CN115254158B - 一种纳米团簇金属磷化物-磷-碳催化剂及其制备和应用 - Google Patents

一种纳米团簇金属磷化物-磷-碳催化剂及其制备和应用 Download PDF

Info

Publication number
CN115254158B
CN115254158B CN202211003761.3A CN202211003761A CN115254158B CN 115254158 B CN115254158 B CN 115254158B CN 202211003761 A CN202211003761 A CN 202211003761A CN 115254158 B CN115254158 B CN 115254158B
Authority
CN
China
Prior art keywords
carbon
phosphorus
catalyst
metal phosphide
hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211003761.3A
Other languages
English (en)
Other versions
CN115254158A (zh
Inventor
李福伟
聂超
高广
刘琪
孙鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN202211003761.3A priority Critical patent/CN115254158B/zh
Publication of CN115254158A publication Critical patent/CN115254158A/zh
Application granted granted Critical
Publication of CN115254158B publication Critical patent/CN115254158B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1856Phosphorus; Compounds thereof with iron group metals or platinum group metals with platinum group metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/24Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds
    • C07C209/26Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds by reduction with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • C07C209/365Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst by reduction with preservation of halogen-atoms in compounds containing nitro groups and halogen atoms bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/04Formation of amino groups in compounds containing carboxyl groups
    • C07C227/06Formation of amino groups in compounds containing carboxyl groups by addition or substitution reactions, without increasing the number of carbon atoms in the carbon skeleton of the acid
    • C07C227/08Formation of amino groups in compounds containing carboxyl groups by addition or substitution reactions, without increasing the number of carbon atoms in the carbon skeleton of the acid by reaction of ammonia or amines with acids containing functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/08Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds
    • C07C5/09Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds to carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/14Phosphorus; Compounds thereof
    • C07C2527/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种纳米团簇金属磷化物‑磷‑碳催化剂,是将磷‑碳载体分散于加氢金属盐溶液中,混合均匀后在搅拌下反应0.5~24h,反应结束后于30~100℃下蒸干溶剂,于50~00℃下干燥;然后在氢气气氛下,于200~1200℃还原碳化处理1~24h,获得纳米团簇金属磷化物‑磷‑碳催化剂。本发明制备催化剂的方法,催化剂制备、催化剂再生、成本低、操作方法简易且普适性好;制备的催化剂加氢能力强,对多种有机化合物的不饱和键可实现全加氢和选择性加氢,适用于进行工业化生产。

Description

一种纳米团簇金属磷化物-磷-碳催化剂及其制备和应用
技术领域
本发明属于催化剂制备技术领域,具体涉及纳米团簇金属磷化物-磷-碳催化剂及其制备与应用。
背景技术
金属磷化物是一种既有半导体性质又拥有金属性质的一类特殊化合物。金属磷化物因具有独特的物理及化学特性而成为一类较有发展前景的电解水制氢/催化加氢/催化氢甲酰化/的催化剂。金属磷化物中,由于非金属磷的电负性大于金属,金属的电子会有一部分转移到P,使其更负而成为质子接受中心,而金属是氢化物接受中心,P会有利于H在过渡金属磷化物的表面吸附-脱附,从而使过渡金属磷化物在析氢过程中具有良好的催化活。由于使用不同磷源和反应方式不同,因此,过渡金属磷化物的制备方法主要有气-固反应法、热解还原法、液相反应法和电沉积法。通过调控温度、浓度、磷源的种类等条件来制备不同尺寸、晶型、结构的磷化物。
纳米团簇是尺寸小于2 nm,介于单原子和纳米颗粒之间的一类催化剂,通常是由几个到几百个原子组成。特殊的电子和几何结构、高密度的活性位点以及不同晶面暴露等特点,促使纳米团簇表现出独特的催化性能。与此同时,纳米团簇精确的结构便于探究催化性能与材料结构之间的构效关系。然而,纳米团簇的催化活性通常取决于金属成核的尺寸,但可控合成不同尺寸尤其是超小的纳米团簇非常困难,是目前该领域存在的研究难点。因此,无论是从应用还是基础研究的角度看,发展一种纳米团簇金属磷化物-磷-碳催化剂技术都具有很强的必要性和急迫性。
发明内容
本发明的目的是提供了一种纳米团簇金属磷化物-磷-碳催化剂的制备方法。
本发明的另一目的在于提供上述制备的纳米团簇金属磷化物-磷-碳催化剂在加氢反应中的应用。
一、纳米金属磷化物-磷-碳催化剂的制备
本发明一种纳米金属磷化物-磷-碳催化剂的制备方法,包括以下步骤:
(1)磷-碳的制备:将磷源分散于溶剂中,加入碳源,在20~80℃搅拌0.5~24h,在50~120℃蒸干溶剂,50~120℃下干燥,然后在保护性气氛下,于200~1200℃煅烧5~24h,得到磷-碳。
所述溶剂为水、甲醇、乙醇、丙醇、1,4-二氧六环、四氢呋喃、乙酸乙酯甲基叔丁基醚、丙酮;磷源为磷酸、磷酸的铵盐、葡萄糖磷酸、葡萄糖酸的铵盐、植酸、植酸的铵盐、三苯基膦、三苯基膦衍生物,碳源为活性碳、石墨烯、碳纳米管、碳球、微孔碳、介孔碳、大孔碳、多级孔碳中的至少一种,磷源和碳源的质量比为1:5~1:100。
(2)金属磷化物-磷-碳催化剂得制备:将磷-碳载体分散于加氢金属盐溶液中,混合均匀后在搅拌下反应0.5~24h,反应结束后于30~100℃下蒸干溶剂,于50~00℃下干燥;然后在氢气气氛下,于200~1200℃还原碳化处理1~24h,获得纳米团簇金属磷化物-磷-碳催化剂。
所述加氢金属盐溶液中,加氢金属为钌、铂、钴、镍、铱、金、铜、钯、银、铁、锌和铑中的至少一种,溶剂为水、醇类溶剂、醚类溶剂、烃类溶剂中的任意一种或两种以上的组合。其中醇类溶剂为甲醇、乙醇、丙醇、异丙醇、丁醇、异丁醇、叔丁醇、乙二醇和甘油中任意一种;醚类溶剂为四氢呋喃、乙醚、1,4-二氧六环、二苯醚和叔丁醇甲醚中的任意一种;烃类溶剂为戊烷、己烷、苯、甲苯、石油醚、二氯甲烷和三氯甲烷中的任意一种。加氢金属盐溶液中,加氢金属盐的浓度为0.001~1.0mol/L。
所述制备的纳米团簇金属磷化物-磷-碳催化剂中,碳为载体,加氢金属为催化活性组分,磷为协同催化元素。且催化活性组分加氢金属分布于磷-碳载体上。
所述制备的纳米团簇金属磷化物-磷-碳催化剂中,协同催化元素磷的含量为0.01~40wt%;加氢金属的含量为0.001~20wt.%。
电镜图片显示,本发明制备的纳米团簇金属磷化物-磷-碳催化剂中,金属磷化物的粒径在2纳米以下,是纳米团簇金属磷化物。
纳米团簇金属磷化物-磷-碳催化剂形成的机理:首先是载体磷-碳中的磷和氢气作用形成活性更高的磷-氢物种,磷-氢物种进一步与催化剂上面的金属作用,形成金属磷化物。由于载体上面有一定量的磷的存在,使得形成的金属磷化物不会发生大量团聚,保证其以纳米团簇的形式稳定存在。
二、纳米团簇金属磷化物-磷-碳催化剂的应用
纳米团簇金属磷化物-磷-碳在氢化合成不饱和化合物中的应用,是在还原性气体中,将不饱和化合物溶液连续输入设置有所述纳米团簇金属磷化物-磷-碳催化剂的连续管式反应器中,或者将不饱和化合物、所述纳米团簇金属磷化物-磷-碳催化剂和溶剂加入间歇式反应釜中,在压力0.1~30MPa,温度为20~300℃下反应,制得不饱和化合物的加氢产物。
所述不饱和化合物所含有的官能团为碳氧双键、碳碳双键、碳氮双键、碳碳三键和硝基中的至少一种。优选亚胺类化合物、含碳碳三键类化合物。
所述还原性气体为氢气、含氢气的混合气体。优选纯氢气。
所述溶剂包括水、醇类溶剂、醚类溶剂、烃类溶剂中的任意一种或两种以上的组合。
综上所述,本发明制备催化剂的方法,成本低、操作方法简易且普适性好;制备的催化剂加氢能力强,对多种有机化合物的不饱和键可实现全加氢和选择性加氢,适用于进行工业化生产。
附图说明
图1是本发明实施例2制备的催化剂的TEM图。
图2是本发明实施例6制备的催化剂的TEM图。
图3是本发明实施例7制备的催化剂的TEM图。
具体实施方式
下面所用的实施例中所采用的实验材料,如无特殊说明,均可由常规的生化试剂公司购买得到。
实施例1、纳米团簇磷化钴/磷-活性碳催化剂制备
将0.5g磷酸溶于水中,在加入3g活性碳,在20℃,搅拌24h,50℃蒸干溶剂,50℃下干燥,之后在保护性气氛下于200℃煅烧24h,得到磷-活性炭粉末。
将5g磷-活性碳粉末分散于0.05mol/L硝酸钴水溶液中,充分搅拌12h,90℃蒸干水溶液,于空气中80℃再干燥12h,之后于氢气气氛中,600℃碳化12h,得到目标催化剂。
称取实施例1制备的催化剂0.1g、对醛基苯甲酸20mmolg、氨水15ml、水20ml加入高压反应釜中,通入高纯氢气置换3次气体后,充氢气至3.0MPa,升温到100℃,反应5h,反应结束后,快速冷却至室温,然后将反应液进行离心分离,取上层清液对反应体系进行定量计算。经HPLC检测表征,4-(氨甲基)苯甲酸的产率为98%。
实施例2、纳米团簇磷化钌/磷-活性碳催化剂制备
将10g蔗糖加入100ml 0.01mol/L植酸混合溶液中,充分搅拌20h,进行干燥,于空气中160℃煅烧10h,之后于氮气中800℃碳10h,得到磷-活性炭。
将5g磷-活性碳粉末分散于0.05mol/L氯化钌乙醇溶液中,充分搅拌0.5h,30℃蒸干乙醇溶液,于空气中50℃再干燥24h,之后于氢气气氛中,200℃碳化24h,得到目标催化剂。所得催化剂电镜照片如图1,由电镜照片可以得出,所形成的的磷化钌的粒径在2纳米以下,是纳米团簇磷化钌。
称取实施例2制备的催化剂0.5g、苯酐20mmol、四氢呋喃40ml加入高压反应釜中,通入高纯氢气置换3次气体后,充氢气至4MPa,升温到150℃,反应5h,反应结束后,快速冷却至室温,然后将反应液进行离心分离,对反应液进行色谱分析,反应液采用agilent6980气相色谱配备SE-54毛细管柱,苯酞的产率为91%。
称取实施例2制备的催化剂0.1g、己烷30ml加入高压反应釜中,通入乙炔30%和70%氢气混合气置换3次气体后,充气至3.0MPa,升温到100℃,反应10h,反应结束后,快速冷却至室温,收集气体成分进行GC分析,然后将反应液进行离心分离,对反应液进行色谱分析,反应液采用agilent6980气相色谱配备SE-54毛细管柱,乙烯的产率为92%。
实施例3、纳米团簇磷化钯/磷-介孔碳催化剂制备
将2g纳米二氧化硅粉末和10g果糖,加入200ml 0.01mol/L植酸溶液中,充分搅拌20h,进行干燥,于空气中160℃煅烧10h,之后于氮气中800℃碳10h,得到含模板的催化剂,将该含模板的催化剂加入4mol/L的氢氟酸溶液中,80℃下搅至室温,用水洗至PH=7,得到磷-介孔碳。
将5g磷-介孔碳粉末分散于0.05mol/L乙酸钯乙醇溶液中,充分搅拌24h,60℃蒸干乙醇溶液,于空气中80℃再干燥12h,之后于氢气气氛中,1200℃碳化1h,得到目标催化剂。
称取实施例3制备的催化剂0.1g、苯酞20mmol、乙醇15ml、水15ml加入高压反应釜中,通入高纯氢气置换3次气体后,充氢气至5.0MPa,升温到120℃,反应10h,反应结束后,快速冷却至室温,然后将反应液进行离心分离对反应液进行色谱分析,反应液采用agilent6980气相色谱配备SE-54毛细管柱,六氢苯酞的产率为95%。
称取实施例3制备的催化剂5.0g(20-60目)、装入固定床的反应管中,充通入乙炔20%和80%氢气混合气至2.0MPa,升温到110℃,50ml/min通入混合气,尾气进行GC分析,乙烯的产率为91%。
实施例4、纳米团簇磷化铑/磷-活性碳催化剂制备
将1g植酸溶于水中,在加入5g活性碳,在80℃,搅拌0.5h,100℃蒸干溶剂,120℃下干燥,之后在保护性气氛下于1200℃煅烧5h,得到目标磷-活性碳。
将5g磷-活性碳粉末分散于0.05mol/L氯化铑异丁醇醇溶液中,充分搅拌12h,90℃蒸干异丁醇溶液,于空气中100℃再干燥12h,之后于氢气气氛中,500℃碳化5h,得到目标催化剂。
称取实施例4制备的催化剂2.0g(20-60目)、装入固定床的反应管中,充通入乙烯10%和90%氢气混合气至4.0MPa,升温到80℃,40ml/min通入混合气,尾气进行GC分析,乙烷的产率为95%。
实施例5、纳米团簇磷化钌/磷-多级孔碳催化剂制备
将2g纳米二氧化硅溶胶,5g葡萄糖,5g果糖,加入150ml 0.01mol/L植酸混合溶液中,充分搅拌20h,进行干燥,于空气中160℃煅烧10h,之后于氮气中800℃碳12h,得到含模板的催化剂,将该含模板的催化剂加入4mol/L的盐酸溶液中,80℃下搅拌反应24h,冷至室温,用水洗至PH=7,得到磷-多级孔碳。
将5g磷-多级孔碳粉末分散于0.05mol/L硝酸锌水溶液中,充分搅拌10h,80℃蒸干溶液,于空气中80℃再干燥20h,之后于氢气气氛中,700℃碳化3h,得到目标催化剂。
称取实施例5制备的催化剂0.1g、苯甲醛20mmol、(R)-(+)-1-苯基乙胺22mmol、乙醇40ml加入高压反应釜中,通入高纯氢气置换3次气体后,充氢气至30.0MPa,升温到20℃,反应20h,反应结束后,快速冷却至室温,然后将反应液进行离心分离,对反应液进行色谱分析,反应液采用agilent6980气相色谱配备SE-54毛细管柱,(S)-(-)-N-苄基-α-甲基苄胺的产率为88%。
实施例6、纳米团簇磷化铁/磷-活性碳催化剂制备
将10g蔗糖加入300ml 0.01mol/L三苯基膦溶液中,充分搅拌20h,进行干燥,于空气中160℃煅烧10h,之后于氮气中700℃碳12h,得到含模板的催化剂,将该含模板的催化剂加入4mol/L的盐酸溶液中,80℃下搅拌反应24h,冷至室温,用水洗至PH=7,得到磷-活性碳。
将5g磷-活性碳粉末分散于0.05mol/L硝酸锌水溶液中,充分搅拌10h,80℃蒸干溶液,于空气中80℃再干燥20h,之后于氢气气氛中,500℃碳化3h,得到目标催化剂。所得催化剂电镜照片如图2,由电镜照片可以得出,所形成的磷化钌的粒径在2纳米以下,是纳米团簇磷化铁。
称取实施例6制备的催化剂0.5g、1-己炔20mmol、四氢呋喃30ml加入高压反应釜中,通入高纯氢气置换3次气体后,充氢气至3.0MPa,升温到80℃,反应10h,反应结束后,快速冷却至室温,然后将反应液进行离心分离,对反应液进行色谱分析,反应液采用agilent6980气相色谱配备SE-54毛细管柱,1-己烯的产率为95%。
实施例7、纳米团簇磷化铂/磷-活性炭催化剂制备
将10g果糖加入100ml 0.01mol/L植酸溶液中,充分搅拌24h,进行干燥,于空气中80℃煅烧12h,之后于氮气中200℃碳24h,得到含模板的催化剂,将该含模板的催化剂加入4mol/L的氢氧化钠溶液中,80℃下搅拌反应10h,冷至室温,用水洗至PH=7,得到磷-活性碳。
5g磷-活性碳粉末分散于0.05mol/L氯铂酸水溶液中,充分搅拌5h,80℃蒸干溶液,于空气中80℃再干燥20h,之后于氢气气氛中,600℃碳化4h,得到目标催化剂,所得催化剂电镜照片如图3,由电镜照片可以得出,所形成的的磷化钌的粒径在2纳米以下,是纳米团簇磷化铂。
称取实施例7制备的催化剂0.5g、二苯乙炔20mmolg、甲苯30ml加入高压反应釜中,通入高纯氢气置换3次气体后,充氢气至3.0MPa,升温到140℃,反应10h,反应结束后,快速冷却至室温,然后将反应液进行离心分离,对反应液进行色谱分析,反应液采用agilent6980气相色谱配备SE-54毛细管柱,二苯乙烯的产率为98%。
实施例8、纳米团簇磷化钌/磷-石墨烯催化剂制备
将1g磷酸氢铵溶于水中,再加入5g石墨烯,在50℃搅拌12h,80℃蒸干溶剂80℃下干燥,之后在保护性气氛下于600℃煅烧12h,得到目标磷-石墨烯。
将5g磷-石墨烯粉末分散于0.05mol/L氯化钌水溶液中,充分搅拌5h,80℃蒸干溶液,于空气中80℃再干燥12h,之后于氢气气氛中,500℃碳化4h,得到目标催化剂。
称取实施例8制备的催化剂1.0g和二氧化硅2.0均匀混合后、压片制备出40-60目的催化剂颗粒、装入固定床反应管内、充入3.0MPa的氢气,氢气流速50ml/min,升温至110℃,将对氯硝基苯200g溶于1000ml的甲苯溶剂中,利用高压注射泵连续向反应器中注入,空速30g/g.h,在装置的储液罐收集反应液,对反应液进行色谱分析,反应液采用agilent6980气相色谱配备SE-54毛细管柱,对氯苯胺的收率97%。

Claims (7)

1.一种纳米金属磷化物-磷-碳催化剂的制备方法,包括以下步骤:
(1)磷-碳的制备:将磷源分散于溶剂中,加入碳源,在20~80℃搅拌0.5~24h,在50~120℃蒸干溶剂,50~120℃下干燥,然后在保护性气氛下,于200~1200℃煅烧5~24h,得到磷-碳;其中,磷源为磷酸、磷酸的铵盐、葡萄糖磷酸、葡萄糖酸的铵盐、植酸、植酸的铵盐、三苯基膦、三苯基膦衍生物;碳源为活性碳、石墨烯、碳纳米管、碳球、微孔碳、介孔碳、大孔碳、多级孔碳中的至少一种;且磷源和碳源的质量比为1:5~1:100;
(2)金属磷化物-磷-碳催化剂的制备:将磷-碳分散于加氢金属盐溶液中,混合均匀后在搅拌下反应0.5~24h,反应结束后于30~100℃下蒸干溶剂,于50~00℃下干燥;然后在氢气气氛下,于200~1200℃还原碳化处理1~24h,获得纳米团簇金属磷化物-磷-碳催化剂;所述加氢金属盐溶液中,加氢金属为钌、铂、钴、镍、铱、金、铜、钯、银、铁、锌和铑中的至少一种。
2.如权利要求1所述一种纳米金属磷化物-磷-碳催化剂的制备方法,其特征在于:步骤(2)中,所述加氢金属盐溶液中,加氢金属盐的浓度为0.001~1.0mol/L。
3.如权利要求1所述一种纳米金属磷化物-磷-碳催化剂的制备方法,其特征在于:所述步骤(2)中,溶剂为水、醇类溶剂、醚类溶剂、烃类溶剂。
4.如权利要求3所述一种纳米金属磷化物-磷-碳催化剂的制备方法,其特征在于:所述醇类溶剂为甲醇、乙醇、丙醇、异丙醇、丁醇、异丁醇、叔丁醇、乙二醇和甘油中任意一种;醚类溶剂为四氢呋喃、乙醚、1,4-二氧六环、二苯醚和叔丁醇甲醚中的任意一种;烃类溶剂为戊烷、己烷、苯、甲苯、石油醚、二氯甲烷和三氯甲烷中的任意一种。
5.如权利要求1所述一种纳米金属磷化物-磷-碳催化剂的制备方法,其特征在于:所制备的纳米团簇金属磷化物-磷-碳催化剂中,磷元素的含量为0.01~40wt%;加氢金属的含量为0.001~20wt.%。
6.如权利要求1所述方法制备的纳米金属磷化物-磷-碳催化剂在氢化合成不饱和化合物中的应用,是在还原性气体中,将不饱和化合物溶液连续输入设置有所述纳米团簇金属磷化物-磷-碳催化剂的连续管式反应器中,或者将不饱和化合物、所述纳米团簇金属磷化物-磷-碳催化剂和溶剂加入间歇式反应釜中,在压力0.1~30MPa,温度为20~300℃下反应,制得不饱和化合物的加氢产物。
7.如权利要求6所述纳米金属磷化物-磷-碳催化剂在不饱和化合物加氢反应中的应用,其特征在于:所述不饱和化合物所含有的官能团为碳氧双键、碳碳双键、碳氮双键、碳碳三键和硝基中的至少一种。
CN202211003761.3A 2022-08-22 2022-08-22 一种纳米团簇金属磷化物-磷-碳催化剂及其制备和应用 Active CN115254158B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211003761.3A CN115254158B (zh) 2022-08-22 2022-08-22 一种纳米团簇金属磷化物-磷-碳催化剂及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211003761.3A CN115254158B (zh) 2022-08-22 2022-08-22 一种纳米团簇金属磷化物-磷-碳催化剂及其制备和应用

Publications (2)

Publication Number Publication Date
CN115254158A CN115254158A (zh) 2022-11-01
CN115254158B true CN115254158B (zh) 2023-12-22

Family

ID=83753125

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211003761.3A Active CN115254158B (zh) 2022-08-22 2022-08-22 一种纳米团簇金属磷化物-磷-碳催化剂及其制备和应用

Country Status (1)

Country Link
CN (1) CN115254158B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462651A (en) * 1994-08-09 1995-10-31 Texaco Inc. Hydrodearomatization of hydrocarbon oils using novel "phosphorus treated carbon" supported metal sulfide catalysts
JP2003024791A (ja) * 2001-07-12 2003-01-28 Asahi Kasei Corp カルボン酸直接水素添加用触媒
CN109865524A (zh) * 2017-12-05 2019-06-11 中国科学院大连化学物理研究所 一种碳支撑过渡金属磷化物产氢电催化剂及其制备方法
CN110639567A (zh) * 2019-10-10 2020-01-03 浙江工业大学 一种碳负载磷化二钌纳米团簇双功能催化剂及其制备方法和应用
CN110813337A (zh) * 2019-12-02 2020-02-21 中国科学院兰州化学物理研究所 一种金属-磷-碳多级孔催化剂及其制备方法与应用
CN111617785A (zh) * 2020-07-09 2020-09-04 北京化工大学 一种负载型钌基磷化物催化剂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462651A (en) * 1994-08-09 1995-10-31 Texaco Inc. Hydrodearomatization of hydrocarbon oils using novel "phosphorus treated carbon" supported metal sulfide catalysts
JP2003024791A (ja) * 2001-07-12 2003-01-28 Asahi Kasei Corp カルボン酸直接水素添加用触媒
CN109865524A (zh) * 2017-12-05 2019-06-11 中国科学院大连化学物理研究所 一种碳支撑过渡金属磷化物产氢电催化剂及其制备方法
CN110639567A (zh) * 2019-10-10 2020-01-03 浙江工业大学 一种碳负载磷化二钌纳米团簇双功能催化剂及其制备方法和应用
CN110813337A (zh) * 2019-12-02 2020-02-21 中国科学院兰州化学物理研究所 一种金属-磷-碳多级孔催化剂及其制备方法与应用
CN111617785A (zh) * 2020-07-09 2020-09-04 北京化工大学 一种负载型钌基磷化物催化剂及其制备方法

Also Published As

Publication number Publication date
CN115254158A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
US20240226854A1 (en) Method for manufacturing ammonia synthesis catalyst, and method for manufacturing ammonia
He et al. Highly selective hydrogenation of phenol to cyclohexanol over nano silica supported Ni catalysts in aqueous medium
CN110813337B (zh) 一种金属-磷-碳多级孔催化剂及其制备方法与应用
Wei et al. Solid-state nanocasting synthesis of ordered mesoporous CoN x–carbon catalysts for highly efficient hydrogenation of nitro compounds
Li et al. Ru nanoparticles supported on nitrogen-doped porous carbon derived from ZIF-8 as an efficient catalyst for the selective hydrogenation of p-chloronitrobenzene and p-bromonitrobenzene
Lin et al. A new trick on an old support: Zr in situ defects-created carbon nitride for efficient electrochemical nitrogen fixation
CN115282956A (zh) 一种二氧化钛负载钌金属催化剂及其制备方法和应用
Li et al. Platinum clusters anchored on sulfur-doped ordered mesoporous carbon for chemoselective hydrogenation of halogenated nitroarenes
Duan et al. Highly efficient hydrogen evolution from formic acid using B, N co-doped carbon-supported Pd nanoparticles
Liu et al. In-situ facile synthesis novel N-doped thin graphene layer encapsulated Pd@ N/C catalyst for semi-hydrogenation of alkynes
Li et al. Mesoporous α-Al2O3-supported PdCu bimetallic nanoparticle catalyst for the selective semi-hydrogenation of alkynes
CN115254158B (zh) 一种纳米团簇金属磷化物-磷-碳催化剂及其制备和应用
Zhang et al. Fabrication of Pd@ N-doped porous carbon-TiO 2 as a highly efficient catalyst for the selective hydrogenation of phenol to cyclohexanone in water
CN113304760A (zh) 一种高分散铂基催化剂及其制备方法和应用
CN115301271B (zh) 一种铜钴合金催化剂及其制备方法与应用
CN114849753B (zh) 一种钯金属团簇催化剂的制备方法及应用
Ding et al. Bimetallic RhIn/ZIF-8 for the catalyic chemoselective hydrogenation of nitrostyrene: Exploration of natural selectivity of hydrogen sources and enhancing intrinsic selectivity
Yue et al. Mild-temperature hydrogenation of carbonyls over Co-ZIF-9 derived Co-ZIF-x nanoparticle catalyst
Chen et al. Environmentally-friendly preparation of natural hollow carbon spheres derived from a biomass puffball for in situ upgrading of lignin-derived vanillin
Zhan et al. Ultrafine PdCo bimetallic nanoclusters confined in N-doped porous carbon for the efficient semi-hydrogenation of alkynes
Wang et al. A well-fabricated Ru@ C material derived from Ru/Zn-MOF with high activity and stability in the hydrogenation of 4-chloronitrobenzene
CN112237913B (zh) 钯系负载型加氢催化剂的制备方法及其催化剂
Xu et al. Fabrication of Pd NPs/Mg–Al LDH via a facile one-step hydrothermal method as highly active and stable heterogeneous catalyst for Heck coupling reaction
Wang et al. Nitrogen-Doped Carbon Supported Co/Ni Bimetallic Catalyst for Selectively Reductive N-Formylation of Nitroso in Guanine Synthesis
Hu et al. Selective phenol hydrogenation to cyclohexanone over Pd@ N-doped porous carbon: role of storage under air of recovered catalyst

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant