CN115220516A - 一种电压基准电路、元器件及设备 - Google Patents

一种电压基准电路、元器件及设备 Download PDF

Info

Publication number
CN115220516A
CN115220516A CN202110410314.9A CN202110410314A CN115220516A CN 115220516 A CN115220516 A CN 115220516A CN 202110410314 A CN202110410314 A CN 202110410314A CN 115220516 A CN115220516 A CN 115220516A
Authority
CN
China
Prior art keywords
nmos
tube
resistor
nmos tube
pmos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110410314.9A
Other languages
English (en)
Inventor
赵文欣
丁一男
刘海南
罗家俊
韩郑生
赵发展
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN202110410314.9A priority Critical patent/CN115220516A/zh
Publication of CN115220516A publication Critical patent/CN115220516A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/567Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for temperature compensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

本发明公开了一种电压基准电路、元器件及设备,通过将第一PMOS管的源极和第二PMOS管的源极与电源端连接;电容的一端、第一PMOS管的栅极和漏极、第二PMOS管的栅极,以及第二NMOS管的漏极相互连接;第二PMOS管的漏极、第三NMOS管的漏极和栅极,以及第二NMOS管的栅极相互连接;第三NMOS管的源极、第二电阻一端,以及第一NMOS管的栅极相互连接作为电压基准电路输出端;第二电阻的另一端与第一NMOS管的漏极连接;第二NMOS管的源极与第一电阻的一端连接;电容的另一端、第一电阻的另一端及第一NMOS管的源极接地。

Description

一种电压基准电路、元器件及设备
技术领域
本发明涉及半导体技术领域,尤其涉及一种电压基准电路、元器件及设备。
背景技术
伴随着信息技术的飞速发展,半导体工艺线宽不断减小,对集成电路性能要求也越来越高。电压基准电路作为集成电路的基础性模块,在电路系统中为其它功能电路提供精确、稳定的基准电压和偏置电流。基准电压受温度和电源电压影响下的稳定性直接决定了电路系统性能优劣,它是模拟集成电路和混合集成电路中最重要的核心模块之一。
现有技术提供了一种带隙基准电路,利用正温度系数电压与三极管负温度系数基射结电压进行求和补偿,从而得到具有零温度系数的输出基准电压。但是,随着CMOS工艺向更小线宽、更低工作电压发展,当纳米小线宽器件(如90nm器件及以下)电源工作电压低于1.2V时,三极管构成的带隙基准电路会无法正常工作,并且与CMOS工艺不兼容。
发明内容
本申请实施例通过提供一种电压基准电路、元器件及设备,解决了现有技术中的电压基准电路不能在小线宽器件中正常使用,实现了更广泛的应用,以及兼容CMOS工艺的技术效果。
第一方面,本申请通过本申请的一实施例提供如下技术方案:
一种电压基准电路,包括:
第一支路电路和第二支路电路;
所述第一支路电路包括:第一PMOS管、第二NMOS管、第一电阻及电容;
所述第二支路电路包括:第一NMOS管、第二PMOS管、第三NMOS管及第二电阻;
其中,所述第一PMOS管的源极和第二PMOS管的源极与电源端连接;所述电容的一端、所述第一PMOS管的栅极和漏极、所述第二PMOS管的栅极,以及所述第二NMOS管的漏极相互连接;所述第二PMOS管的漏极、所述第三NMOS管的漏极和栅极,以及第二NMOS管的栅极相互连接;所述第三NMOS管的源极、第二电阻一端,以及所述第一NMOS管的栅极相互连接作为所述电压基准电路输出端;所述第二电阻的另一端与所述第一NMOS管的漏极连接;所述第二NMOS管的源极与所述第一电阻的一端连接;所述电容的另一端、所述第一电阻的另一端及第一NMOS管的源极接地。
可选的,所述第一NMOS管工作在零温度系数工作点,以及工作在漏端夹断点。
可选的,所述第一NMOS管工作在零温度系数工作点时,漏端电流基于如下公式确定:
Figure BDA0003023876940000021
其中,IDn_ZTC为所述第一NMOS管在零温度系数直流工作点下的漏端电流,COX为第一NMOS管单位面积的柵氧化层电容,W为所述第一NMOS管的沟道宽度,L为所述第一NMOS管的沟道长度,
Figure BDA0003023876940000022
为常数,αn为所述第一NMOS管速度饱和指数,ηn为所述第一NMOS管阈值电压的温度系数。
可选的,基于如下公式确定所述第一电阻的阻值:
Figure BDA0003023876940000023
其中,R1为所述第一电阻的阻值,VTHn0为绝对零度下NMOS管的阈值电压,IDn_ZTC为NMOS管零温度系数直流工作点下的漏端电流。
可选的,基于如下公式确定所述第二电阻的阻值:
Figure BDA0003023876940000031
其中,R2为所述第二电阻的阻值;IDn_ZTC为NMOS管零温度系数直流工作点下的漏端电流;VTHn(T0)为室温T0下NMOS管的阈值电压,并且所述室温T0为dVGSn_ZTC/dT=0时的温度,VGSn_ZTC为NMOS管零温度系数直流工作点下的栅源电压。
可选的,所述第一支路电路和所述第二支路电路中的所述第一PMOS管、所述第二PMOS管、第二NMOS管和第三NMOS管为等比例镜像关系,以使所述第一电阻的电压等于所述第一NMOS管栅源电压VTHn0
可选的,所述第一PMOS管与所述第二PMOS管为相同类型的PMOS管,且所述第一PMOS管沟道宽长比与所述第二PMOS管的沟道宽长比相同;所述第二NMOS管与所述第三NMOS管为相同类型的NMOS管,且所述第二NMOS管的沟道宽长比与所述第三NMOS管的沟道宽长比相同。
可选的,所述第一电阻和所述第二电阻的类型和宽度相同,以便于通过调整电阻的长度来调整阻值。
第二方面,本申请提供一种元器件,包括以上所述的电路。
第三方面,本申请提供一种设备,包括以上所述的电路。
本申请实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:
发明公开了一种电压基准电路、元器件及设备,通过将第一PMOS管的源极和第二PMOS管的源极与电源端连接;电容的一端、第一PMOS管的栅极和漏极、第二PMOS管的栅极,以及第二NMOS管的漏极相互连接;第二PMOS管的漏极、第三NMOS管的漏极和栅极,以及第二NMOS管的栅极相互连接;第三NMOS管的源极、第二电阻一端,以及第一NMOS管的栅极相互连接作为电压基准电路输出端;第二电阻的另一端与第一NMOS管的漏极连接;第二NMOS管的源极与第一电阻的一端连接;电容的另一端、第一电阻的另一端及第一NMOS管的源极接地。从而,可以输出比以三极管构成的电压基准源更低的基准电压。解决了现有技术中的电压基准电路不能在小线宽器件中正常使用,实现了更广泛的应用,以及兼容CMOS工艺的技术效果。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例中一种电压基准电路的结构示意图;
图2为本发明实施例中元器件的结构图;
图3为本发明实施例中设备的结构图。
具体实施方式
本申请实施例通过提供一种电压基准电路、元器件及设备,解决了现有技术中的电压基准电路不能在小线宽器件中正常使用,实现了更广泛的应用,以及兼容CMOS工艺的技术效果。
本申请实施例的技术方案为解决上述技术问题,总体思路如下:
一种电压基准电路,包括:
第一支路电路和第二支路电路;
所述第一支路电路包括:第一PMOS管、第二NMOS管、第一电阻及电容;
所述第二支路电路包括:第一NMOS管、第二PMOS管、第三NMOS管及第二电阻;
其中,所述第一PMOS管的源极和第二PMOS管的源极与电源端连接;所述电容的一端、所述第一PMOS管的栅极和漏极、所述第二PMOS管的栅极,以及所述第二NMOS管的漏极相互连接;所述第二PMOS管的漏极、所述第三NMOS管的漏极和栅极,以及第二NMOS管的栅极相互连接;所述第三NMOS管的源极、第二电阻一端,以及所述第一NMOS管的栅极相互连接作为所述电压基准电路输出端;所述第二电阻的另一端与所述第一NMOS管的漏极连接;所述第二NMOS管的源极与所述第一电阻的一端连接;所述电容的另一端、所述第一电阻的另一端及第一NMOS管的源极接地。
为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案进行详细的说明。
首先说明,本文中出现的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
实施例一
如图1所述,提供了一种电压基准电路,包括:
第一支路电路A和第二支路电路B;
第一支路电路A包括:第一PMOS管MP1、第二NMOS管MN2、第一电阻R1及电容C;
第二支路电路B包括:第一NMOS管MN1、第二PMOS管MP2、第三NMOS管MN3及第二电阻R2;
其中,第一PMOS管MP1的源极和第二PMOS管MP2的源极与电源端连接;电容C的一端、第一PMOS管MP1的栅极和漏极、第二PMOS管MP2的栅极,以及第二NMOS管MN2的漏极相互连接;第二PMOS管MP2的漏极、第三NMOS管MN3的漏极和栅极,以及第二NMOS管MN2的栅极相互连接;第三NMOS管MN3的源极、第二电阻R2一端,以及第一NMOS管MN1的栅极相互连接作为电压基准电路输出端VREF;第二电阻R2的另一端与第一NMOS管MN1的漏极连接;第二NMOS管MN2的源极与第一电阻R1的一端连接;电容C的另一端、第一电阻R1的另一端及第一NMOS管MN1的源极接地。
在可选的实施方式中,第一NMOS管MN1工作在零温度系数工作点,以及工作在漏端夹断点。在该直流工作点下,NMOS器件栅源电压和漏电流不受温度影响,在工作温度范围内数值保持恒定不变,具有温度自补偿的特性。进而可以使本申请的电压基准电路的输出端VREF输出恒定的基准电压。并且,第一NMOS管MN1工作在漏极夹断点时,漏端电流受漏端电压变化的影响最小,即对第一NMOS管MN1的直流工作点影响最小。
在具体实施过程中,对于第一NMOS管MN1的零温度系数工作点,可以通过仿真不同温度下NMOS转移特性曲线,并找到仿真曲线中交点处的漏端电流,然后调整电路的中R1的数值,设定合适的第一NMOS管MN1的漏端偏置电流(为零温度系数直流工作点漏电流IDn_ZTC)。
对于将第一NMOS管MN1工作在漏端夹断点,可以基于NMOS管在线性区和饱和区其漏端电流公式推导,以及NMOS管零温度系数直流偏置工作点的栅源电压,确定第一NMOS管MN1的源漏电压。进而,得出第一NMOS管MN1的源漏电压VDSn=(VGSn_ZTC-VTHn(T0))=VDsat(T0),其中,VDsat(T0)为T0温度时的过驱动电压;VTHn(T0)为T0温度时的阈值电压;T0为dVGSn_ZTC/dT=0时的温度,通常为室温。此时NMOS沟道在漏级夹断,漏端电流受VDSn变化影响最小,即对NMOS直流工作点影响最小。
从而,得出第一NMOS管MN1的栅源电压VGSn_ZTC=绝对零度下第一NMOS管MN1的阈值电压VTHn0。进而,实现输出不受温度影响的基准电压。
在可选的实施方式中,第一NMOS管MN1工作在零温度系数工作点时,漏端电流基于如下公式确定:
Figure BDA0003023876940000061
其中,IDn_ZTC为所述第一NMOS管在零温度系数直流工作点下的漏端电流,COX为第一NMOS管单位面积的柵氧化层电容,W为所述第一NMOS管的沟道宽度,L为所述第一NMOS管的沟道长度,
Figure BDA0003023876940000071
为常数,αn为所述第一NMOS管速度饱和指数,ηn为所述第一NMOS管阈值电压的温度系数。
在可选的实施方式中,第一支路电路A和第二支路电路B中的第一PMOS管MP1、第二PMOS管MP2、第二NMOS管MN2和第三NMOS管MN3为等比例镜像关系,以使第一电阻R1的电压等于第一NMOS管MN1栅源电压。
在具体实施过程中,第一PMOS管MP1与第二PMOS管MP2为相同类型的PMOS管,且第一PMOS管MP1沟道宽长比与第二PMOS管MP2的沟道宽长比相同。第二NMOS管MN2与第三NMOS管MN3为相同类型的NMOS管,且第二NMOS管MN2的沟道宽长比与第三NMOS管MN3的沟道宽长比相同。其中,相同类型的PMOS管和NMOS管,具体可以同为增强型,也可以同为耗尽型。
在可选的实施方式中,通过设置第一电阻R1和第二电阻R2的阻值,可以调节第一NMOS管MN1的源漏电压。进而,使得第一NMOS管MN1工作在零温度系数直流偏置下漏端夹断点。
在具体实施过程中,基于如下公式确定第一电阻的阻值:
Figure BDA0003023876940000072
其中,R1为第一电阻的阻值,VTHn0为绝对零度下NMOS管的阈值电压,IDn_ZTC为NMOS管零温度系数直流工作点下的漏端电流。
基于如下公式确定第二电阻的阻值:
Figure BDA0003023876940000073
其中,R2为第二电阻的阻值;IDn_ZTC为NMOS管零温度系数直流工作点下的漏端电流;VTHn(T0)为室温T0下NMOS管的阈值电压,并且室温T0为dVGSn_ZTC/dT=0时的温度,VGSn_ZTC为NMOS管零温度系数直流工作点下的栅源电压。
在可选的实施方式中,第一电阻R1和第二电阻R2的类型和宽度相同,以便于通过调整电阻的长度来调整阻值。具体的,可以使用类型和宽度相同可调整电阻。当然,也可以是其他电阻,本实施例不作限制。
实施例二
基于同一发明构思,如图2所示,本实施例提供了一种元器件,包括实施例一任一所述的电路。
由于本实施例所介绍的元器件为实施本申请实施例中电压基准电路所采用的元器件,故而基于本申请实施例中所介绍的电压基准电路,本领域所属技术人员能够了解本实施例的元器件的具体实施方式以及其各种变化形式,所以在此对于该元器件如何实现本申请实施例中的方法不再详细介绍。只要本领域所属技术人员实施本申请实施例中电压基准电路所采用的元器件,都属于本申请所欲保护的范围。
实施例三
基于同一发明构思,如图3所示,本实施例提供了一种设备,包括实施例一任一所述的电路。
由于本实施例所介绍的设备为实施本申请实施例中电压基准电路所采用的设备,故而基于本申请实施例中所介绍的电压基准电路,本领域所属技术人员能够了解本实施例的电子设备的具体实施方式以及其各种变化形式,所以在此对于该设备如何实现本申请实施例中的方法不再详细介绍。只要本领域所属技术人员实施本申请实施例中电压基准电路所采用的设备,都属于本申请所欲保护的范围。
上述本申请实施例中的技术方案,至少具有如下的技术效果或优点:
发明公开了一种电压基准电路、元器件及设备,通过将第一PMOS管的源极和第二PMOS管的源极与电源端连接;电容的一端、第一PMOS管的栅极和漏极、第二PMOS管的栅极,以及第二NMOS管的漏极相互连接;第二PMOS管的漏极、第三NMOS管的漏极和栅极,以及第二NMOS管的栅极相互连接;第三NMOS管的源极、第二电阻一端,以及第一NMOS管的栅极相互连接作为电压基准电路输出端;第二电阻的另一端与第一NMOS管的漏极连接;第二NMOS管的源极与第一电阻的一端连接;电容的另一端、第一电阻的另一端及第一NMOS管的源极接地。从而,可以输出受温度补偿的基准电压。为现有技术中存在的电压基准电路不能在小线宽器件中正常使用这一技术瓶颈提供了一种解决方法,实现了更广泛的应用,以及兼容CMOS工艺的技术效果。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

1.一种电压基准电路,其特征在于,包括:
第一支路电路和第二支路电路;
所述第一支路电路包括:第一PMOS管、第二NMOS管、第一电阻及电容;
所述第二支路电路包括:第一NMOS管、第二PMOS管、第三NMOS管及第二电阻;
其中,所述第一PMOS管的源极和第二PMOS管的源极与电源端连接;所述电容的一端、所述第一PMOS管的栅极和漏极、所述第二PMOS管的栅极,以及所述第二NMOS管的漏极相互连接;所述第二PMOS管的漏极、所述第三NMOS管的漏极和栅极,以及第二NMOS管的栅极相互连接;所述第三NMOS管的源极、第二电阻一端,以及所述第一NMOS管的栅极相互连接作为所述电压基准电路输出端;所述第二电阻的另一端与所述第一NMOS管的漏极连接;所述第二NMOS管的源极与所述第一电阻的一端连接;所述电容的另一端、所述第一电阻的另一端及第一NMOS管的源极接地。
2.如权利要求1所述的电路,其特征在于,所述第一NMOS管工作在零温度系数工作点,以及工作在漏端夹断点。
3.如权利要求2所述的电路,其特征在于,所述第一NMOS管工作在零温度系数工作点时,漏端电流基于如下公式确定:
Figure FDA0003023876930000011
其中,IDn_ZTC为所述第一NMOS管在零温度系数直流工作点下的漏端电流,COX为第一NMOS管单位面积的柵氧化层电容,W为所述第一NMOS管的沟道宽度,L为所述第一NMOS管的沟道长度,
Figure FDA0003023876930000012
为常数,αn为所述第一NMOS管速度饱和指数,ηn为所述第一NMOS管阈值电压的温度系数。
4.如权利要求2所述的电路,其特征在于,基于如下公式确定所述第一电阻的阻值:
Figure FDA0003023876930000021
其中,R1为所述第一电阻的阻值,VTHn0为绝对零度下NMOS管的阈值电压,IDn_ZTC为NMOS管零温度系数直流工作点下的漏端电流。
5.如权利要求2所述的电路,其特征在于,基于如下公式确定所述第二电阻的阻值:
Figure FDA0003023876930000022
其中,R2为所述第二电阻的阻值;IDn_ZTC为NMOS管零温度系数直流工作点下的漏端电流;VTHn(T0)为室温T0下NMOS管的阈值电压,并且所述室温T0为dVGSn_ZTC/dT=0时的温度,VGSn_ZTC为NMOS管零温度系数直流工作点下的栅源电压。
6.如权利要求1所述的电路,其特征在于,所述第一支路电路和所述第二支路电路中的所述第一PMOS管、所述第二PMOS管、第二NMOS管和第三NMOS管为等比例镜像关系,以使所述第一电阻的电压等于所述第一NMOS管栅源电压。
7.如权利要求6所述的电路,其特征在于,包括:
所述第一PMOS管与所述第二PMOS管为相同类型的PMOS管,且所述第一PMOS管沟道宽长比与所述第二PMOS管的沟道宽长比相同;
所述第二NMOS管与所述第三NMOS管为相同类型的NMOS管,且所述第二NMOS管的沟道宽长比与所述第三NMOS管的沟道宽长比相同。
8.如权利要求1所述的电路,其特征在于,所述第一电阻和所述第二电阻的类型和宽度相同,以便于通过调整电阻的长度来调整阻值。
9.一种元器件,其特征在于,包括权利要求1-8任一所述的电路。
10.一种设备,其特征在于,包括如权利要求1-8任一所述的电路。
CN202110410314.9A 2021-04-16 2021-04-16 一种电压基准电路、元器件及设备 Pending CN115220516A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110410314.9A CN115220516A (zh) 2021-04-16 2021-04-16 一种电压基准电路、元器件及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110410314.9A CN115220516A (zh) 2021-04-16 2021-04-16 一种电压基准电路、元器件及设备

Publications (1)

Publication Number Publication Date
CN115220516A true CN115220516A (zh) 2022-10-21

Family

ID=83604736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110410314.9A Pending CN115220516A (zh) 2021-04-16 2021-04-16 一种电压基准电路、元器件及设备

Country Status (1)

Country Link
CN (1) CN115220516A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030903A (en) * 1989-01-11 1991-07-09 Sgs-Thomson Microelectronics S.A. Voltage generator for generating a stable voltage independent of variations in the ambient temperature and of variations in the supply voltage
JPH09265329A (ja) * 1996-03-27 1997-10-07 New Japan Radio Co Ltd バイアス発生回路およびレギュレータ回路
KR20000073710A (ko) * 1999-05-13 2000-12-05 윤종용 기준전압 발생회로
US20030006746A1 (en) * 2001-05-07 2003-01-09 Masato Nishimura Reference voltage generator
JP2009064152A (ja) * 2007-09-05 2009-03-26 Ricoh Co Ltd 基準電圧源回路と温度検出回路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030903A (en) * 1989-01-11 1991-07-09 Sgs-Thomson Microelectronics S.A. Voltage generator for generating a stable voltage independent of variations in the ambient temperature and of variations in the supply voltage
JPH09265329A (ja) * 1996-03-27 1997-10-07 New Japan Radio Co Ltd バイアス発生回路およびレギュレータ回路
KR20000073710A (ko) * 1999-05-13 2000-12-05 윤종용 기준전압 발생회로
US20030006746A1 (en) * 2001-05-07 2003-01-09 Masato Nishimura Reference voltage generator
JP2009064152A (ja) * 2007-09-05 2009-03-26 Ricoh Co Ltd 基準電圧源回路と温度検出回路

Similar Documents

Publication Publication Date Title
US10831227B2 (en) Reference voltage circuit with low temperature drift
CN111338417B (zh) 电压基准源以及基准电压输出方法
US10601414B2 (en) Bias generator
KR20160038665A (ko) 밴드갭 회로 및 관련 방법
KR20100080958A (ko) 기준 바이어스 발생 회로
CN103092253A (zh) 参考电压产生电路
US20060220732A1 (en) Constant current circuit and constant current generating method
US20150185753A1 (en) Differential operational amplifier and bandgap reference voltage generating circuit
CN109116904B (zh) 一种偏置电路
US20090108913A1 (en) Mos resistor with second or higher order compensation
TWI738416B (zh) 功率mosfet導通電阻補償裝置
US6870418B1 (en) Temperature and/or process independent current generation circuit
CN111752328A (zh) 带隙基准电压产生电路
CN113434005B (zh) 一种可控电阻电路
CN110879625A (zh) 一种超低线性灵敏度的cmos电压基准电路
CN115220516A (zh) 一种电压基准电路、元器件及设备
CN108181968B (zh) 一种基准电压产生电路
JP2005044051A (ja) 基準電圧発生回路
CN115220515A (zh) 一种电压基准电路、元器件及设备
TWI806936B (zh) 用於調整場效電晶體的汲極電流的場效電晶體配置和方法
CN110703840A (zh) 低噪声带隙基准输出电压建立电路
US9696744B1 (en) CMOS low voltage bandgap reference design with orthogonal output voltage trimming
US6710642B1 (en) Bias generation circuit
CN115220518B (zh) 基于nmos温度补偿特性基准电压产生电路及设计方法和装置
CN115220517B (zh) 基于pmos温度补偿特性基准电压产生电路及设计方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination