CN115246736A - 用于vuhf天线应用的镍锌铜铁氧体 - Google Patents

用于vuhf天线应用的镍锌铜铁氧体 Download PDF

Info

Publication number
CN115246736A
CN115246736A CN202210461156.4A CN202210461156A CN115246736A CN 115246736 A CN115246736 A CN 115246736A CN 202210461156 A CN202210461156 A CN 202210461156A CN 115246736 A CN115246736 A CN 115246736A
Authority
CN
China
Prior art keywords
composition
solid material
vhf
mhz
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210461156.4A
Other languages
English (en)
Inventor
R·乌尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Exelia
Original Assignee
Exelia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exelia filed Critical Exelia
Publication of CN115246736A publication Critical patent/CN115246736A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2666Other ferrites containing nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • C04B2235/3277Co3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/763Spinel structure AB2O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)

Abstract

本发明涉及一种用于VUHF天线应用的镍锌铜铁氧体。具体涉及一种特别适用于制造天线的组合物和固体材料,该天线适于非常高频(VHF)带以及超高频(UHF)带或V/UHF中操作,以及制造方法及其用途。该组合物具有式NiaZnbCucCodFe2‑δO4,其中:2(a+b+c+d)+3(2‑δ)=80.05<b<0.5,例如0.1<b<0.5,例如0.1<b<0.4,例如0.15<b<0.350.10<c<0.25,优选0.15<c<0.25,或者c为0.20,0.04<d<0.25,优选0.06<d<0.25,更优选为0.07<d<0.25,和δ<0.05。

Description

用于VUHF天线应用的镍锌铜铁氧体
技术领域
本发明涉及一种特别适用于制造天线的组合物和固体材料,该天线适于在30MHz和300MHz之间的非常高频(VHF)带,以及在300MHz和3GHz之间的超高频(UHF)带,或V/UHF中操作,以及涉及制造方法及其用途。
现有技术
天线的微型性质是一个主要问题,特别是对于低于GHz工作的天线。实际上,天线的尺寸与发送/接收信号的波长成正比,这是VHF/UHF频率的仪表的顺序(VHF:30MHz至300MHz;UHF:300MHz至3000MHz)。如今,通常用于减小天线几何尺寸的策略之一是使用具有高介电常数(ε')的介电材料。然而,使用这种材料导致天线性能的降低(增益,带宽)。
可以通过使用诸如铁氧体的磁性-介电材料来克服这种限制。实际上,使用具有高磁导率(μ')的材料将使减小天线的尺寸成为可能,同时最大化其效率。实际上,尽管ε'对介电损耗和储存能量量具有积极影响,但已经证明:(i)ε'对带宽以及天线效率具有负面影响,以及(ii)μ'具有相反的效果,因此对两个参数产生积极影响。此外,如果天线保持等尺度(iso-dimensional),则这种材料将提高其性能(M.A.C Niamien,S.Collardey,A.Sharaiha,K.Mahdjoubi,"Compact Expressions for Efficiency and Bandwidth ofPatch Antennas Over Lossy Magneto-Dielectric Materials,"IEEE antennas andwireless propaga.letters,10(2011)63-66)。
久已周知,向铁氧体特别是镍-锌铁氧体添加低浓度的钴,可以对化合物的磁损耗具有积极影响。一例子是Lau和Stuijts的研究(J.G.MLau和A.L.Stuijts,ChemicalComposition and High-Frequency Properties of Ni-Zn-Co Ferrites,PhilipsRes.Repts,21(1966)104-112)104-112),其介绍了在(Ni0.8Zn0.2)0.97-XCo0.03Fe2O4+γ晶体结构中的钴离子行为的机理。有大量研究专注于钴替代的镍锌铁氧体。然而,所讨论的组合物不含铜,并且在高频(频率F>100MHz)下的磁损耗方面的表现比本发明中规定低得多。一些组合物在磁导率方面设法表现出稳定的行为。然而,它们具有在太低频率下发生的亚铁磁共振的问题,并且导致磁损耗从约10MHz增加。
有一些实验室级镍-锌的铁氧体材料,具有与本发明类似的性能。例如,Mathur等人的团队在2010年发布的铁氧体组成允许高频使用(P.Mathur,A.Thakur,J.H.Lee,M.Singh,Sustained electromagnetic properties of Ni-Zn-Co nanoferrites for thehigh-frequency applications,Materials Letters,64(2010)2738-2741)。实际上,在10至200MHz的频率范围和约9磁导率μ'下,产生的材料具有低磁损耗(约0.05的损耗正切)。介绍的材料的组成如下:Ni0.49Zn0.49Co0.02Fe2O4。由于钴含量低(0.02mol),作者使用了另一种方法推动共振超过200MHz。它们使用共沉淀方法将化合物合成为约50nm的颗粒,并在较低温度下烧结它们的材料,以避免过量的晶体生长。因此,该材料具有精细的微结构,其允许将磁畴壁的运动动力学改变为排斥共振。共沉淀合成方法与传统的合成方法非常不同。从工业角度来看,它也是昂贵和难以实施的。
Saini等人的团队(A.Saini,A.Thakur,P.Thakur,Matching permeability andpermittivity of Ni0.5Zn0.3Co0.2In0.1Fe1.9O4 ferrite for substrate of largebandwidth miniaturized antenna,J Mater Sci:Mater Electron,27(2016)2816-2823)显示了对组合物Ni0.5Zn0.3Co0.2In0.1Fe1.9O4的兴趣,用于UHF天线的小型化,如果与装载有简单介电材料的天线相比,在带宽中具有增益。该材料通过共沉淀合成,并具有高钴含量(0.2mol)。它具有约5-6的磁导率和直至至少500-600MHz的低磁损耗。
最后,我们还可以提及Brest(法国)的Lab-STICC实验室中进行的工作,该工作专注于通过共沉淀制造磁性-介电材料,其可以满足V/UHF频带的天线要求。已经公布了几种结果,证明了使用共沉淀方法在诸如Ni0.5Zn0.3Co0.2Fe1.98O4-δ的化合物上使用的兴趣,以在高频率下实现低磁损耗,同时保持相对高的磁导率。
镍-锌-铜铁氧体广泛用于电感器。制造商利用了该化合物(<1000℃)的低烧结温度,这是由大程度的铜(通常在0.2和0.25mol)所提供的,以直接与电极或绕组共烧结铁氧体。据报道,当将铜添加到诸如Ni0.8-xZn0.2CuxFe2O4的化合物中时,铜添加存在0.2mol的最佳值(J.J.Shrotri,S.D.Kulkarni,C.E.Deshpande,A.Mitra,S.R.Sainkar,P.S.Anil Kumar,S.K.Date,Effect of Cu substitution on the magnetic and electrical propertiesof Ni-Zn ferrite synthesised by soft chemical method,Materials Chemistry andPhysics,59(1999)1-5)。对于过高(x≥0.3mol)的值,铜形成第二CuO/CuFeO4相,并且材料的性质劣化。
许多研究显示了Ni-Zn-Cu铁氧体具有有趣的高频行为。然而,对于本发明涵盖的应用,所考虑的频率通常太低。这种类型的材料通常具有1至100MHz之间的亚铁磁性共振。另外,共振的发生伴随着磁损耗的增加(由值μ”或tanδμ表示),使得材料不能在超过该共振的频带上用于天线材料。
发明目标
本发明旨在解决提供可用作VHF或V/UHF天线的组合物的技术问题。
特别地,本发明旨在解决提供可用作小型VHF或V/UHF天线的组合物的技术问题。
特别地,本发明旨在解决提供适合在VHF和/或UHF频带上用作(优选小型化的)天线材料的镍-锌-铜铁氧体组合物的技术问题。
特别地,本发明旨在解决提供可用作(优选小型化的)天线的组合物的技术问题,就此共振发生在高于50MHz,优选高于70MHz,优选高于100MHz,或甚至更优选更高的频率下。
特别地,本发明旨在解决提供优选具有磁导率μ'≥5和介电常数ε'≥10的磁性-介电组合物的技术问题,该组合物优选地具有接近介电常数的磁导率。
本发明还旨在解决提供制造这种组合物的方法的技术问题,优选通过研磨/锤击(hammering)制备陶瓷材料的常规工业方法进行制造。
发明内容
发明人已经发现,使用在镍-锌铁氧体组合物中具有高水平钴和高水平铜的本发明组合物解决了上述技术问题中的至少一个,优选所有。
发明人发现,通过增加Ni/Zn之比,使用根据本发明的组合物提供了有利解决上述技术问题的至少一个,优选所有的组合物。
有利地,这种组合物可以通过在式NiaZnbCucCodFe2-δO4合金的铁氧体组合物中引入钴部分替代镍来获得。
本发明涉及式NiaZnbCucCodFe2-δO4的组合物,其中:
2(a+b+c+d)+3(2-δ)=8
0.05<b<0.5,例如0.1<b<0.5,例如0.1<b<0.4。
0.10<c<0.25,优选0.15<c<0.25,或者c为0.20,
0.04<d<0.25,优选0.06<d<0.25,更优选为0.07<d<0.25,和
δ<0.05。
有利地,该组合物是镍锌铜铁氧体,优选具有1至15的Ni/Zn之比。
有利地,该组合物具有尖晶石结构。
本发明涉及一种具有尖晶石结构的镍-锌-铜铁氧体材料,其可用作VUHF频带中的天线材料。
在一个实施方案中,“b”大于或等于0.05。
在一个实施方案中,“b”大于或等于0.1。
在一个实施方案中,“b”小于或等于0.5。
在一个实施方案中,“b”小于或等于0.4。
在一个实施方案中,“b”小于或等于0.35。
有利地,任何所述的下限可以与任何所述的上限组合。
在一个实施方案中,0.05<b<0.5。
在一个实施方案中,0.1<b<0.5。
在一个实施方案中,0.1<b<0.4。
在一个实施方案中,0.15<b<0.35。
在一个实施方案中,“c”大于或等于0.10。
在一个实施方案中,“c”大于或等于0.15。
在一个实施方案中,“c”小于或等于0.25。
有利地,任何所述的下限可以与任何所述的上限组合。
根据一个实施方案,0.10<c<0.25,优选0.15<c<0.25,根据变体c为0.20。
在一个实施方案中,“d”大于或等于0.04。
在一个实施方案中,“d”大于或等于0.05。
在一个实施方案中,“d”大于或等于0.06。
在一个实施方案中,“d”大于或等于0.07。
在一个实施方案中,“d”为0.10。
在一个实施方案中,“d”小于或等于0.25。
有利地,任何所述的下限可以与任何所述的上限组合。
在一个实施方案中,0.04<b<0.25。
优选地,0.06<d<0.25。
有利地,0.07<d<0.25。
有利地,0.09<d<0.25。
在一个实施方案中,“a”大于或等于0.3。
在一个实施方案中,“a”大于或等于0.35。
在一个实施方案中,“a”大于或等于0.4。
在一个实施方案中,“a”小于或等于0.8。
在一个实施方案中,“a”小于或等于0.7。
在一个实施方案中,“a”小于或等于0.6。
有利地,任何所述的下限可以与任何所述的上限组合。
在一个实施方案中,0.3<a<0.7。
在一个实施方案中,0.4<a<0.7。
有利地,该组合物选自以下式的组合物:
Ni0.5005Zn0.3195Cu0.20Co0.04Fe1.96O4,
Ni0.4805Zn0.3195Cu0.20Co0.06Fe1.96O4,
Ni0.4405Zn0.3195Cu0.20Co0.10Fe1.96O4,
Ni0.4347Zn0.3153Cu0.20Co0.11Fe1.96O4,
Ni0.4231Zn0.3069Cu0.20Co0.13Fe1.96O4,
Ni0.4115Zn0.2985Cu0.20Co0.15Fe1.96O4,和
Ni0.6Zn0.2Cu0.20Co0.06Fe1.96O4,
在一个实施方案中,Ni/Zn之比为1至15,优选1至10,甚至更优选为1.2至7。
有利地,Ni/Zn之比大于2。
在一种变体中,该比率为1.38,在另一个变体中,该比率为3。
本发明还涉及具有根据本发明定义的组合物的固体材料。
根据一个实施方案,根据本发明的材料形成优选具有磁导率μ'>1和介电常数ε'>1,且优选μ'≥5和ε'≥10的磁性-介电材料。
根据一个实施方案,根据本发明的材料对于VHF范围(1MHz至300MHz)范围具有10至20的磁导率μ',或对于V/UHF范围(200MHz至600MHz)5至15的μ'。
根据一个实施方案,根据本发明的材料具有磁损耗tan(δμ)<0.06,并且优选地在100到200MHz之间的频带上的介电损耗tan(δε)<0.02。
根据一个实施方案,tan(δε)<0.006。
本发明还涉及具有根据本发明所定义的组合物或固体材料的VHF或V/UHF天线。
根据一个实施方案,天线是印刷天线或微带或“贴片”型的VHF或V/UHF天线,其包含一个或多个粘附到辐射元件的基板层,其中一个或多个基板层包括根据本发明的组合物或根据本发明的固体材料,或由该组合物或固体材料组成。
在一个实施方案中,天线是小型化的。通常,天线具有小于300mm的较大尺寸。
本发明还涉及将根据本发明的组合物或根据本发明的固体材料用作VHF或V/UHF天线。
有利地,本发明涉及用于航空的天线。
在一个实施方案中,天线适于在118MHz和156MHz之间,并且优选在118和137MHz之间的操作。
本发明还涉及制造根据本发明所定义的组合物的方法。
特别地,本发明涉及制造根据本发明的组合物或根据本发明的固体材料的方法,所述方法包括:
研磨原料,该原料提供Ni、Zn、Cu、Co、Fe和O,通常为NiO;ZnO;CuO;Co3O4和Fe2O3
研磨后,干燥粉末,然后筛分,优选用400μm筛,
筛分后,将粉末热处理,优选在至少600℃,例如800℃的温度下,例如1至10小时,通常为2小时,
热处理后,使粉末经历第二研磨,例如用水溶液,
然后将粉末成形为固体材料。
在一个实施方案中,在成形之前,该方法包括用粘合剂涂覆粉末以提供成形的材料。
在一个实施方案中,在成形之后,该方法包括烧结成形的材料。
有利地,该材料根据制备陶瓷材料的方法合成。
在一个实施方案中,研磨原料的步骤包括如下或由如下组成:称量不同氧化物以制备组成:NiO;ZnO;CuO;Co3O4和Fe2O3。考虑到在研磨过程中引入的铁杂质,在该称量引入氧化铁缺陷。根据一个实施方案,然后将原料混合,然后在水性过程中用研磨设备例如球磨机,磨碎机,罐子搅动器等研磨(通常为罐研磨20小时)。
在一个实施方案中,研磨后,干燥该粉末,然后筛分至400μm。然后将其在800℃下在窑中进行热处理(“熟料化”)2小时。
在一个实施方案中,使粉末经受第二研磨。例如,筛分该粉末,然后放入水性浆料中,即在水性溶液(通常是水)中稀释,用于再研磨(通常对罐研磨持续36小时)。
在一个实施方案中,将粉末用粘合剂涂覆,然后通过压制成形。
有利地,使粉末接收涂层以允许粉末的成形。可以通过在第二研磨期间将粘合剂添加到粉浆或一旦干燥并筛分该粉末就在研磨后,完成粘合剂的添加。在每种情况下,优选将粉末干燥,然后在成形之前在200至400μm之间筛分。
有利地,根据需要通过(通常是单轴)压制成片、盘或芯的形式来执行成形。
有利地,烧结成形的材料。
烧结通常高于800℃的温度下进行,优选在850至1000℃之间进行。
通常,烧结在氧化气氛例如空气中进行。
在一个实施方案中,将压制的材料在950℃下在空气中烧结2小时。优选地,在窑温升高到例如950℃之前,在500℃下用缓慢升温将所述材料脱胶(debonded)。脱胶的持续时间取决于部件的尺寸及其质量,并且可以是例如1h至48h。在低于1200℃,有利地在950℃的温度下根据本发明的烧结具有显著的技术优势。通常,在1200-1400℃之间烧结具有尖晶石结构的铁氧体4至12小时。因此,本发明节省了在窑上(温度<1000℃的尺寸)的时间和成本和加热所需的功率。
有利地,根据本发明的组合物或材料构成具有的磁导率接近(例如+/-10个单元,优选+/-5个单位)其介电常数(磁性-介电材料:ε'>1和μ'>1)的磁性-介电材料。
有利地,根据本发明的组合物或材料表现出高于50MHz,优选高于70MHz,最优选高于100MHz的铁磁共振。
高于一定值的铁磁共振意味着在高于该值的频率下出现磁导率峰。
有利地,根据本发明的组合物或材料表现出高于120MHz,优选高于140MHz,最优选高于150MHz的铁磁共振。
甚至更有利地,根据本发明的组合物或材料具有高于200MHz的铁磁共振。
这种优点特别与根据本发明的合金配方的组合物相关。
有利地,对于VHF范围(1MHz至300MHz),根据本发明的组合物和材料具有大于10,优选大于15,甚至更优选大于20的磁导率μ'。
有利地,对于V/UHF范围(200MHz至600MHz),根据本发明的组合物和材料具有大于5,优选大于10,甚至更优选大于15的磁导率μ'。
有利地,根据本发明的组合物和材料在VHF/UHF下具有低磁损耗,在1至50MHz,优选1至70MHz,更优选为1至100MHz的频带中tanδμ低于0.05。
有利地,根据一个实施方案,根据本发明的组合物和材料在VHF/UHF下具有低磁损耗,在100至200MHz的频带中tanδμ低于0.06,优选低于0.05,甚至更优选低于0.04。
有利地,根据本发明的组合物和材料具有中等磁导率(通常μ'为5至20,优选10至20),并且在100到200MHz的频带中在VHF/UHF中具有低磁损耗(tanδμ<0.05)。
在图中:
图1是显示常规镍锌铁氧体(NZ50其中Ni/Zn为1.77和Co为0.008)和镍锌铜铁氧体(Ni0.5005Zn0.3195Cu0.20Co0.04Fe1.96O4其中Ni/Zn为1.57,Co为0.04)相对于频率的磁导率和磁损耗的图。
图2是显示NZC铁氧体相对于频率的磁导率和磁损耗的图。Ni0.5005Zn0.3195Cu0.20Co0.04Fe1.96O4(Ni/Zn为1.57和Co为0.04)和Ni0.4805Zn0.3195Cu0.20Co0.06Fe1.96O4(Ni/Zn为1.50和Co为0.06)。
图3是显示作为频率函数的NZC铁氧体的磁导率和磁损耗的图,其中Ni0.4805Zn0.319 5Cu0.20Co0.06Fe1.96O4(Ni/Zn为1.50和Co为0.06);Ni0.4405Zn0.3195Cu0.20Co0.10Fe1.96O4(Ni/Zn为1.38和Co为0.1)和Ni0.6Zn0.2Cu0.20Co0.06Fe1.96O4(Ni/Zn为3和Co为0.06)。
图4是显示作为频率函数的NZC铁氧体的磁导率和磁损耗的图,其中Ni0.4347Zn0.315 3Cu0.20Co0.11Fe1.96O4(Ni/Zn为1.38和Co为0.11);Ni0.4231Zn0.3069Cu0.20Co0.13Fe1.96O4(Ni/Zn为1.38和Co为0.13)和Ni0.4115Zn0.2985Cu0.20Co0.15Fe1.96O4(Ni/Zn为1.38和Co为0.15)。
图5是显示作为频率函数的材料Ni0.4405Zn0.3195Cu0.20Co0.10Fe1.96O4的磁性磁导率和磁损耗的图。
图6是显示作为频率函数的材料Ni0.6Zn0.2Cu0.20Co0.06Fe1.96O4磁导率和磁损耗的图。
图7是显示作为频率函数的材料Ni0.4405Zn0.3195Cu0.20Co0.10Fe1.96O4的介电常数和介电损耗的图。
图8是显示作为频率函数的材料Ni0.6Zn0.2Cu0.20Co0.06Fe1.96O4的材料的介电常数和介电损耗的图。
实施例
为了评估根据本发明的材料的潜力,我们主要对作为频率函数的磁导率与磁损耗的变化感兴趣。这意味着监视当损耗增加时(这与铁磁共振的开始一致)的时刻和共振前的磁导率的值。
使用HP4291A阻抗分析仪在1MHz和1GHz之间进行磁导率、介电常数、磁和介电损耗的测量。
为了测量磁导率和磁损耗,制造柱形烧结态的托型APC7形式的样品(
Figure BDA0003620477470000101
厚度≤3mm)。测量是在Keysight 16454A MagneticMaterial Test Fixture中进行的。该测试的参考资料可以在制造商的网站上找到(参考文件:16454A Magnetic Material Test Fixture Operation and Service Manual andMaterials Measurement:Magnetic Materials-Application Brief at https://www.keysight.com/en/pd-1000000509%3Aepsg%3Apro-pn-16454A/magnetic-material-test-fixture?pm=PL&nid=-536902475.536879639&cc=FR&lc=fre)。
为了测量介电常数和介电损耗,制造了厚度不等(1;0.5;0.3mm)的10mm见方板形式的样品。然后使用HP Agilent Keysight 16092A Spring Clip Test Fixture(允许在1和500MHz之间测量)在阻抗分析器(HP4291A)中测量电容和损耗因子。
图1显示了这种曲线。虚线显示了经典的尖晶石铁氧体(NZ50,由EXXELIA销售),并且可以在50MHz之前观察到共振的外观(磁导率峰在约20MHz)。损耗增加并使材料不可用作VHF和/或UHF天线材料。如图1所示的铜含量为0.2的镍-锌-铜铁氧体(Ni0.5005Zn0.3195Cu0.20Co0.04Fe1.96O4)的使用允许将共振移至更高的频率,高于50MHz(峰在约100MHz)。
图2显示了组合物Ni0.4805Zn0.3195Cu0.20Co0.06Fe1.96O4。对于1.5的Ni/Zn之比和0.06的增加钴含量,共振被推到较高频率,允许直至100MHz的低损耗(tanδμ<0.04)。这给出了一种可以用作1至100MHz之间的天线材料的材料,而μ’约29。
图3将两种新材料与图2已以薄实线/灰色显示的材料(Ni0.4805Zn0.3195Cu0.20Co0.06Fe1.96O4)进行比较。以厚实线/黑色所示的第一材料具有以下组成:Ni0.4405Zn0.3195Cu0.20Co0.10Fe1.96O4。相比之下,Ni/Zn之比略微降低(由于通过替代镍进行的钴的强加入),但钴的比例大大增加到0.1摩尔。这表明钴在200MHz后推回共振的直接效果。在图3以虚线所示的材料:Ni0.6Zn0.2Cu0.20Co0.06Fe1.96O4上观察到类似的效果。与薄/灰色实线所示的材料相比,钴含量保持不变,但Ni/Zn之比加倍。可以看出,在200MHz之后,共振也被推回。
图4显示了三种组合物(Ni0.4347Zn0.3153Cu0.20Co0.11Fe1.96O4;Ni0.4231Zn0.3069Cu0.20Co0.13Fe1.96O4;和Ni0.4115Zn0.2985Cu0.20Co0.15Fe1.96O4),每个都有设定为1.38的Ni/Zn比率。这些组合物的钴含量分别设定为0.11、0.13和0.15。可以清楚地看到钴的效果,允许在较高的频率(对于钴含量为0.15的组合物高于300MHz)下使用材料。
图5和6专注于100到200MHz之间的频率范围。由于在该范围内运行的许多VHF应用,对该频段具有很大的兴趣,特别是用于航空应用(118到156MHz之间的使用带,更特别是在118到137MHz之间用于航空业务)。在这些特定的频带中,在图4和5中观察到,材料Ni0.440 5Zn0.3195Cu0.20Co0.10Fe1.96O4和Ni0.6Zn0.2Cu0.20Co0.06Fe1.96O4显示出具有磁损耗tan(δμ)<0.02和磁导率μ'≈15的有利性能。
图7和8显示了频率范围100-200MHz内的Ni0.4405Zn0.3195Cu0.20Co0.10Fe1.96O4和Ni0.6Zn0.2Cu0.20Co0.06Fe1.96O4的相对介电常数和介电损耗。它们显示出具有介电损耗tan(δε)<0.006和介电常数ε'≈13-14的有利性能。
这些结果以其一般性支持本发明的范围。特别地,实施例支持了根据本发明定义的Ni/Zn之比,且根据本发明定义的钴含量使得可以适应目标行为成为可能。从根据本发明的实施例的组合物之一开始并在一个方向上改变一个参数,且在相反方向上改变另一个,这在磁导率μ'、介电常数ε'和磁性-介电损耗tan(δμ)+tan(δε)方面实现了类似结果。因此,存在大量可能的组成变体,其具有与实施例中所示的类似性能。

Claims (15)

1.式NiaZnbCucCodFe2-δO4的组合物,其中:
2(a+b+c+d)+3(2-δ)=8
0.05<b<0.5,
0.10<c<0.25,
0.04<d<0.25,和
δ<0.05。
2.根据权利要求1所述的组合物,具有1至15的Ni/Zn之比。
3.根据权利要求1所述的组合物,其特征在于,所述组合物具有尖晶石结构。
4.根据权利要求1所述的组合物,其特征在于,所述组合物选自以下式的组合物:
Ni0.4805Zn0.3195Cu0.20Co0.06Fe1.96O4,
Ni0.4405Zn0.3195Cu0.20Co0.10Fe1.96O4,
Ni0.4347Zn0.3153Cu0.20Co0.11Fe1.96O4,
Ni0.4231Zn0.3069Cu0.20Co0.13Fe1.96O4,
Ni0.4115Zn0.2985Cu0.20Co0.15Fe1.96O4;和
Ni0.6Zn0.2Cu0.20Co0.06Fe1.96O4
5.一种固体材料,其特征在于它具有如权利要求1所定义的组合物。
6.根据权利要求5所述的固体材料,其特征在于,它形成磁性-介电材料。
7.如权利要求5所述的固体材料,其特征在于,对于VHF范围(1MHz到300MHz),它具有10-20的磁导率μ',对于V/UHF范围(200MHz到600MHz)具有5-15的μ'。
8.根据权利要求5所述的固体材料,其特征在于它具有磁损耗tan(δμ)<0.06。
9.一种VHF或V/UHF天线,其特征在于它包含如下或由如下组成:根据权利要求1的组合物或根据权利要求5的固体材料。
10.印刷或微带型的VHF或V/UHF天线,其特征在于它包括粘附到辐射元件的一个或多个基板层,其中一个或多个基板层由如下组成或包含如下:根据权利要求1的组合物或根据权利要求5的固体材料。
11.根据权利要求9所述的VHF或V/UHF天线,其特征在于它具有小于300mm的较大尺寸。
12.根据权利要求1所述的组合物或根据权利要求5所述的固体材料用作VHF或V/UHF天线的用途。
13.制备根据权利要求1所述的组合物或根据权利要求5所述的固体材料的方法,其特征在于,所述方法包括:
研磨原料,该原料提供Ni,Zn,Cu,Co,Fe和O,通常为NiO;ZnO;CuO;Co3O4和Fe2O3
研磨后,干燥该粉末,然后筛分,
筛分后,将粉末热处理,
热处理后,使粉末经历第二研磨,
然后将粉末成形为固体材料。
14.根据权利要求13所述的方法,其特征在于,在成形之前,该方法包括用粘合剂涂覆该粉末以提供成形材料。
15.根据权利要求13所述的方法,其特征在于,在成形之后,所述方法包括烧结成形的材料。
CN202210461156.4A 2021-04-28 2022-04-28 用于vuhf天线应用的镍锌铜铁氧体 Pending CN115246736A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2104412 2021-04-28
FR2104412A FR3122422A1 (fr) 2021-04-28 2021-04-28 Ferrite de nickel zinc cuivre pour application antenne VUHF

Publications (1)

Publication Number Publication Date
CN115246736A true CN115246736A (zh) 2022-10-28

Family

ID=77519182

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210461156.4A Pending CN115246736A (zh) 2021-04-28 2022-04-28 用于vuhf天线应用的镍锌铜铁氧体

Country Status (4)

Country Link
US (1) US20220348479A1 (zh)
EP (1) EP4082990A1 (zh)
CN (1) CN115246736A (zh)
FR (1) FR3122422A1 (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2995517A (en) * 1956-02-16 1961-08-08 Plessey Co Ltd Ferrites containing niobium
FR2747228B1 (fr) * 1996-04-05 1998-07-17 Thomson Csf Ferrite a faibles pertes entre 1 mhz et 100 mhz et procede de realisation
FR2795855B1 (fr) * 1999-06-29 2001-10-05 Thomson Csf Ferrites a faibles pertes
EP2982651B1 (en) * 2014-08-05 2021-11-17 Skyworks Solutions, Inc. Rf device incorporating nickel zinc ferrite doped with cobalt

Also Published As

Publication number Publication date
EP4082990A1 (fr) 2022-11-02
US20220348479A1 (en) 2022-11-03
FR3122422A1 (fr) 2022-11-04

Similar Documents

Publication Publication Date Title
CN107428556B (zh) 用于超高频率的Mo掺杂的Co2Z-型铁氧体复合材料
US8758721B2 (en) Enhanced hexagonal ferrite material and methods of preparation thereof
US9397391B2 (en) M-type hexaferrite antennas for use in wireless communication devices
Li et al. Emerging magnetodielectric materials for 5G communications: 18H hexaferrites
US11069983B2 (en) Modified Z-type hexagonal ferrite materials with enhanced resonant frequency
Zheng et al. Low loss ${\rm NiZn/Co} _ {2}{\rm Z} $ composite ferrite with almost equal values of permeability and permittivity for antenna applications
Gan et al. Low loss, enhanced magneto-dielectric properties of Bi2O3 doped Mg-Cd ferrites for high frequency antennas
CN105693235B (zh) 高介微波介质陶瓷材料及其制备方法
CN105016729B (zh) Ca‑Nd‑Ti微波介质陶瓷材料及其制备方法
CN116496096B (zh) 一种增强软磁/硬磁复合铁氧体吸波性能的方法
Gan et al. Ga ions-tailored magnetic-dielectric properties of Mg–Cd composites for high-frequency, miniature and wideband antennas
Lathiya et al. Effects of the sintering temperature on RF complex permeability of NiCuCoZn ferrites for near-field communication applications
CN115246736A (zh) 用于vuhf天线应用的镍锌铜铁氧体
Huo et al. Crystal structure and magneto‐dielectric properties of Co‐Zr co‐substituted Co2Z hexaferrites
US11705637B2 (en) Magnetodielectric metamaterials and articles including magnetodielectric metamaterials
Huo et al. Microstructure, magnetic, and power loss characteristics of low‐sintered NiCuZn ferrites with La2O3‐Bi2O3 additives
KR101282194B1 (ko) Y형 페라이트 및 이로 제조된 페라이트 성형체
CN111825445A (zh) 一种高介电常数微波介质陶瓷材料、制备及其应用
Vinaykumar et al. Electromagnetic properties of La-Co substituted Zn 2 Y type hexagonal ferrite for microwave device applications
Chen et al. Mo-doped Co 2 Z-type ferrite composite material for use ultra-high frequency antennas
RU2637269C1 (ru) Ферритовый материал
Ikhsan et al. Magneto-dielectric properties of Ni0. 25Cu0. 25Zn0. 50Fe2O4–BaTiO3 and its application as substrate of microstrip patch antennas

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination