏板)温度130℃,控制污水汽提塔冷热进料比1:7,冷进料温度控制40℃,热进料温度控制160℃,分离得到高纯度的硫化氢气体。
S3、污水汽提塔侧线合适位置抽出大量富氨气及水蒸气,经第一次分离的冷凝罐进行高温分水,得到粗氨气。控制侧线抽出比(侧线抽出量/加工量)10%,第一次分离的冷凝罐前温度140℃、压力控制0.45MPa,分离得到高浓度粗氨气。
S4、将步骤S3分离得到的高浓度粗氨气,经第二次分离的冷凝罐低温固硫得到进一步精制的氨气。控制第二次分离的冷凝罐前温度100℃、压力0.35MPa。
S5将步骤S4精制得到的氨气经第三次分离的冷凝罐深度固硫,得到低硫含量的高浓度氨气。控制第三次分离的冷凝罐前温度20℃,压力0.2MPa。
实施例3
本实施例提供的污水单塔汽提工艺,具体包括以下步骤:
S1、将蒸汽直接改进污水汽提塔釜,控制污水汽提塔底温度150℃。
S2、调整控制污水汽提塔顶温度45℃、压力0.5MPa、汽提塔上部8层塔盘(灵敏板)温度120℃,控制污水汽提塔冷热进料比1:5,冷进料温度控制35℃,热进料温度控制150℃,分离得到高纯度的硫化氢气体。
S3、污水汽提塔侧线合适位置抽出大量富氨气及水蒸气,经第一次分离的冷凝罐进行高温分水,得到粗氨气。控制侧线抽出比(侧线抽出量/加工量)9%,第一次分离的冷凝罐前温度130℃、压力控制0.4MPa,分离得到高浓度粗氨气。
S4、将步骤S3分离得到的高浓度粗氨气,经第二次分离的冷凝罐低温固硫得到进一步精制的氨气。控制第二次分离的冷凝罐前温度100℃、压力0.25MPa。
S5将步骤S4精制得到的氨气经第三次分离的冷凝罐深度固硫,得到低硫含量的高浓度氨气。控制第三次分离的冷凝罐前温度30℃,压力0.2MPa。
实施例4
本实施例提供的污水单塔汽提工艺,具体包括以下步骤:
S1、将蒸汽直接改进污水汽提塔釜,控制污水汽提塔底温度145℃。
S2、调整控制污水汽提塔顶温度50℃、压力0.45MPa、汽提塔上部8层塔盘(灵敏板)温度125℃,控制污水汽提塔冷热进料比1:5,冷进料温度控制33℃,热进料温度控制155℃,分离得到高纯度的硫化氢气体。
S3、污水汽提塔侧线合适位置抽出大量富氨气及水蒸气,经第一次分离的冷凝罐进行高温分水,得到粗氨气。控制侧线抽出比(侧线抽出量/加工量)8.5%,第一次分离的冷凝罐前温度122℃、压力控制0.35MPa,分离得到高浓度粗氨气。
S4、将步骤S3分离得到的高浓度粗氨气,经第二次分离的冷凝罐低温固硫得到进一步精制的氨气。控制第二次分离的冷凝罐前温度90℃、压力0.25MPa。
S5将步骤S4精制得到的氨气经第三次分离的冷凝罐深度固硫,得到低硫含量的高浓度氨气。控制第三次分离的冷凝罐前温度40℃,压力0.2MPa。
实施例5
本实施例提供的污水单塔汽提工艺,具体包括以下步骤:
S1、将蒸汽直接改进污水汽提塔釜,控制污水汽提塔底温度140℃。
S2、调整控制污水汽提塔顶温度30℃、压力0.42MPa、汽提塔上部8层塔盘(灵敏板)温度120℃,控制污水汽提塔冷热进料比1:6,冷进料温度控制30℃,热进料温度控制148℃,分离得到高纯度的硫化氢气体。
S3、污水汽提塔侧线合适位置抽出大量富氨气及水蒸气,经第一次分离的冷凝罐进行高温分水,得到粗氨气。控制侧线抽出比(侧线抽出量/加工量)10%,第一次分离的冷凝罐前温度122℃、压力控制0.42MPa,分离得到高浓度粗氨气。
S4、将步骤S3分离得到的高浓度粗氨气,经第二次分离的冷凝罐低温固硫得到进一步精制的氨气。控制第二次分离的冷凝罐前温度90℃、压力0.2MPa。
S5将步骤S4精制得到的氨气经第三次分离的冷凝罐深度固硫,得到低硫含量的高浓度氨气。控制第三次分离的冷凝罐前温度50℃,压力0.2MPa。
实施例1至5中的氨水浓度及氨水中硫化物含量见表1所示:
表1氨水浓度及氨水中硫化物含量
名称 氨水浓度(%) 氨水硫化物(mg/L)
实施例1 23.5% 1679
实施例2 23.3% 1438
实施例3 23.6% 1513
实施例4 23.3% 2068
实施例5 23.7% 3564
第三次分离的冷凝罐前的温度变化对精制氨气中硫化氢的固硫效果影响较大,温度越低固硫效果越好。但是越低的温度预示着污水汽提装置能耗成本的增加,第三次分离的温度控制35-40℃之间可很好的控制氨水中的硫化物含量<2000mg/L。
实施例6
采用的制备方法与实施例基本相同,区别在由再沸器加热替换塔釜加热方式,其蒸汽单耗见表2:
Figure BDA0003746066520000061
Figure BDA0003746066520000071
采用蒸汽直接改进污水汽提塔釜,可节省约35%的蒸汽能耗,缓解污水汽提装置耗能需求大的问题,有助于提升污水汽提装置经济效益。
以上所述,仅是本申请的实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (6)

1.一种污水单塔汽提工艺,其特征在于,包括以下步骤:
S1、将蒸汽管路与污水汽提塔釜连接,蒸汽直接参与污水离子组分汽提分离过程;
S2、控制污水汽提塔顶温度30-60℃、压力0.4-0.6MPa、汽提塔上部8层塔盘温度110-130℃;
S3、控制侧线抽出比8%-10%,侧线抽出的气体第一次分离前温度控制110-140℃、第一次分离的冷凝罐压力控制0.3-0.45MPa,分离得到粗氨气;
S4、步骤S3得到的粗氨气在第二次分离前温度控制80-100℃、第二次分离的冷凝罐压力控制0.2-0.35Mpa,分离得到精制氨气;
S5、步骤S4得到的精制氨气在第三次分离前温度控制20-50℃,第三次分离的冷凝罐压力控制0.15-0.25MPa,经过深度固硫,控制氨气中的硫化物含量<2000mg/L,得到低硫含量的高浓度氨气;
S6、汽提塔顶抽出高纯度的硫化氢。
2.根据权利要求1所述的污水单塔汽提工艺,其特征在于,步骤S2中,控制污水汽提塔底温度为140-160℃。
3.根据权利要求1所述的污水单塔汽提工艺,其特征在于,污水汽提塔的进料由冷进料和热进料两路组成,其中热进料的进料口位于污水汽提塔的侧线抽出口的上方,冷进料的进料口位于污水汽提塔的塔顶,且污水汽提塔冷热进料比1:4-1:7,冷进料温度控制30-40℃,热进料温度控制145-160℃。
4.根据权利要求3所述的污水单塔汽提工艺,其特征在于,热进料经过第二次分离的冷凝器、第一次分离的冷凝器、净化水-酸性水换热器分别进行换热后进入污水汽提塔。
5.根据权利要求1所述的污水单塔汽提工艺,其特征在于,所述污水汽提塔的侧线抽出口位于汽提塔上部8层塔盘范围内。
6.根据权利要求1所述的污水单塔汽提工艺,其特征在于,步骤S3中的侧线抽出比为侧线抽出的汽体量与进料量的比值。
CN202210832561.2A 2022-07-14 2022-07-14 一种污水单塔汽提工艺 Pending CN115259258A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210832561.2A CN115259258A (zh) 2022-07-14 2022-07-14 一种污水单塔汽提工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210832561.2A CN115259258A (zh) 2022-07-14 2022-07-14 一种污水单塔汽提工艺

Publications (1)

Publication Number Publication Date
CN115259258A true CN115259258A (zh) 2022-11-01

Family

ID=83764688

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210832561.2A Pending CN115259258A (zh) 2022-07-14 2022-07-14 一种污水单塔汽提工艺

Country Status (1)

Country Link
CN (1) CN115259258A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101024526A (zh) * 2007-02-05 2007-08-29 中国石油化工集团公司 一种处理含硫化氢和氨酸性污水的工艺
CN101597092A (zh) * 2009-01-09 2009-12-09 华南理工大学 单塔注碱加压汽提处理煤气化污水的方法
CN105036443A (zh) * 2015-08-07 2015-11-11 华南理工大学 回收蒸汽凝液热量的单塔汽提处理酚氨废水的方法及装置
CN106082379A (zh) * 2016-07-27 2016-11-09 青岛科技大学 汽提含酸含氨化工废水的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101024526A (zh) * 2007-02-05 2007-08-29 中国石油化工集团公司 一种处理含硫化氢和氨酸性污水的工艺
CN101597092A (zh) * 2009-01-09 2009-12-09 华南理工大学 单塔注碱加压汽提处理煤气化污水的方法
CN105036443A (zh) * 2015-08-07 2015-11-11 华南理工大学 回收蒸汽凝液热量的单塔汽提处理酚氨废水的方法及装置
CN106082379A (zh) * 2016-07-27 2016-11-09 青岛科技大学 汽提含酸含氨化工废水的方法

Similar Documents

Publication Publication Date Title
WO2018090460A1 (zh) 炼油废水生产中不合格液氨的再精制工艺及系统
CN104058538B (zh) 一种废水汽提脱酸脱氨的工艺方法
CN103553260A (zh) 兰炭高浓度含酚废水的协同萃取负压闪蒸脱酚方法
CN106866368B (zh) 基于气提法和真空膜蒸馏法的气田含醇污水甲醇回收装置及工艺
CN104843813A (zh) 一种煤气化高氨氮污水处理工艺
CN105036443A (zh) 回收蒸汽凝液热量的单塔汽提处理酚氨废水的方法及装置
CN104787954A (zh) 一种废水的预处理工艺
CN105152863B (zh) 一种聚酯废水中回收乙二醇和乙醛的方法
CN114031580A (zh) 一种低能耗pbat副产四氢呋喃的精制装置及精制方法
CN104843816A (zh) 一种热泵闪蒸汽提脱氨联产硫酸铵及氨水的方法
CN112142618A (zh) 一种低浓度二甲基甲酰胺废水回收系统及方法
CN103466873A (zh) 一种处理含高浓度酚、氨污水的方法
CN105417605A (zh) 直接蒸汽加热的煤化工废水汽提脱酸脱氨塔及处理工艺
CN206318814U (zh) 煤气化灰水的高效除杂系统
CN203307083U (zh) 一种利用荒煤气余热为热源的负压蒸氨设备
CN115259258A (zh) 一种污水单塔汽提工艺
CN111821821A (zh) 一种甲醇生产中杂醇油循环利用装置及方法
CN218262037U (zh) 一种煤制氢灰水汽提降低氨氮的装置
CN109578973B (zh) 除氧器系统及工作方法
CN217163255U (zh) 一种用于n-甲基苯胺生产中甲醇回收的精馏设备
CN215440045U (zh) 一种高浓酚氨废水双塔节能处理系统
CN213433047U (zh) 一种变换酸水处理的单塔开式汽提装置
CN204111354U (zh) 一种酸性水减压汽提装置
CN105217654B (zh) 一种烷基化废硫酸资源化处理装置及方法
CN101519231A (zh) 一种甲醇精馏工段高cod废水处理的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination