CN115216554A - 植物病原体效应子和疾病抗性基因鉴定、组合物和使用方法 - Google Patents

植物病原体效应子和疾病抗性基因鉴定、组合物和使用方法 Download PDF

Info

Publication number
CN115216554A
CN115216554A CN202110403600.2A CN202110403600A CN115216554A CN 115216554 A CN115216554 A CN 115216554A CN 202110403600 A CN202110403600 A CN 202110403600A CN 115216554 A CN115216554 A CN 115216554A
Authority
CN
China
Prior art keywords
plant
gene
maize
sequence
rot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110403600.2A
Other languages
English (en)
Inventor
赖志兵
张报
王佳利
黄俊石
王宏泽
闵浩轩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN202110403600.2A priority Critical patent/CN115216554A/zh
Priority to PCT/CN2022/084239 priority patent/WO2022218158A1/en
Priority to BR112023020127A priority patent/BR112023020127A2/pt
Publication of CN115216554A publication Critical patent/CN115216554A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8282Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/375Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from Basidiomycetes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/66Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving luciferase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits

Abstract

组合物和方法涉及植物育种以及鉴定和选择疾病抗性基因和植物病原体效应子基因的方法。提供了鉴定编码植物病原体效应子蛋白和提供对多种疾病具有植物抗性的蛋白的新颖基因的方法及其用途。这些疾病抗性基因通过育种、转基因修饰或基因组编辑可用于抗性植物的产生。

Description

植物病原体效应子和疾病抗性基因鉴定、组合物和使用方法
技术领域
组合物和方法涉及植物育种以及鉴定和选择疾病抗性基因和植物病原体效应子基因的方法。提供了鉴定编码植物病原体效应子蛋白和提供对多种疾病具有植物抗性的蛋白的新颖基因的方法及其用途。这些疾病抗性基因通过育种、转基因修饰或基因组编辑可用于抗性植物的产生。
对通过EFS-Web以文本文件提交的序列表的引用
按照美国信息交换标准码(ASCII),该序列表的官方副本经由EFS-Web作为文本文件与本说明书同时提交,其中文件名为RTS22031_SeqList.txt,创建日期为2021年2月25日,并且大小为14kb。经由EFS-Web提交的该序列表是说明书的一部分并通过引用以其全文并入本文。
背景技术
关于植物中疾病抗性机制已经进行了很多研究。抗性的某些机制本质上是非病原体特异性的,或所谓的“非宿主抗性”。这些可以基于细胞壁结构或类似的保护机制。然而,尽管植物缺乏具有循环抗体的免疫系统和哺乳动物免疫系统的其他属性,但它们确实具有其他机制来特异性防御病原体。其中最重要和研究最好的是植物疾病抗性基因,即“R基因”。关于这种抗性机制和R基因的许多评论之一可以见于Bekhadir等人,(2004),CurrentOpinion in Plant Biology[当代植物生物学观点]7:391-399。R基因有5种公认的类别:具有核苷酸结合位点(NBS或NB-ARC)和富含亮氨酸的重复序列(LRR)的细胞内蛋白质;具有细胞外LRR结构域的跨膜蛋白(TM-LRR);具有细胞质激酶结构域的跨膜和细胞外LRR(TM-CK-LRR);具有卷曲螺旋细胞质结构域的膜信号锚定蛋白(MSAP-CC);以及具有N末端十四烷基化位点的膜或壁相关激酶(MAK-N或WAK)(参见例如:Cohn等人,(2001),Immunology[免疫学],13:55-62;Dangl等人.(2001),Nature[自然],411:826-833)。持续需要疾病抗性植物和寻找疾病抗性基因的方法,因此,需要在更大通量情况下来鉴定疾病抗性基因的更快方法。
发明内容
本文提供了在鉴定和选择植物疾病抗性基因,或“R基因”中有用的组合物和方法。所述组合物和方法可用于选择抗性植物,产生转基因抗性植物和/或产生抗性基因组编辑的植物。本文还提供了与对照植物相比具有新赋予的或增强的各种植物疾病抗性的植物。
在一些实施例中,玉蜀黍或大豆原生质体包含预期的病原体效应子基因、萤光素酶基因、和潜在的玉蜀黍疾病抗性基因,其中该预期的病原体效应子基因是从计算分析预测的。任选地,所述预期的病原体效应子基因和该萤光素酶报告基因均从单一的表达载体上表达。在另一个实施例中,植物包含靶向病原体效应子蛋白的dsRNA,其中该病原体效应子蛋白通过萤光素酶报告子原生质体测定来鉴定或验证。在一些实施例中,原生质体包含植物病原体效应子,其包含当与SEQ ID NO:4相比时,有至少95%序列同一性的氨基酸序列。
在一些实施例中,植物病原体效应子包含与至少一个调节序列可操作地连接的多核苷酸,其中所述多核苷酸包含编码当与SEQ ID NO:4相比时有至少90%或至少95%序列同一性的氨基酸序列的核酸序列。在一些实施例中,编码SEQ ID NO:4的所述多核苷酸包含与SEQ ID NO:1、2、或3具有至少95%序列同一性的核酸序列。
在一些实施例中,验证因果疾病抗性基因的方法包括a)在疾病抗性基因座中鉴定至少一个潜在基因;b)将来自所述疾病抗性基因座的潜在的抗性基因、植物病原体效应子基因、和萤光素酶基因转染至玉蜀黍原生质体中,其中所述玉蜀黍原生质体来源于易感植物病原体的玉蜀黍植物;c)测量萤光素酶活性;以及d)选择在植物病原体效应子的存在下产生过敏反应的基因,其中所述植物病原体效应子基因编码如SEQ ID NO:4所示的病原体效应子。
在一些实施例中,验证因果疾病抗性基因的方法包括a)在疾病抗性植物的疾病抗性基因座中鉴定至少一个潜在基因;b)将植物病原体效应子基因的至少一个等位基因和萤光素酶基因转染至玉蜀黍原生质体中,其中所述玉蜀黍原生质体来源于疾病抗性植物;c)测量萤光素酶活性;d)选择在所述效应子基因和萤光素酶报告基因的存在下产生萤光素酶活性的植物;e)将来自所述疾病抗性植物的疾病抗性基因座的潜在的抗性基因、植物病原体效应子基因、和萤光素酶基因转染至玉蜀黍原生质体中,其中所述玉蜀黍原生质体来源于易感植物病原体的玉蜀黍植物;f)测量萤光素酶活性;以及g)选择在植物病原体效应子的存在下产生过敏反应的基因。在一些实施例中,所述植物病原体效应子基因编码如SEQID NO:4所示的病原体效应子。在另一个实施例中,疾病抗性供体植物是玉蜀黍植物或大豆植物。
在一些实施例中,选择疾病抗性供体植物的方法包括a)将植物病原体效应子基因的至少一个等位基因和萤光素酶基因转染至玉蜀黍原生质体中,其中所述玉蜀黍原生质体来源于对植物病原体有抗性的植物;b)测量萤光素酶活性;以及c)选择在植物病原体效应子的存在下产生过敏反应的玉蜀黍植物。在一些实施例中,所述植物病原体效应子基因编码如SEQ ID NO:4所示的病原体效应子。在另一个实施例中,疾病抗性供体植物是玉蜀黍植物或大豆植物。
在一些实施例中,鉴定同源植物病原体效应子的方法包括a)将植物病原体效应子基因的第一等位基因和萤光素酶基因转染至玉蜀黍原生质体中;b)测量萤光素酶活性;c)选择在植物病原体效应子的存在下产生过敏反应的玉蜀黍植物;d)将植物病原体效应子的第二等位基因和萤光素酶基因转染至选择的玉蜀黍植物衍生的原生质体中;和e)测量萤光素酶活性。在一些实施例中,所述玉蜀黍原生质体来源于疾病抗性玉蜀黍植物。在进一步的实施例中,所述方法包括将植物病原体效应子的至少再一个不同的等位基因和萤光素酶报告基因转染至选择的玉蜀黍原生质体中。在一些实施例中,从植物病原体的田间群体中鉴定植物病原体效应子的第二等位基因,或者植物病原体效应子的第二等位基因表明田间抗性的增加,其中病原体效应子包含SEQ ID NO:4。
在一些实施例中,植物疾病抗性育种的方法包括a)将植物病原体效应子基因的至少一个等位基因和萤光素酶基因转染至玉蜀黍原生质体中,其中所述玉蜀黍原生质体来源于对植物病原体具有抗性的至少一个玉蜀黍植物;b)测量萤光素酶活性;c)选择在植物病原体效应子的存在下产生过敏反应的玉蜀黍植物。在进一步的实施例中,所述方法包括使选择的玉蜀黍植物与第二玉蜀黍植物杂交。在一些实施例中,从植物病原体的田间群体中鉴定植物病原体效应子的第二等位基因,或者植物病原体效应子的第二等位基因表明田间抗性的增加,其中病原体效应子包含SEQ ID NO:4。
在一些实施例中,监测疾病抗性基因有效性的方法包括a)将来自田间衍生的病原体菌株的植物病原体效应子基因和萤光素酶基因转染至玉蜀黍原生质体中,其中所述玉蜀黍原生质体来源于对植物病原体具有抗性的至少一个玉蜀黍植物;b)测量萤光素酶活性;c)将来自相同的田间衍生的病原体菌株的植物病原体效应子基因的第二等位基因和萤光素酶报告基因转染至玉蜀黍原生质体中;d)测量萤光素酶活性;以及e)比较来自第一和第二植物病原体效应子基因等位基因的萤光素酶活性,其中植物病原体效应子包含SEQ IDNO:4。
在一些实施例中,鉴定非宿主抗性基因的方法包括a)将至少一个植物病原体效应子基因和萤光素酶基因转染至非宿主原生质体中,其中所述非宿主原生质体来源于对植物病原体未显示出表型变化的至少一种植物;b)测量萤光素酶活性;以及c)选择具有如下原生质体的非宿主植物,所述原生质体在植物病原体效应子的存在下产生过敏反应。在进一步的实施例中,鉴定因果基因对如SEQ ID NO:4所示的植物病原体效应子的非宿主抗性。
附图说明
图1示出PPG1259在来自Rppk转基因植物的原生质体中表达诱导HR。
图2示出携带Rppk基因组DNA和35S:PPG1259的构建体的共浸润在本氏烟草(Nicotiana benthamiana)中诱导HR。
图3示出GST-PPG1259蛋白质的浸润导致Rppk转基因植物的叶片的细胞死亡。
序列表说明
Figure BDA0003023972790000051
具体实施方式
如本文使用的,单数形式“一个/种(a/an)”以及“所述(the)”包括复数个指示物,除非上下文中另有明确指明。因此,例如,提及“细胞”包括多个此类细胞,并且提及“蛋白质”包括提及一种或多种蛋白及其等同物,等等。本文所用的所有技术和科学术语具有与本公开所属领域的普通技术人员通常所理解相同的含义,除非另有明确说明。
为了使宿主植物成功定植或感染,植物病原体必须阻断宿主防御或免疫应答。植物免疫系统的第一重防御是基础防御应答,其由病原体相关分子模式(PAMP),病原体之间的保守的分子特征(例如,对于真菌来说是壳多糖)引发。PAMP引发的免疫力(PTI)涉及细胞表面模式识别受体(PRR)。病原体分泌效应子(其通常是小而独特的蛋白质,不具有已知的功能)来调节宿主细胞生理机能,抑制PTI并促进易感性。反过来,植物已经发展出第二重防御,效应子引发的免疫力(ETI),其涉及通过细胞内受体检测特定的无毒性效应子。这些细胞内免疫受体是核苷酸结合结构域和富含亮氨酸的重复(NLR)蛋白。NLR通过直接相互作用或通过间接检测来识别其同源效应子。这一识别通常引发过敏反应(HR)、程序性细胞死亡和ETI的标志。
R基因的NBS-LRR(“NLR”)组是迄今为止发现的最大类的R基因。在拟南芥(Arabidopsis thaliana)中,预计基因组中会存在超过150种NLR基因(Meyers等人,(2003),Plant Cell[植物细胞],15:809-834;Monosi等人,(2004),Theoretical andApplied Genetics[理论与应用遗传学],109:1434-1447),而在稻中,已经预测了大约500种NLR基因(Monosi,(2004)同上)。R基因的NBS-LRR类由两个亚类组成。1类NLR基因在其N′末端含有TIR-Toll/白介素-1样结构域;迄今为止仅在双子叶植物中发现了它们(Meyers,(2003)同上;Monosi,(2004)同上)。NBS-LRR的第二类在其N末端含有卷曲螺旋结构域或(nt)结构域(Bai等人(2002)Genome Research[基因组研究],12:1871-1884;Monosi,(2004)同上;Pan等人,(2000),Journal of Molecular Evolution[分子进化杂志],50:203-213)。在双子叶植物和单子叶植物物种中都发现了第2类NBS-LRR。(Bai,(2002)同上;Meyers,(2003)同上;Monosi,(2004)同上;Pan,(2000)同上)。
该基因的NBS结构域似乎在植物防御机制的信号传导中起作用(van der Biezen等人,(1998),Current Biology[当代生物学]:CB,8:R226-R227)。LRR区域似乎是与病原体AVR产物相互作用的区域(Michelmore等人,(1998),Genome Res.[基因组研究],8:1113-1130;Meyers,(2003)同上)。与NB-ARC(NBS)结构域相比,该LRR区域承受着更大的选择压力以多样化(Michelmore,(1998)同上;Meyers,(2003)同上;Palomino等人,(2002),GenomeResearch[基因组研究],12:1305-1315)。LRR结构域也可以发现于其他背景中;这些20-29个残基的基序在许多蛋白质中串联排列,这些蛋白质具有多种功能,例如激素-受体相互作用、酶抑制、细胞粘附和细胞运输。最近的许多研究表明,LRR蛋白参与了哺乳动物的早期发育、神经发育、细胞极化、基因表达的调节和细胞凋亡信号传导。
本公开的实施例的抗性基因编码新颖R基因。最多的R基因对应于NBS-LRR类型。还存在许多已鉴定的WAK R型基因。尽管已描述了多个NBS-LRR基因,但它们对不同病原体的应答和确切作用可能存在很大差异。
位置克隆(或基于图谱的克隆)已成为鉴定导致疾病抗性变化的因果基因的主要方法。在这种方法中,将抗性品系与易感品系杂交以生成针对抗性和易感性分离的定位群体。用基因分型和表型分型数据进行连锁定位以检测疾病QTL(定量性状基因座)或疾病抗性基因座。主要疾病QTL通过与易感亲本的回交被“孟德尔化(mendenlized)”,并得到了验证。然后,将经过验证的QTL精细定位到具有较大分离群体(通常有3000多个个体)的小区间中。经由BAC克隆鉴定/测序或基因组测序从抗性品系获得涵盖QTL区间的序列。注释基因组序列,在转基因植物中鉴定和测试候选基因。在转基因植物中赋予抗性的候选基因是疾病QTL的因果基因。
如本文所用,“疾病抗性”或“对疾病具有抗性”是指与为易感植物的对照植物相比显示出对疾病的增加的抗性的植物。疾病抗性可以表现为更少和/或更小的病变、增加的植物健康、增加的产量、增加的根质量、增加的植物活力、更少或没有褪色、增加的生长、减少的坏死面积或减少的枯萎。
影响玉蜀黍植物的疾病包括但不限于细菌性叶枯病和茎腐病(bacterialleafblight and stalk rot);细菌性叶斑病(bacterial leaf spot);细菌性条斑病(bacterial stripe);蚕豆赤斑病(chocolate spot);高斯细菌性枯萎病和疫病(goss′sbacterial wilt and blight);绒毛草叶斑病(holcus spot);叶鞘紫斑病(purple leafsheath);种子腐烂-幼苗枯萎病(seed rot-seedling blight);细菌性枯萎病(bacterialwilt);玉蜀黍矮缩病(corn stunt);炭疽叶枯病(anthracnose leaf blight);炭疽茎腐病(anthracnose stalk rot);曲霉属穗和籽粒腐病(aspergillus ear and kernel rot);带状叶和叶鞘斑病(banded leafand sheath spot);黑束病(black bundle disease);黑粒腐病(black kernel rot);白边病(borde blanco);褐斑病(brown spot);黑斑病(blackspot);茎腐病(stalk rot);头孢霉粒腐病(cephalosporium kernel rot);木炭腐病(charcoal rot);伏革菌穗腐病(corticium ear rot);弯孢霉叶斑病(curvularia leafspot);亚隔孢壳叶斑病(didymella leaf spot);色二孢穗腐和茎腐病(diplodia ear rotand stalk rot);色二孢穗腐病(diplodia ear rot);种子腐烂病(seed rot);玉米幼苗枯萎病(corn seedling blight);色二孢叶斑或叶条斑病(diplodia leaf spot or leafstreak);霜霉病(downy mildews);褐条霜霉病(brown stripe downy mildew);疯顶霜霉病(crazy top downy mildew);绿穗霜霉病(green ear downy mildew);禾生霜霉病(graminicola downy mildew);爪哇霜霉病(java downy mildew);菲律宾霜霉病(philippine downy mildew);高粱霜霉病(sorghum downy mildew);甜根子草霜霉病(spontaneum downy mildew);甘蔗霜霉病(sugarcane downy mildew);干穗腐病(dry earrot);麦角症(ergot);马牙病(horse′s tooth);玉米眼斑病(corn eyespot);镰刀菌属穗和茎腐病(fusarium ear and stalk rot);镰刀菌属枯萎病(fusarium blight);幼苗根腐病(seedling root rot);赤霉菌属穗和茎腐病(gibberella ear and stalk rot);灰穗腐病(gray ear rot);灰叶斑病(gray leaf spot);尾孢菌叶斑病(cercospora leaf spot);长蠕孢根腐病(helminthosporium root rot);单孢枝霉穗腐病(hormodendrum ear rot);分枝孢子腐烂病(cladosporium rot);透斑菌叶斑病(hyalothyridium leaf spot);晚枯病(late wilt);北方叶枯病(northern leafblight);白爆病(white blast);冠茎腐病(crown stalk rot);玉米条斑病(corn stripe);圆斑病(northern leaf spot);长蠕孢霉穗腐病(helminthosporium ear rot);青霉菌穗腐病(penicillium ear rot);玉米蓝眼病(corn blue eye);霜霉病(blue mold);暗色座腔孢属茎腐和根腐病(phaeocytostromastalk rot and root rot);暗球腔菌叶斑病(phaeosphaeria leaf spot);囊孢菌穗腐病(physalospora ear rot);葡萄座腔菌穗腐病(botryosphaeria ear rot);棘壳孢茎腐和根腐病(pyrenochaeta stalk rot and root rot);腐霉根腐病(pythium root rot);腐霉茎腐病(pythium stalk rot);红粒病(red kernel disease);丝核菌穗腐病(rhizoctoniaear rot);菌核腐病(sclerotial rot);丝核菌根腐和茎腐病(rhizoctonia root rot andstalk rot);喙叶斑病(rostratum leaf spot);普通型玉米锈病(common com rust);南方玉米锈病(southern corn rust);热带玉米锈病(tropical corn rust);小菌核穗腐病(sclerotium ear rot);南方叶枯病(southern blight);壳月孢叶斑病(selenophomaleaf spot);鞘腐病(sheath rot);壳腐病(shuck rot);青贮霉病(silage mold);瘤黑粉病(common smut);稻曲病(false smut);丝黑穗病(head smut);南方玉米叶枯病和茎腐病(southern corn leaf blight and stalk rot);南方叶斑病(southern leaf spot);黑肿病(tar spot);木霉穗腐和根腐病(trichoderma ear rot and root rot);白穗腐、根茎腐病(white ear rot,root and stalk rot);黄色叶枯病(yellow leafblight);桑轮叶斑病(zonate leaf spot);美洲小麦条点(小麦条点花叶病(wheat striate mosaic));大麦条纹花叶病(barley stripe mosaic);麦黄矮病(barley yellow dwarf);雀麦花叶病(bromemosaic);谷物褪绿斑驳病(cereal chlorotic mottle);致命坏死(玉蜀黍致命坏死病(maize lethal necrosis disease));黄瓜花叶病(cucumber mosaic);约翰逊草花叶病毒(johnsongrass mosaic);玉蜀黍丛矮病(maize bushy stunt);玉蜀黍褪绿矮缩病(maizechlorotic dwarf);玉蜀黍褪绿斑驳病(maize chlorotic mottle);玉蜀黍矮花叶病(maize dwarf mosaic);玉蜀黍枯斑病(maize leaf fleck);玉蜀黍透明环斑病(maizepellucid ringspot);玉蜀黍雷亚多非纳病(maize rayado fino);玉蜀黍红叶和红条斑病(red leafand red stripe);玉蜀黍红条斑病(maize red stripe);玉蜀黍环斑点病(maize ring mottle);玉蜀黍粗矮缩病(maize rough dwarf);玉蜀黍不育矮化病(maizesterile stunt);玉蜀黍条斑病(maize streak);玉蜀黍条斑病(maize stripe);玉蜀黍穗折病(maize tassel abortion);玉蜀黍叶脉突起病(maize vein enation);玉蜀黍鼠耳病(maize wallaby ear);玉蜀黍白叶病(maize white leaf);玉蜀黍白线花叶病(maizewhite line mosaic);粟红叶病(millet red leaf);和北方禾谷花叶病(northern cerealmosaic)。
影响稻植物的疾病包括但不限于细菌性枯萎病(bacterial blight);细菌性叶条斑病(bacterial leaf streak);基腐病(foot rot);谷物腐烂病(grain rot);褐鞘病(sheath brown rot);爆病(blast);褐斑病(brown spot);冠鞘腐病(crown sheath rot);霜霉病(downy mildew);眼斑病(eyespot);稻曲病(false smut);粒黑穗病(kernelsmut);叶黑粉病(leaf smut);叶烫伤(leaf scald);窄褐叶斑病(narrow brown leafspot);根腐病(root rot);幼苗枯萎病(seedling blight);纹枯病(sheath blight);鞘腐病(sheath rot);叶鞘斑病(sheath spot);链格孢叶斑病(alternaria leaf spot);和茎腐病(stem rot)。
影响大豆植物的疾病包括但不限于链格孢叶斑病(alternaria leaf spot);炭疽病(anthracnose);黑色叶枯病(black leaf blight);黑根腐病(black root rot);褐斑病(brown spot);褐茎腐病(brown stem rot);木炭腐病(charcoal rot);笄霉叶枯病(choanephora leaf blight);霜霉病(downy mildew);内脐蠕孢枯萎病(drechslerablight);蛙眼叶斑病(frogeye leaf spot);小光壳叶斑病(leptosphaerulina leafspot);mycoleptodiscus根腐病(mycoleptodiscus root rot);新赤壳茎腐病(neocosmospora stem rot);拟茎点霉烂种病(phomopsis seed decay);疫霉根和茎腐病(phytophthora root and stem rot);叶点霉叶斑病(phyllosticta leaf spot);瘤梗孢根腐病(phymatotrichum root rot);黑点病(pod and stem blight);白粉病(powderymildew);紫斑病(purple seed stain);棘壳孢叶斑病(pyrenochaeta leaf spot);腐霉腐病(pythium rot);红冠腐病(red crown rot);疏毛核菌霉属叶斑病(dactuliophora leafspot);气生丝核菌枯萎病(rhizoctonia aerial blight);丝核菌根和茎腐病(rhizoctonia root and stem rot);锈病(rust);疮痂病(scab);核盘菌茎腐病(sclerotinia stem rot);菌核病(sclerotium blight);茎溃疡(stem canker);匍柄霉叶枯病(stemphylium leaf blight);猝死综合征(sudden death syndrome);轮斑病(targetspot);酵母斑病(yeast spot);兰斯线虫(lance nematode);腐线虫(lesion nematode);针线虫(pin nematode);肾形线虫(reniform nematode);环线虫(ring nematode);根结线虫(root-knot nematode);鞘线虫(sheath nematode);胞囊线虫(cyst nematode);旋线虫(spiral nematode);刺线虫(sting nematode);短粗根线虫(stubby root nematode);矮化线虫(stunt nematode);苜蓿花叶病(alfalfa mosaic);菜豆荚斑驳病(bean podmottle);菜豆黄花叶病(bean yellow mosaic);巴西芽枯病(brazilian bud blight);褪绿斑驳病(chlorotic mottle);黄色花叶病(yellow mosaic);花生斑驳病(peanutmottle);花生条斑病(peanut stripe);花生矮化病(peanut stunt);褪绿斑驳病(chlorotic mottle);皱叶病(crinkle leaf);矮缩病(dwarf);严重矮化病(severestunt);和烟草环斑或芽枯病(tobacco ringspot or bud blight)。
影响低芥酸菜籽植物的疾病包括但不限于细菌性黑腐病(bacterial blackrot);细菌性叶斑病(bacterial leaf spot);细菌性荚果腐病(bacterial pod rot);细菌性软腐病(bacterial soft rot);疮痂病(scab);冠瘤病(crown gall);链格孢黑斑病(alternaria black spot);炭疽病(anthracnose);黑脚病(black leg);黑霉腐(blackmold rot);黑腐病(black root);褐色环剥根腐病(brown girdling root rot);尾孢菌叶斑病(cercospora leaf spot);根瘤病(clubroot);霜霉病(downy mildew);镰刀菌属枯萎病(fusarium wilt);灰霉病(gray mold);丝腐病(head rot);叶斑病(leaf spot);浅叶斑病(light leaf spot);荚果腐病(pod rot);白粉病(powdery mildew);环斑病(ringspot);根腐病(root rot);核盘菌茎腐病(sclerotinia stem rot);种子腐烂猝倒病(seedrot,damping-off);根黑瘤病(root gall smut);南方叶枯病(southern blight);轮枝孢枯萎病(verticillium wilt);白叶枯病(white blight);白叶斑病(white leaf spot);枯丝病(staghead);枯黄病(yellows);皱果病毒(crinkle virus);花叶病毒(mosaicvirus);枯黄病毒(yellows virus);
影响向日葵植物的疾病包括但不限于顶端萎黄病(apical chlorosis);细菌性叶斑病(bacterial leaf spot);细菌性枯萎病(bacterial wilt);冠瘤病(crown gall);欧文氏菌茎腐和丝腐病(erwinia stalk rot and head rot);链格孢叶枯、茎斑和丝腐病(lternaria leafblight,stem spot and head rot);葡萄孢丝腐病(botrytis headrot);木炭腐病(charcoal rot);霜霉病(downy mildew);镰刀菌属茎腐病(fusariumstalk rot);镰刀菌属枯萎病(fusarium wilt);漆斑菌叶和茎腐病(myrothecium leafand stem spot);瓶霉枯黄病(Phialophora yellows);茎点霉黑茎病(phoma blackstem);磷霉褐茎溃疡(phomopsis brown stem canker);瘤梗孢根腐病(phymatotrichumroot rot);疫霉茎腐病(phytophthora stem rot);白粉病(powdery mildew);腐霉苗枯和根腐病(pythium seedling blight and root rot);丝核菌苗枯病(rhizoctoniaseedling blight);根霉丝腐病(rhizopus head rot);向日葵锈病(sunflower rust);菌核基底茎和根腐病(sclerotium basal stalk and root rot);壳针孢叶斑病(septorialeaf spot);轮枝孢枯萎病(verticillium wilt);白锈病(white rust);条锈病(yellowrust);短剑形;针形;病变;肾形;根瘤病;和褪绿斑驳病(chlorotic mottle);
影响高粱植物的疾病包括但不限于细菌性叶斑病(bacterial leaf spot);细菌性叶条斑病(bacterial leaf streak);细菌性叶条斑病(bacterial leaf stripe);枝顶孢枯萎病(acremonium wilt);炭疽病(anthracnose);木炭腐病(charcoal rot);疯顶霜霉病(crazy top downy mildew);猝倒和种子腐烂病(damping-off and seed rot);麦角症(ergot);镰刀菌属丝枯、根和茎腐病(fusarium head blight,root and stalk rot);谷物储存霉病(grain storage mold);灰叶斑病(gray leaf spot);后叶斑病(latter leafspot);叶枯病(leaf blight);米洛病(milo disease);卵形叶斑病(oval leaf spot);甘蔗梢腐病(pokkah boeng);腐霉根腐病(pythium root rot);粗糙叶斑病(rough leafspot);锈病(rust);苗枯和种子腐烂病(pythium seedling blight and root rot);覆盖粒黑穗病(smut,covered kernel);丝黑穗病(smut,head);松散粒黑穗病(smut,loosekernel);黑条斑病(sooty stripe);霜霉病(downy mildew);黑肿病(tar spot);靶斑病(target leaf spot);以及轮纹叶斑和纹枯病(zonate leaf spot and sheath blight)。
具有疾病抗性的植物与对照植物相比可具有5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或100%的增加的抗性。在一些实施例中,植物在疾病存在下与对照植物相比可具有5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95或100%增加的植物健康。
如本文所用,术语“聚类”或“聚类方法”意指使用最近邻居连接算法、例如沃德方法的分级聚类、最大似然方法或任何其他聚类算法或方法以位置不可知的方式对序列进行池化和聚类。
术语“杂交的”或“杂交”是指有性杂交,并且涉及通过授粉将两种单倍体配子融合以产生二倍体后代(例如细胞、种子或植物)。该术语涵盖一株植物被另一株植物授粉和自交(或自体授粉,例如当花粉和胚珠来自同一植物时)二者。
“良种系”是针对优良农艺性状表现的育种而产生的任何品系。
“外来品种”、“热带品系”或“外来种质”是衍生自不属于可利用的优良品系或种质品种的植物的品种。在两个植物或种质品种之间杂交的情况下,外来种质的后代与它杂交的优良种质不是密切相关的。最普遍的是,所述外来种质不是衍生自任何已知的优良品系,而是被选择用来将新的遗传元件(通常是新的等位基因)引入育种程序中。
“有利的等位基因”是特定基因座的等位基因(标记、QTL、基因等),所述等位基因赋予或有助于农学上所需的表型(例如疾病抗性),并且允许鉴定具有该农学上所需表型的植物。标记的有利等位基因是与所述有利表型分离的标记等位基因。
“遗传标记”是在群体中多态的核酸,并且所述遗传标记的等位基因可以通过一种或多种分析方法(例如RFLP、AFLP、同工酶、SNP、SSR等)来检测和区分。该术语还指与用作探针的基因组序列(例如核酸)互补的核酸序列。可以通过本领域中公认的方法检测对应于群体成员之间的遗传多态性的标记。这些方法包括,例如基于PCR的序列特异性扩增方法、限制性片段长度多态性检测(RFLP)、同功酶标记检测、通过等位基因特异性杂交(ASH)进行的多核苷酸多态性检测、植物基因组的扩增可变序列检测、自主序列复制检测、简单重复序列检测(SSR)、单核苷酸多态性检测(SNP)、或扩增片段长度多态性检测(AFLP)。已知公认的方法也用于检测表达的序列标签(EST)和衍生自EST序列的SSR标记,以及随机扩增多态性DNA(RAPD)。
“种质”是指遗传物质,其属于或来自于个体(例如,植株)、个体的组(例如,植物品系、品种或家族)或者来自品系、品种、物种或培养物的克隆,或者更概括地,某一物种或多个物种的全部个体(例如,玉蜀黍种质集合(maize germplasm collection)或Andean种质集合(Andean germplasmcollection))。所述种质可以是生物体或细胞的一部分,或者可以分离自所述生物体或细胞。一般而言,种质提供了具有特定的分子构成的遗传物质,所述特定的分子构成为生物体或细胞培养物的某些或全部遗传品质提供物理基础。如本文所使用的,种质包括由此可以生长出新植物的细胞、种子或组织,或者可以培养成完整植物的植物部分,例如叶、茎、花粉或细胞。
“单倍型”是个体在多个遗传基因座处的基因型,即等位基因的组合。典型地,由单倍型描述的遗传基因座在物理和遗传上是连锁的,即在同一染色体区段上。
术语“异质性”用于指示所述群组内的个体在一个或多个特定基因座处的基因型不同。
材料的杂种优势应答或“杂种优势”可以通过当与其他不相似或不相关的群组杂交时超过亲本(或高亲本(high parent))的平均值的表现来定义。
“杂种优势组”包括一组当与来自不同的杂种优势组的基因型杂交时表现良好的基因型(Hallauer等人,(1998)Corn breeding[玉米育种],第463-564页,在G.F.Sprague和J.W.Dudley编辑,Corn and corn improvement[玉米和玉米的改良]中)。近交系分为杂交体优势组,并根据几个标准(如谱系、基于分子标记的关联和杂交体组合中的表现)进一步细分为杂交体优势组中的家族(Smith等人,(1990)Theor.Appl.Gen.[理论与应用遗传学]80:833-840)。在美国,两个应用最广泛的杂种优势群组称为“爱荷华刚性茎秆合成群(IowaStiff Stalk Synthetic)”(本文中也称为“刚性茎杆”)和“兰卡斯特(Lancaster)”或“兰卡斯特修尔作物(Lancaster Sure Crop)”(有时称为NSS或非刚性茎杆)。
有些杂种优势群组具备成为母本所需的性状,并且另一些具备成为父本所需的性状。例如,在玉蜀黍中,来自称为BSSS(爱荷华刚性茎秆合成群体)的群体释放的公开近交系的产量结果导致这些近交系及其衍生物成为中部玉米带中的雌性库。BSSS近交系已经与其他近交系(例如,SD 105和玉蜀黍阿曼巴(Maiz Amargo))杂交,而这个材料的一般组已经以刚性茎秆合成(Stiff Stalk Synthetics,SSS)闻名,即使并非所有的近交系都来源于原始的BSSS群体(Mikel和Dudley,(2006)Crop Sci[作物科学]:46:1193-1205)。默认情况下,所有与所述SSS近交系良好结合的其他近交系被分配到雄性库,因缺乏更好的名称而被命名为NSS,即非刚性茎秆。这个群组包括几个主要的杂种优势群组,例如兰卡斯特修尔作物(Lancaster Surecrop)、艾顿(Iodent)和利明玉米(Leaming Corn)。
术语“同质性”表示群组的成员在一个或多个特定基因座处具有相同的基因型。
术语“杂交体”是指在至少两个遗传上不同的亲本的杂交之间获得的后代。
术语“近交系”是指已经进行育种以获得遗传同质性的品系。
术语“插入缺失(indel)”是指插入或缺失,其中一个品系可以称为相对于第二品系具有插入的核苷酸或DNA碎片,或所述第二品系可以称为相对于所述第一品系具有缺失的核苷酸或DNA碎片。
术语“渗入”是指基因座的期望等位基因从一种遗传背景传递到另一种遗传背景的现象。例如,可以经由相同物种的两个亲本之间的有性杂交将指定基因座处的所需等位基因的渗入传递给至少一个子代,其中所述亲本中的至少一个在其基因组内具有所述所需的等位基因。可替代地,例如等位基因的传递可以通过两个供体基因组之间的重组而发生,例如在融合原生质体中,其中至少其中一个供体原生质体在其基因组中具有所希望的等位基因。所需的等位基因可以,例如通过与表型相关联的标记,在QTL、转基因等处进行检测。在任何情况下,包含所述所需等位基因的后代可以反复与具有所需遗传背景的品系回交并选择所需等位基因,以产生固定在选择的遗传背景中的等位基因。
当“渗入”重复两次或更多次时,该方法通常被称为“回交”。
“品系”或“品种”是一组具有相同亲本的个体,其通常在一定程度上是近交的,并且在大多数基因座处通常是纯合和同质的(同基因的或接近同基因的)。“亚系”是指遗传上不同于起源于相同祖先的其他类似近交系亚群的近交系亚群。
如本文所使用的,术语“连锁”用于描述一种标记基因座与另一种标记基因座或一些其他基因座的相关联程度。分子标记与影响表型的基因座之间的连锁关系以“概率”或“调整的概率”表示。连锁可以表示为所需的限制或范围。例如,在一些实施例中,当任何标记与任何其他标记在单次减数分裂图谱(基于已经进行一轮减数分裂的群体(例如,F2)的遗传图谱;IBM2图谱由多次减数分裂组成)上分隔小于50、40、30、25、20或15个图距单位(或cM)时,所述标记是连锁的(遗传上或物理上)。在一些方面,限定加括号的连锁范围是有利的,例如,在10cM和20cM之间、在10cM和30cM之间、或在10cM和40cM之间。标记与第二基因座的连锁越紧密,标记对第二基因座的指示效果越好。因此,“紧密连锁的基因座”,例如标记基因座和第二基因座显示10%或更低、优选约9%或更低、还更优选约8%或更低、又更优选约7%或更低、还更优选约6%或更低、又更优选约5%或更低、还更优选约4%或更低、又更优选约3%或更低、以及还更优选约2%或更低的基因座间重组频率。在非常优选的实施例中,相关基因座显示约1%或更低,例如约0.75%或更低、更优选约0.5%或更低、或又更优选约0.25%或更低的重组频率。定位于相同染色体并且具有使得两个基因座之间的重组以小于10%(例如,约9%、8%、7%、6%、5%、4%、3%、2%、1%、0.75%、0.5%、0.25%或更少)的频率发生的距离的所述两个基因座也被认为是彼此“邻近”。因为一个cM是显示1%的重组频率的两个标记之间的距离,因此任何标记与紧密相邻(例如,以等于或小于10cM的距离)的任何其他标记紧密连锁(遗传上和物理上)。在相同染色体上的两个紧密连锁的标记可相互定位为9、8、7、6、5、4、3、2、1、0.75、0.5或0.25cM或更近。
术语“连锁不平衡”是指遗传基因座或性状(或两者)的非随机分离。在任一情况下,连锁不平衡意味着相关的基因座沿着一段染色体在物理上足够接近,以便它们以高于随机(即非随机)的频率一起分离。显示连锁不平衡的标记被认为是连锁的。连锁的基因座有超过50%的机会(例如约51%至约100%的机会)发生共分离。换句话说,共分离的两个标记具有小于50%(并且根据定义,在相同连锁群上分隔小于50cM)的重组频率。如本文所使用的,连锁可以存在于两个标记之间,或可替代地,标记和影响表型的基因座之间。标记基因座可以与性状“相关联”(连锁)。标记基因座和影响表型性状的基因座的连锁程度例如通过该分子标记与所述表型共分离的统计学概率(例如,F统计或LOD评分)进行测量。
连锁不平衡最常见地用量度r2评估,所述量度r2使用以下文献中的公式计算:Hill,W.G.和Robertson,A,Theor.Appl.Genet.[理论和应用遗传学]38:226-231(1968)。当r2=1时,两个标记基因座间存在完全的LD,意味着所述标记还未进行重组分离并且具有相同的等位基因频率。所述r2值依赖于所使用的群体。r2值大于1/3显示了用于定位的足够强的LD(Ardlie等人,Nature Reviews Genetics[遗传学自然评论]3:299-309(2002))。因此,当成对标记基因座间的r2值大于或等于0.33、0.4、0.5、0.6、0.7、0.8、0.9、或1.0时,等位基因处于连锁不平衡。
如本文所使用的,“连锁平衡”描述其中两个标记独立地分离的情况,即,在后代中随机分配。显示连锁平衡的标记被认为是不连锁的(无论它们是否位于相同染色体上)。
“基因座”是在染色体上的位置,例如,核苷酸、基因、序列或标记所处的位置。
“优势对数(LOD)值”或“LOD评分”(Risch,Science[科学]255:803-804(1992))用于遗传区间定位以描述两个标记基因座之间的连锁程度。两个标记间LOD评分为三指示连锁概率比无连锁的概率高1000倍,而LOD评分为二指示连锁概率比无连锁的概率高100倍。大于或等于二的LOD评分可以用于检测连锁。LOD评分还可以用于在“数量性状基因座”作图中显示标记基因座和数量性状之间的关联强度。在这一情况下,LOD评分大小取决于所述标记基因座与影响所述数量性状的基因座之间的紧密度,以及所述数量性状效应的大小。
术语“植物”包括整个植株、植物细胞、植物原生质体、可从其中再生植株的植物细胞或组织培养物、植物愈伤组织、植物丛生物和植物中的完整植物细胞或植物部分,如种子、花、子叶、叶、茎、芽、根、根尖等。如本文所用,“经修饰的植物”意指由于人为干预而具有遗传变化的任何植物。经修饰的植物可具有通过植物转化、基因组编辑或常规植物育种引入的遗传变化。
“标记”是发现遗传或物理图谱上的位置或发现标记与性状基因座(影响性状的基因座)之间的连锁的方式。标记所检测的位置可通过检测多态性等位基因及其遗传定位而获知,或通过对已经进行物理标测的序列进行杂交、序列匹配或扩增而获知。标记可以是DNA标记(检测DNA多态性)、蛋白质(检测编码的多肽的变异)或简单遗传的表型(诸如“腊质”表型)。可从基因组核苷酸序列或从表达的核苷酸序列(例如,从剪接的RNA或cDNA)开发DNA标记。根据DNA标记技术,所述标记由侧接于所述基因座的互补性引物和/或与所述基因座处的多态性等位基因杂交的互补性探针组成。DNA标记或遗传标记还可用于描述该染色体自身上的基因、DNA序列或核苷酸(而非用于检测该基因或DNA序列的组分),并且其通常在该DNA标记与人遗传学中的特定性状相关联时使用(例如乳腺癌标记)。术语标记基因座是该标记所检测的基因座(基因、序列或核苷酸)。
检测群体成员之间的遗传多态性的标记在本领域中是公认的。标记可由其所检测的多态性的类型以及用于检测所述多态性的标记技术所定义。标记类型包括但不限于:限制性片段长度多态性检测(RFLP)、同功酶标记检测、随机扩增的多态性DNA(RAPD)、扩增片段长度多态性检测(AFLP)、简单重复序列检测(SSR)、植物基因组的扩增可变序列检测、自主序列复制检测、或单核苷酸多态性检测(SNP)。SNP可通过,例如,通过DNA测序、基于PCR的序列特异性扩增方法、通过等位基因特异性杂交(ASH)进行的多核苷酸多态性检测、动态等位基因特异性杂交(DASH)、分子信标、微阵列杂交、寡核苷酸连接酶分析、Flap核酸内切酶、5’核酸内切酶、引物延伸、单链构象多态性(SSCP)或温度梯度凝胶电泳(TGGE)进行检测。DNA测序(诸如焦磷酸测序技术)具有能够检测组成单倍型的一系列连锁SNP等位基因的优点。单倍型倾向于比SNP更具信息性(检测更高水平的多态性)。
“标记等位基因”,可替代地“标记基因座的等位基因”可以指群体中标记基因座处发现的多个多态性核苷酸序列中之一。
“标记辅助选择”(MAS)是基于标记基因型选择个体植物的方法。
“标记辅助反选择”是借以使用标记基因型鉴定将不被选择的植物的方法,使得所述植物从育种程序或种植中去除。
“标记单倍型”是指标记基因座处的等位基因的组合。
“标记基因座”是物种基因组中的特定染色体定位,在该定位处可发现特异标记。标记基因座可用于追踪第二连锁基因座(例如影响表型性状表达的连锁基因座)的存在。例如,标记基因座能够用于监测在遗传上或物理上连锁的基因座处的等位基因的分离。
如上所述,当鉴定连锁基因座时,术语“分子标记”可以用于指遗传标记,或其用作参照点的编码产物(例如,蛋白质)。标记能够来源于基因组核苷酸序列或来源于表达的核苷酸序列(例如来源于剪接的RNA、cDNA等),或来源于编码的多肽。该术语也指与标记序列互补或与其侧接的核酸序列,如用作探针或能够扩增所述标记序列的引物对的核酸。“分子标记探针”是可以用于鉴定标记基因座存在与否的核酸序列或分子,例如与标记基因座序列互补的核酸探针。可替代地,在某些方面,标记探针是指能够区别存在于标记基因座处的特定等位基因的任何类型(即基因型)的探针。当核酸在溶液中特异性杂交时,它们是“互补的”。当位于插入缺失区域,例如本文所述的非共线区域时,本文所述标记中的一些也称为杂交标记。这是因为,根据定义,所述插入区域是关于无所述插入的植物的多态性。因此,该标记仅需要指示所述插入缺失区域是否存在。任何合适的标记检测技术都可以用于鉴定此类杂交标记,例如在本文提供的实例中使用SNP技术。
当等位基因与性状连锁时,以及当等位基因的存在是所需性状或性状形式将不出现在包含所述等位基因的植物中的指示时,所述等位基因与所述性状“负”相关。
术语“表型”、“表型性状”或“性状”可以指基因或基因系列的可观测表达。表型对于肉眼、或通过本领域已知的任何其他评估方式(例如称重、计数、测量(长度、宽度、角度等)、显微法、生化分析或机电测定)可以是可观测的。在某些情况下,表型直接受控于单个基因或遗传基因座,即,“单基因性状”或“简单遗传性状”。在缺少大水平环境变化的情况下,单基因性状可以在群体中分离,以给出“质量”或“离散”分布,即,所述表型归于离散的类别。在其他情况下,表型是多种基因的结果并且可以被认为是“多基因性状”或“复杂性状”。多基因性状在群体中分离以给出“数量”或“连续”分布,即,所述表型不能分离成离散的类别。单基因性状和多基因性状均可受到其表达所处的环境的影响,但是多基因性状倾向于具有更大的环境组分。
基因组的“物理图谱”是显示染色体DNA上可鉴定的标志(包括基因、标记等)的线性顺序的图谱。然而,与遗传图谱相比,标志间的距离是绝对的(例如以碱基对或者分离的和重叠的连续基因片段测量)并且不基于基因重组(所述基因重组可在不同的群体中有所变化)。
“多态性”是群体内2个或更多个个体之间的DNA中的变异。多态性在群体中优选地具有至少1%的频率。有用的多态性可以包括单核苷酸多态性(SNP)、简单重复序列(SSR)、或插入/缺失多态性(本文中也称为“插入缺失”)。
“生产标记”或“生产SNP标记”是已经为高通量目的而开发的标记。生产SNP标记被开发用于检测特异性多态性,并且被设计与多种化学反应和平台一起使用。
术语“数量性状基因座”或“QTL”是指在至少一种遗传背景下(例如在至少一个育种群体中),与数量表型性状的差异表达关联的DNA区域。QTL的区域涵盖或紧密地连锁于影响所考虑的性状的一个或多个基因。
“参考序列”或“共有序列”是用作序列比对基础的定义的序列。通过对在该基因座处的多个品系进行测序,在序列比对程序(例如Sequencher)中比对这些核苷酸序列并且然后获得所述比对的最通用核苷酸序列来获得标记的参考序列。见于这些个体序列中的多态性标注于所述共有序列中。参考序列通常并非任何个体DNA序列的精确复制,而是代表可用序列的混合并且用于设计针对该序列内的多态性的引物和探针。
标记的“不利等位基因”是与所述不利植物表型分离的标记等位基因,因此提供了鉴定能从育种程序或种植中移除的植物的益处。
术语“产量”指具有商业价值的特定植物产品每单位面积的生产力。产量受遗传和环境因素二者的影响。“农学”、“农艺性状”、和“农艺性状表现”是指给定植物品种的性状(以及潜在遗传元件),所述性状在生长期过程中有助于产量。个体农艺性状包括出苗活力、营养势、胁迫耐受性、疾病抗性或耐受性、除草剂抗性、发生分枝、开花、种子形成、种子大小、种子密度、抗倒伏性、脱粒性等。因此产量是所有农艺性状的最终顶点。
本文提供了显示与疾病抗性性状的统计学上显著的共分离的标记基因座,所述性状赋予对一种或多种特定疾病广泛的抗性。这些基因座或另外的连锁基因座以及抗性基因的检测可以作为育种程序的一部分用于标记辅助选择中,以产生对一种或多种疾病具有抗性的植物。
遗传定位
已经认识到,在相当一些情况下可在生物体的基因组中定位与特定表型(例如疾病抗性)相关联的特定遗传基因座。植物育种人员可以有利地使用分子标记通过检测标记等位基因来鉴定所需的个体,所述标记等位基因显示与所需表型共分离的统计学上显著的概率,表现为连锁不平衡。通过鉴定与目的性状共分离的分子标记或分子标记簇,所述植物育种人员能够通过选择合适的分子标记等位基因(称为标记辅助选择或MAS的方法)来迅速选择所需表型。
本领域中已知的多种方法可用于检测与目的性状(例如疾病抗性性状)共分离的分子标记或分子标记簇。这些方法的基本理念是检测具有显著不同平均表型的可替代的基因型(或等位基因)的标记。因此,比较标记基因座之间的可替代的基因型(或等位基因)之间的差异大小或所述差异的显著性水平。推断性状基因位于最靠近具有最大相关性的基因型差异的一个或多个标记的位置。这样两种用于检测目的性状基因座的方法是:1)基于群体的关联分析(即关联定位)和2)传统的连锁分析。
关联定位
了解基因组中连锁不平衡(LD)的程度和模式是开发有效的、用以鉴定和绘制数量性状基因座(QTL)的关联方法的先决条件。连锁不平衡(LD)是指个体集合中等位基因的非随机关联。当在连锁的基因座处的等位基因中观察到LD时,LD被测量为跨越染色体的特定区域的LD衰减。LD的范围反映了该区域的重组历史。基因组中LD衰减的平均速率可以帮助预测进行全基因组关联研究所需的标记的数量和密度,并提供可预期的分辨率的估计值。
关联或LD定位旨在鉴定显著的基因型-表型关联。它已作为在异交如下物种中用于精细定位的强大工具而被开发利用:人类(Corder等人,(1994)“Protective effect ofapolipoprotein-E type-2 allele for late-onset Alzheimer-disease[载脂蛋白E 2型等位基因对迟发型阿尔茨海默病的保护作用]”,Nat Genet[自然遗传学]7:180-184;Hastbacka等人,(1992)“Linkage disequilibrium mapping in isolated founderpopulations:diastrophic dysplasia in Finland[在孤立的建立者群体中的连锁不平衡绘图:芬兰的畸型发育不良]”,Nat Genet[自然遗传学]2:204-211;Kerem等人,(1989)“Identification of the cystic fibrosis gene:genetic analysis[鉴定囊性纤维化基因:遗传分析]”,Science[科学]245:1073-1080)和玉蜀黍(Remington等人,(2001)“Structure of linkage disequilibrium and phenotype associations in the maizegenome[玉蜀黍基因组中连锁不平衡和表型关联的结构]”,Proc Natl Acad Sci USA[美国科学院院报]98:11479-11484;Thornsberry等人,(2001)“Dwarf8 polymorphismsassociate with variation in flowering time[矮秆8多态性与开花时间的变化相关联]”,Nat Genet[自然遗传学]28:286-289;由Flint-Garcia等人综述,(2003)“Structureof linkage disequilibrium in plants[植物中连锁不平衡的结构]”,Annu Rev PlantBiol.[植物生物学年评]54:357-374),其中杂合子之间的重组频繁并导致LD的快速衰减。在近交物种中,纯合基因型之间的重组不是遗传学上可检测的,LD的程度更大(即,较大的连锁标记块一起遗传)并且这大大提高了关联定位的检测能力(Wall和Pritchard,(2003)“Haplotype blocks and linkage disequilibrium in the human genome[人类基因组中的单倍型阻断和连锁不平衡]”,Nat Rev Genet[自然遗传学综述]4:587-597)。
群体的重组和突变历史是交配习惯以及群体的有效大小和年龄的函数。较大的群体大小为检测重组提供了增强的可能性,而较老的群体通常与较高水平的多态性相关,这两者都促进可观察到的LD衰退速率的显著增加。另一方面,较小的有效群体大小,例如那些已经经历了最近遗传瓶颈的群体,倾向于表现出较慢的LD衰退速率,导致更广泛的单倍型保守性(Flint-Garcia等人,(2003)“Structure of linkage disequilibrium in plants[植物连锁不平衡的结构]”,Annu Rev Plant Biol.[植物生物学年评]54:357-374)。
优良育种品系为关联分析提供了宝贵的起点。关联分析在该分析中使用定量表型评分(例如,对于每个品系,疾病耐受性等级从一至九)(而不是在分析的组间等位基因分布类型中只考虑耐受性与抗性等位基因频率分布)。多年来通过育种程序收集的详细表型性能数据的可用性和大量优良品系的环境为遗传标记关联定位分析提供了有价值的数据集。这为研究和应用之间的无缝整合铺平了道路,并利用了历史积累的数据集。然而,了解多态性与重组之间的关系对于开发用于从这些资源中有效提取最大信息的适当策略是有用的。
这种类型的关联分析既不产生也不需要任何图谱数据,而是独立于图谱位置。这种分析将植物的表型评分与不同基因座处的基因型进行比较。随后,使用先前确定的这些标记的图谱定位,可以任选地使用任何合适的图谱(例如,复合图谱)来帮助观察经鉴定的QTL标记和/或QTL标记簇的分布。
传统连锁分析
传统的连锁分析基于相同的原理;然而,LD通过从少量建立者创建群体而生成。选择创建者以最大化结构化群体内的多态性水平,并且评估多态性位点与给定表型的共分离水平。已经使用大量统计学方法来鉴定显著的标记-性状关联。一种此类方法是区间定位方法(Lander和Botstein,Genetics[遗传学]121:185-199(1989),其中针对控制目的性状的基因位于该位置的概率来测试沿遗传图谱(比如说以1cM的区间)的许多位置中的每一个位置。基因型/表型数据用于计算每个测试位置的LOD评分(概率比率的对数)。当LOD评分大于阈值时,存在控制目的性状的基因位于遗传图谱上的该定位处的显著证据(将位于两个特定标记基因座之间)。
本文提供了如通过传统的连锁分析和全基因组关联分析确定的、显示与疾病抗性性状的统计学上显著的共分离的标记基因座。这些基因座或另外的连锁的基因座的检测可以用于标记辅助育种程序,以产生具有疾病抗性的植物。
标记辅助育种程序中的活动可能包括,但不限于:根据历史基因型和农艺性状关联在新的育种群体中选择以鉴定哪个群体具有最高的有利核酸序列频率、在育种群体中的子代中选择有利的核酸序列、基于子代性能的预测在亲本品系中进行选择、以及根据有利的核酸序列的存在在种质改良活动中推进品系。
标记和连锁关系
连锁的常见量度是性状共分离的频率。这可以以共分离百分比(重组频率)表示,或以厘摩(cM)表示。cM是遗传重组频率的量度单位。一个cM等于有1%的机会,一个遗传基因座处的性状会由于单代中的杂交而与另一个基因座处的性状分离(意味着这些性状总共有99%的机会发生分离)。由于染色体距离与性状之间的杂交事件的频率大致成正比,因此存在与重组频率相关联的近似物理距离。
标记基因座本身是性状,并且在分离期间能够通过跟踪该标记基因座、根据标准连锁分析对其进行评估。因此,一个cM等于有1%的机会,一个标记基因座会由于单代中的杂交而与另一个基因座分离。
标记距离控制目的性状的基因越近,则该标记作为所述所需性状的指示越有效和有利。紧密连锁的基因座显示约10%或更低、优选约9%或更低、还更优选约8%或更低、又更优选约7%或更低、还更优选约6%或更低、又更优选约5%或更低、还更优选约4%或更低、又更优选约3%或更低、以及还更优选约2%或更低的基因座间杂交频率。在高度优选的实施例中,相关基因座(例如标记基因座和靶基因座)显示约1%或更低、例如约0.75%或更低、更优选地约0.5%或更低、或又更优选地约0.25%或更低的重组频率。因此,所述基因座分开距离为约10cM、9cM、8cM、7cM、6cM、5cM、4cM、3cM、2cM、1cM、0.75cM、0.5cM或0.25cM或更低。换言之,定位于相同染色体并且具有使得两个基因座之间的重组以小于10%(例如,约9%、8%、7%、6%、5%、4%、3%、2%、1%、0.75%、0.5%、0.25%或更少)的频率发生的距离的所述两个基因座被认为是彼此“邻近的”。
尽管特定的标记等位基因可以与疾病抗性性状共分离,重要的是注意所述标记基因座不一定引起所述疾病抗性表型的表达。例如,该标记多核苷酸序列是产生疾病抗性表型的基因的一部分(例如,是基因可读框的一部分)不是必需条件。特异标记等位基因与疾病抗性性状之间的关联性,是由于在所述等位基因所起源的祖先品系中,所述标记等位基因和所述等位基因之间的初始“偶联”相连锁。最后通过反复重组,所述标记和遗传基因座之间的杂交事件能够改变这种取向。由于这个原因,所述有利的标记等位基因可以根据存在于具有疾病抗性的亲本中的用于创建分离群体的连锁相发生改变。这不改变可以使用所述标记来监测表型分离的事实。它仅仅改变在给定分离群体中哪个标记等位基因被认为是有利的。
本文提出的方法包括检测植物中与疾病抗性相关联的一个或多个标记等位基因的存在,并且然后鉴定和/或选择在那些标记基因座处具有有利等位基因的植物。标记已经在本文中被鉴定为与疾病抗性性状相关联,并且因此可以用于预测植物中的疾病抗性。50cM、40cM、30cM、20cM、15cM、10cM、9cM、8cM、7cM、6cM、5cM、4cM、3cM、2cM、1cM、0.75cM、0.5cM或0.25cM内的任何标记(基于单个减数分裂的遗传图谱)也可以用于预测植物的疾病抗性。
标记辅助选择
分子标记可以用于多种植物育种应用(如参见Staub等人,(1996)Hortscience[园艺科学]31:729-741;Tanksley(1983)Plant Molecular Biology Reporter.[植物分子生物学导报]1:3-8)。受关注的主要领域之一是使用标记辅助选择(MAS)增加回交和基因渗入的效率。展示出与影响所需表型性状的基因座连锁的分子标记为在植物群体中选择性状提供了有用工具。在表型难以测定的情况下尤其如此。由于DNA标记测定比田间表型分析更省力并且占用的物理空间更小,可测定更大的群体,增加了发现具有从供体品系移动至受体品系的靶区段的重组体的概率。连锁越紧密,标记越有用,这是因为重组不太可能发生于所述标记和引起该性状的基因之间,所述重组可导致假阳性。由于需要双重组事件,侧接标记减少了假阳性选择发生的概率。理想情况是基因本身具有标记,使得标记和基因之间的重组不能发生。在一些实施例中,本文公开的方法在疾病抗性基因中产生标记,其中通过从保守结构域的聚类或聚类分析推断基因组位置来鉴定所述基因。
当基因通过MAS渗入时,不仅引入了基因而且引入了侧接区域(Gepts.(2002).Crop Sci[作物科学];42:1780-1790)。这称为“连锁累赘”。在供体植物与受体植物极不相关的情况下,这些侧接区域携带可以编码农艺学上不需要的性状的另外的基因。即便与优良品系回交多个周期后,该“连锁累赘”也可能导致产量下降或其他负面农艺学特征。这有时也称为“产量累赘”。侧接区域的大小可以通过另外的回交而减小,虽然这并不总是成功的,因为育种人员不能控制该区域或重组断点的大小(Young等人,(1998)Genetics[遗传学]120:579-585)。在经典育种中,通常只是偶然地,选择了有助于减小供体区段大小的重组(Tanksley等人,(1989).Biotechnology[生物技术]7:257-264)。即使在20次此类型的回交后,可以预期找到相当大的仍然与所述基因连锁的供体染色体碎片被选择。然而如果使用标记的话,就可能选取那些在受关注的基因附近经历了重组的稀有个体。在150株回交植物中,有95%的机会,至少一株植物将经历该基因的1cM(基于单次减数分裂图距)内的杂交。标记使得能够明确鉴定这些个体。使用300株植物的一次另外的回交,在该基因另一例的1cM单次减数分裂图距内有95%的杂交概率,从而产生在基于单次减数分裂图距的小于2cM的靶基因附近的区段。这用标记可以在两代中实现,而不用标记时则需要平均100代(参见Tanksley等人,同上)。当基因的确切定位已知时,围绕该基因的侧接标记可用于在不同的群体大小中对重组进行选择。例如,在更小的群体中,预期重组可以进一步远离该基因,因此需要更远端的侧接标记来检测该重组。
实施MAS的主要组成是:(i)限定在其中标记-性状关联性将被测定的群体,其可以是分离群体、或随机的或结构化的群体;(ii)监测多态性标记相对于该性状的分离或关联性,并使用统计学方法确定连锁或关联性;(iii)基于统计学分析的结果限定一组所需标记,以及(iv)使用和/或外推该信息至当前的育种种质组中,以使得能够作出基于标记的选择决定。本公开中描述的标记,以及其他标记类型,例如SSR和FLP,可以用于标记辅助选择方案中。
SSR可以定义为长度为6bp或更短的串联重复DNA的相对较短的运行(Tautz(1989)Nucleic Acid Research[核酸研究]17:6463-6471;Wang等人,(1994)Theoretical andApplied Genetics[理论与应用遗传学],88:1-6)。多态性由于重复单元数量的变化而出现,所述重复单元数量的变化可能是由DNA复制过程中的滑动所引起的(Levinson和Gutman(1987)Mol Biol Evol[分子生物学与进化]4:203-221)。重复长度的变化可以通过设计PCR引物至保守的非重复侧翼区域来检测(Weber和May(1989)Am J Hum Genet.[美国人类遗传学144:388-396)。因为SSR是多等位基因的、共显性的、可再生的、并适合于高通量自动化,所以非常适合作图和MAS(Rafalski等人,(1996)Generating and using DNA markers inplants[在植物中生成和使用DNA标记].在:Non-mammalian genomic analysis:apractical guide[非哺乳动物基因组分析:实用指南].学术出版社(Academic press),第75-135页中)。
可以产生各种类型的SSR标记,并且可以通过扩增产物的凝胶电泳获得SSR谱。标记基因型的评分基于扩增片段的大小。
也可以生成各种类型的FLP标记。最常见地,使用扩增引物来生成片段长度多态性。除了通过引物扩增的区域通常不是高度重复的区域之外,这样的FLP标记在许多方面与SSR标记相似。通常由于插入或缺失,扩增区域或扩增子在种质间仍具有足够的可变性,使得由扩增引物产生的片段能够在多态性个体中被区分,并且已知此类插入缺失常常发生于玉蜀黍中(Bhattramakki等人,(2002).Plant Mol Biol[植物分子生物学]48,539-547;Rafalski(2002b),同上)。
SNP标记检测单碱基对核苷酸取代。在所有分子标记类型中,SNP是最丰富的,因此具有提供最高遗传图谱分辨率的潜力(Bhattramakki等人,2002 Plant MolecularBiology[植物分子生物学]48:539-547)。由于SNP不需要大量的DNA并且测定的自动化可以是直接的,所以可以以所谓的“超高通量”方式,以甚至比SSR更高的通量水平测定SNP。SNP也有可能成为相对低成本的系统。这三个因素一起使得将SNP用于MAS中具有高度的吸引力。可利用如下几种方法用于SNP基因分型,包括但不限于:杂交、引物延伸、寡核苷酸连接、核酸酶切割、微测序和编码球(coded sphere)。如下文献中已经对这些方法进行了综述:Gut(2001)Hum Mutat[人类基因突变]17,第475-492页;Shi(2001)Clin Chem[临床化学]47,第164-172页;Kwok(2000)Pharmacogenomics[药物基因组学]1,第95-100页;以及Bhattramakki和Rafalski(2001),Discovery and application of single nucleotidepolymorphism markers in plants[单核苷酸多态性标记在植物中的发现与应用],在:R.J.Henry编辑,Plant Genotyping:The DNA Fingerprinting of Plants,CABIPublishing,Wallingford[植物基因分型:植物的DNA指纹识别,CABI出版社,瓦林福德]中。广泛的可商购的技术利用这些和其他方法来检测SNP,所述可商购的技术包括:Masscode.TM.(凯杰公司(Qiagen))、
Figure BDA0003023972790000311
(第三波技术公司(Third WaveTechnologies))和Invader
Figure BDA0003023972790000312
(美国应用生物系统公司(AppliedBiosystems))、
Figure BDA0003023972790000313
(美国应用生物系统公司)以及
Figure BDA0003023972790000314
(依诺米那公司(Illumina))。
可以使用序列内或跨连锁序列的许多SNP来描述任何特定基因型的单倍型(Ching等人,(2002),BMC Genet.[BMC遗传学]3:19,Gupta等人,2001,Rafalski(2002b),PlantScience[植物科学]162:329-333)。单倍型可以比单个SNP更具信息性,并且可以更详细地描述任何特定的基因型。例如,单一的SNP可能是具有疾病抗性的特定品系或品种的等位基因“T”,但在用于轮回亲本的育种群体中也可能出现等位基因“T”。在这种情况下,单倍型(例如连锁的SNP标记处的等位基因的组合)可能更具信息性。一旦将唯一单倍型分配给供体染色体区域,该单倍型可以用于该群体或其任何亚群中以确定个体是否具有特定的基因。参见,例如,WO 2003054229。使用本领域普通技术人员已知的自动化高通量标记检测平台使得该方法高效且有效。
本文提出的许多标记可以容易地用作单核苷酸多态性(SNP)标记以选择R基因。利用PCR,将引物用于扩增代表目的群体多样性的个体(优选近交系)的DNA区段。将PCR产物直接在一个或两个方向上测序。将得到的序列进行比对并鉴定多态性。所述多态性不限于单核苷酸多态性(SNP),而且包括插入缺失、CAPS、SSR和VNTR(可变数量的串联重复序列)。具体地讲,针对本文所述的精细图谱信息,人们可易于使用本文提供的信息来获得在通过本文公开的引物扩增的区域内的另外的多态性SNP(和其他标记)。所描述的图谱区域内的标记可以与BAC或其他基因组文库杂交,或者与基因组序列进行电子比对,以在与所述标记相同的大致定位中找到新的序列。
除上述的SSR、FLP和SNP外,其他类型的分子标记也被广泛使用,包括但不限于:表达的序列标签(EST)、源自EST序列的SSR标记、随机扩增的多态性DNA(RAPD)和其他基于核酸的标记。
同工酶谱和连锁形态特征在某些情况下也可以间接用作标记。尽管它们不直接检测DNA差异,但它们往往受到特定遗传差异的影响。然而,检测DNA变异的标记比同工酶或形态学标记多得多且更多态(Tanksley(1983)Plant Molecular Biology Reporter:[植物分子生物学导报]1:3-8)。
序列比对或重叠群还可以用于发现本文所列特异标记的上游或下游的序列。然后使用接近于本文所述的标记的这些新序列来发现和开发功能上等效的标记。例如,对不同的物理和/或遗传图谱进行比对以定位未在本公开中描述但位于相似区域内的等效标记。这些图谱可能在物种内,或者甚至跨越进行遗传上或物理上比对的其他物种。
一般来说,MAS使用多态性标记,这些标记已被鉴定为具有与疾病抗性性状等性状共分离的显著可能性。推测这样的标记在图谱上位于给予植物疾病抗性表型的一个或多个基因附近,并被认为是所需性状或标记的指示。测试植物中标记中所需的等位基因的存在,并且预期在一个或多个基因座处含有所需基因型的植物将所需基因型连同所需表型一起转移至其子代。因此,可以通过检测一个或多个标记等位基因来选择具有疾病抗性的植物,并且此外,还可以选择来自这些植物的子代植物。因此,获得在给定染色体区域中含有所需基因型(即与疾病抗性相关联的基因型)的植物,并且然后与另一植物杂交。然后使用一种或多种标记对这种杂交的子代进行基因型评估,并且然后将在给定染色体区域中具有相同基因型的子代植物选择为具有疾病抗性。
可以单独或组合使用SNP(即SNP单倍型)来选择与疾病抗性相关的有利的抗性基因等位基因。
本领域技术人员会预期在本文公开的方法鉴定的染色体标记中的及其附近的标记基因座处可能存在另外的多态性位点,其中一个或多个多态性位点与该单倍型中的多态性位点中的一个或多个处的等位基因处于连锁不平衡(LD),并且因此可以用于标记辅助选择程序中以渗入目的基因等位基因或目的基因组片段。如果这些位点中的一个处的等位基因的存在倾向于预测同一染色体上其他位点处的等位基因存在,则认为不同多态性位点处的两个特定等位基因处于LD(Stevens,Mol.Diag.[分子诊断]4:309-17(1999))。该标记基因座可以位于疾病抗性性状QTL的5cM、2cM、或1cM内(在基于单次减数分裂的遗传图谱上)。
技术人员将理解等位基因频率(进而单倍型频率)可因种质库不同而不同。由于成熟度差异、杂种优势分组、地理分布等原因,种质库存在差异。因此,某些种质库中的SNP和其他多态性可能不具有信息性。
植物组合物
通过上述方法中的任何一种鉴定和/或选择的植物也是令人感兴趣的。
蛋白质及其变体和片段
本公开涵盖了R基因多肽。如本文所用,“R基因多肽”和“R基因蛋白”可互换地使用,是指具有疾病抗性活性的一种或多种多肽。考虑了多种R基因多肽和植物病原体效应子。
如本文所用的“充分相同”是指具有至少约70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高的序列同一性的氨基酸序列。在一些实施例中,序列同一性针对多肽的全长序列。在本文中与序列同一性百分比一起使用时,术语“约”意指+/-1.0%。
本文所用的“重组蛋白”是指不再处于其天然环境中(例如处于体外或重组细菌或植物宿主细胞中)的蛋白质;从多核苷酸表达的蛋白质,所述多核苷酸已从其天然版本进行编辑;或由相对于天然序列在不同基因组位置的多核苷酸表达的蛋白质。
如本文所用的“基本上不含细胞材料”是指包括具有小于约30%、20%、10%或5%(以干重计)的非靶蛋白(在本文中也称为“污染蛋白”)的蛋白制剂的多肽。
“片段”或“生物活性部分”包括多肽片段或多核苷酸片段,其包含分别与R基因多肽或多核苷酸充分相同的序列,并且当在植物中表达时表现出疾病抗性。
如本文所用的“变体”是指具有与亲本氨基酸序列具有至少约50%、55%、60%、65%、70%、75%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高同一性的氨基酸序列的蛋白质或多肽。
用于此类操作的方法是本领域通常已知的。例如,通过在DNA中的突变可以制备多肽的氨基酸序列变体。这也可以通过若干种诱变形式中的一种来完成,像例如位点特异性双链断裂技术,和/或定向进化。在一些方面,在所述氨基酸序列中所编码的改变将基本上不影响所述蛋白质的功能。此类变体将具有所需活性。然而,应当理解,可以通过对本公开的组合物使用此类技术改进R基因多肽赋予疾病抗性的能力。
核酸分子及其变体和片段
提供了包含编码R基因多肽或其生物活性部分的核酸序列的分离或重组的核酸分子,以及足以用作杂交探针以鉴定编码具有序列同源性区域的蛋白质的核酸分子的核酸分子。如本文所用的,术语“核酸分子”是指DNA分子(例如,重组DNA、cDNA、基因组DNA、质粒DNA、线粒体DNA)和RNA分子(例如,mRNA)以及使用核苷酸类似物而产生的DNA或RNA的类似物。核酸分子可以是单链的或双链的,但优选地是双链的DNA。
本文所用的“分离的”核酸分子(或DNA)是指不再处于其天然环境中(例如处于体外)的核酸序列(或DNA)。本文所用的“重组的”核酸分子(或DNA)是指在重组细菌或植物宿主细胞中的核酸序列(或DNA);其已从其天然序列进行编辑;或其位于与天然序列不同的位置。在一些实施例中,“分离的”或“重组的”核酸不含有在衍生所述核酸的生物体基因组DNA中天然地位于所述核酸侧翼的序列(即,位于所述核酸的5′和3′端的序列)(优选编码蛋白质的序列)。出于本公开的目的,“分离的”或“重组的”当用于指核酸分子时排除分离的染色体。例如,在不同实施例中,编码R基因多肽的重组核酸分子可以包含小于约5kb、4kb、3kb、2kb、1kb、0.5kb或0.1kb的核酸序列,所述核酸序列在源自所述核酸的细胞的基因组DNA中天然地位于所述核酸分子的侧翼。
在一些实施例中,与天然或基因组核酸序列相比,编码R基因多肽的分离的核酸分子在核酸序列中具有一个或多个变化。在一些实施例中,天然或基因组核酸序列的改变包括但不限于:由于遗传密码的简并性造成的核酸序列改变;与天然或基因组序列相比,由于氨基酸取代、插入、缺失和/或添加造成的核酸序列的改变;一个或多个内含子的去除;一个或多个上游或下游调节区的缺失;和与基因组核酸序列相关的5′和/或3′非翻译区域的缺失。在一些实施例中,编码R基因多肽的核酸分子是非基因组序列。
考虑了编码R基因多肽或相关蛋白质的多种多核苷酸。当可操作地连接到合适的启动子、转录终止和/或聚腺苷酸化序列上时,这类多核苷酸可用于在宿主细胞中生产R基因多肽。这类多核苷酸还可用作用于分离编码R基因多肽或相关蛋白的同源或基本上同源的多核苷酸的探针。
本文所用的“互补序列”是指与给定核酸序列充分互补的核酸序列,使得其可以与所述给定核酸序列杂交从而形成稳定的双链体。本文所用的“多核苷酸序列变体”是指除遗传密码的简并性之外编码相同多肽的核酸序列。
在一些实施例中,编码R基因多肽的核酸分子是非基因组核酸序列。如本文所用的,“非基因组核酸序列”或“非基因组核酸分子”或“非基因组多核苷酸”是指与天然或基因组核酸序列相比,在所述核酸序列上具有一个或多个改变的核酸分子。在一些实施例中,天然或基因组核酸分子的改变包括但不限于:由于遗传密码的简并性造成的核酸序列改变;用于在植物中表达的核酸序列的优化;与天然或基因组序列相比,引入至少一个氨基酸取代、插入、缺失和/或添加的核酸序列的改变;去除与所述基因组核酸序列相关联的一个或多个内含子;插入一个或多个异源内含子;缺失与所述基因组核酸序列相关联的一个或多个上游或下游调节区;插入一个或多个异源上游或下游调节区;缺失与所述基因组核酸序列相关的5′和/或3′非翻译区;插入异源5′和/或3′非翻译区;和聚腺苷酸化位点的修饰。在一些实施例中,非基因组核酸分子是合成的核酸序列。
作为编码R基因多肽的这些核酸序列的片段的核酸分子也涵盖在实施例中。如本文所使用的“片段”来指编码R基因多肽的核酸序列的一部分。核酸序列的片段可以编码R基因多肽的生物活性部分,或者它可以是可以使用下文公开的方法用作杂交探针或PCR引物的片段。作为编码R基因多肽的核酸序列的片段的核酸分子包含至少约150、180、210、240、270、300、330、360、400、450或500个连续核苷酸或高至存在于编码由本文公开方法鉴定的R基因多肽的全长核酸序列中的核苷酸数目,这取决于预期用途。本文所用的“连续核苷酸”是指彼此紧邻的核苷酸残基。实施例的核酸序列的片段将编码保留R基因多肽的生物活性并因此保留疾病抗性的蛋白质片段。“保留疾病抗性”在本文中用于是指以下多肽,所述多肽具有全长R基因多肽的至少约10%、至少约30%、至少约50%、至少约70%、80%、90%、95%或更高的疾病抗性。
相对于参考序列(主题序列),“序列同一性百分比(%)”被确定为在比对序列并引入空位(如果需要)以实现最大百分比序列同一性后,并且不考虑作为序列同一性的一部分的任何氨基酸保守取代,候选序列(查询序列)中与参考序列中的相应氨基酸残基或核苷酸相同的氨基酸残基或核苷酸的百分比。用于确定序列同一性百分比目的而进行的比对能以本领域技术范围内的各种方式实现,例如,使用公共可用的计算机软件,例如BLAST、BLAST-2。本领域的技术人员可以确定用于比对序列的适当参数,包括在进行比较的序列的全长度上实现最大比对所需的任何算法。两个序列之间的同一性百分比是序列共有的相同位置的数目的函数(例如,查询序列的同一性百分比=查询序列和主题序列之间的相同位置的数目/查询序列的位置总数×100)。
实施例还涵盖编码R基因多肽变体的核酸分子。编码R基因多肽的核酸序列的“变体”包括编码由本文公开的方法鉴定的R基因多肽但是由于遗传密码的简并性而存在保守差异的那些序列以及如上所述的充分相同的那些序列。可以通过使用熟知的分子生物学技术鉴定天然存在的等位基因变体,如聚合酶链式反应(PCR)和如下文概述的杂交技术。变体核酸序列还包括经合成衍生的核酸序列,所述核酸序列已经例如通过使用定点诱变而产生,但是仍然编码本文公开的R基因多肽。
技术人员将进一步了解,可以通过核酸序列的突变引入变化,从而导致编码的R基因多肽的氨基酸序列的变化,而不改变蛋白质的生物活性。因此,变体核酸分子可以通过以下方式产生:将一个或多个核苷酸取代、添加和/或缺失引入本文公开的相应的核酸序列中,这样使得将一个或多个氨基酸取代、添加或缺失引入所编码的蛋白质中。通过标准技术可以引入突变,如定向诱变和PCR介导的诱变。此类变体核酸序列也被本公开所涵盖。
可替代地,可以通过沿编码序列的全部或部分随机引入突变(如通过饱和诱变)来制备变体核酸序列,并且可以筛选所得突变体赋予活性以鉴定保留活性的突变体的能力。在诱变之后,所编码的蛋白质可以进行重组表达,并且所述蛋白质的活性可以使用标准的测定技术来确定。
本公开的多核苷酸及其片段任选用作各种重组和递归(recursive)重组反应的底物,除了例如Ausubel、Berger和Sambrook所述的标准克隆方法之外,即,以产生具有所需特性的另外的多肽同源物及其片段。各种此类反应是已知的。用于生产本文列出的任何核酸的变体的方法(这些方法包括将此类多核苷酸与第二(或更多)多核苷酸递归重组,从而形成变体多核苷酸文库)也是本公开的实施例,所产生的文库、包含所述文库的细胞和通过此类方法产生的任何重组多核苷酸也是如此。另外,此类方法任选地包括基于活性从此类文库中选择变体多核苷酸,正如其中此类递归重组在体外或体内进行。
各种多样性产生方案(包括核酸递归重组方案)是可获得的并且在本领域中被充分描述。所述程序可以单独和/或组合使用以产生核酸或核酸集合的一种或多种变体,以及所编码蛋白质的变体。单独地或整体地,这些程序提供了产生多样化核酸和核酸集合(包括例如核酸文库)的稳健且广泛适用的方式,所述方式可用于,例如,具有新的和/或改善的特征的核酸、蛋白质、途径、细胞和/或生物体的工程化或快速进化。
虽然为清除起见,在随后的讨论过程中作出了区分和分类,但是应当理解,所述技术通常不是相互排斥的。实际上,各种方法可以单独使用或组合、平行或串联使用,以便取得不同的序列变体。
本文所述的任何多样性产生程序的结果可以是一种或多种核酸的产生,其可以选择或筛选具有或赋予所需特性的核酸或编码具有或者赋予所需特性的蛋白质的核酸。通过本文的或技术人员以其他方式可用的一种或多种方法进行多样化之后,可以针对所需的活性或特性,例如在所需的pH下的这种活性等选择所产生的任何核酸。这可以包括通过本领域任何测定来鉴定可以例如以自动化或可自动化形式检测的任何活性。各种相关(或甚至不相关)的特性可以由执业者酌情串联或平行评估。
实施例的核苷酸序列也可用于从不同来源中分离相应的序列。以这种方式,可以使用如PCR、杂交等方法来鉴定此类序列(基于其与由本文公开的方法鉴定的序列的序列同源性)。实施例涵盖基于与本文所示全部序列或其片段的序列同一性选择的序列。此类序列包括作为所述序列的直向同源物的序列。术语“直向同源物”是指源自共同祖先基因并且由于物种形成而在不同物种中发现的基因。当其核苷酸序列和/或其编码的蛋白序列共有如本文其他地方所定义的基本同一性时,在不同物种中发现的基因被认为是直向同源物。
在PCR方法中,可以设计寡核苷酸引物用于PCR反应,以从由任何目的生物体提取的cDNA或基因组DNA扩增相应的DNA序列。用于设计PCR引物以及PCR克隆的方法是本领域通常已知的并且公开于Sambrook等人,(1989)Molecular Cloning:A Laboratory Manual[分子克隆:实验室手册](第2版,Cold Spring Harbor Laboratory Press[冷泉港实验室出版社],Plainview[普莱恩维尤],纽约),以下为“Sambrook”中。还参见,Innis等人编辑,(1990)PCR Protocols:A Guide to Methods and Applications[PCR方案:方法和应用指南](Academic Press[学术出版社],纽约);Innis和Gelfand编辑,(1995)PCR Strategies[PCR策略](Academic Press[学术出版社],纽约);和Innis和Gelfand编辑,(1999)PCRMethods Manual[PCR方法手册](Academic Press[学术出版社],纽约)。已知的PCR方法包括但不限于:使用成对引物、巢式引物、单特异性引物、简并引物、基因特异性引物、载体特异性引物、部分错配引物等的方法。
在杂交方法中,全部或部分核酸序列可用于筛选cDNA或基因组文库。用于构建此类cDNA和基因组文库的方法是本领域通常已知的,并且公开于Sambrook和Russell,(2001),同上。所谓的杂交探针可以是基因组DNA片段、cDNA片段、RNA片段或其他寡核苷酸,并且可以用一个可检测基团(如32P或任何其他可检测的标记,如其他放射性同位素、荧光化合物、酶或酶辅因子)进行标记。用于杂交的探针可以通过标记基于本文公开的编码已知的多肽的核酸序列的合成的寡核苷酸来制备。可以另外使用简并引物,所述简并引物是基于在所述核酸序列或所编码的氨基酸序列中的保守核苷酸或氨基酸残基而设计的。这种探针典型地包含以下核酸序列的区域,所述核酸序列区域在严格条件下与编码多肽的核酸序列或其片段或变体的至少约12个、至少约25个、至少约50、75、100、125、150、175或200个连续核酸进行杂交。用于制备用于杂交的探针的方法和严格条件是本领域通常已知的,并且公开于Sambrook和Russell,(2001),同上。
核苷酸构建体、表达盒和载体
本文使用术语“核苷酸构建体”并不旨在将实施例限制为包含DNA的核苷酸构建体。本领域普通技术人员将认识到,核苷酸构建体,特别是由核糖核苷酸构成的多核苷酸和寡核苷酸以及核糖核苷酸和脱氧核糖核苷酸的组合也可用于本文公开的方法中。实施例的核苷酸构建体、核酸和核苷酸序列另外涵盖这种构建体、分子和序列的所有互补形式。此外,实施例的核苷酸构建体、核苷酸分子和核苷酸序列涵盖能用于实施例的转化植物方法的所有核苷酸构建体、分子和序列,包括但不限于由脱氧核糖核苷酸、核糖核苷酸及其组合所构成的那些。这种脱氧核糖核苷酸和核糖核苷酸既包括天然存在的分子也包括合成的类似物。实施例的核苷酸构建体、核酸和核苷酸序列还涵盖核苷酸构建体的所有形式,所述形式包括但不限于单链形式、双链形式、发夹、茎环结构等。
另外的实施例涉及经转化的生物体,如选自以下的生物体:植物细胞、细菌、酵母、杆状病毒、原生动物、线虫和藻的生物体。经转化的生物体包含:实施例的DNA分子、包含DNA分子的表达盒或包含表达盒的载体,它可以稳定地并入经转化的生物体的基因组。
在DNA构建体中提供实施例的序列,用于在目的生物体中表达。所述构建体将包括可操作地连接到实施例的序列的5′和3′的调节序列。如本文使用的,术语“可操作地连接”是指启动子和第二序列之间的功能性连接,其中启动子序列启动并介导相应于第二序列的DNA序列的转录。通常,可操作地连接意味着所连接的核酸序列是连续的,并且在必要时在相同阅读框中连接两个蛋白质编码区域。所述构建体可以另外含有待共转化进生物体的至少一个另外的基因。可替代地,可以在多个DNA构建体上提供一个或多个另外的基因。
提供的这种DNA构建体具有用于插入本公开的多肽基因序列的多个限制性位点,该多肽基因序列将位于调节性区域的转录调节之下。DNA构建体可以另外包含选择性标记基因。
一般来说,DNA构建体在5′至3′的转录方向上将包括:转录和翻译起始区(即启动子)、实施例的DNA序列、以及在作为宿主的生物体中起作用的转录和翻译终止区(即终止区)。针对实施例的宿主生物体和/或序列,转录起始区(即,启动子)可以是天然的、类似的、外源的或异源的。此外,所述启动子可以是天然序列,或可替代地,是合成序列。如本文使用的,术语“外源”表示在引入启动子的天然生物体中没有发现启动子。在启动子对于实施例的序列而言是“外源的”或“异源的”情况下,它是指所述启动子对于实施例的可操作地连接的序列而言不是天然的或天然存在的启动子。如本文使用的,嵌合基因包含与转录起始区可操作地连接的编码序列,所述转录起始区对于所述编码序列是异源的。当所述启动子是天然(native或natural)序列时,可操作地连接的序列的表达从野生型表达变化,这导致表型的改变。
在一些实施例中,所述DNA构建体包含编码实施例的R基因多肽的多核苷酸。在一些实施例中,所述DNA构建体包含多核苷酸,所述多核苷酸编码含有实施例的R基因多肽的融合蛋白。
在一些实施例中,DNA构建体还可以包括转录增强子序列。如本文所用的,术语“增强子”是指可以刺激启动子活性的DNA序列,并且可以是插入以增强启动子的水平或组织特异性的启动子的先天元件或异源元件。各种增强子是本领域已知的,包括例如,在植物中具有基因表达增强特性的内含子(美国专利申请公开号2009/0144863)、泛素内含子(即,玉蜀黍泛素内含子1(参见,例如,NCBI序列S94464))、ω增强子或ω主要增强子(Gallie等人,(1989)Molecular Biology of RNA[RNA的分子生物学],Cech编辑(利斯公司(Liss),纽约)237-256和Gallie等人,(1987)Gene[基因]60:217-25)、CaMV 35S增强子(参见,例如,Benfey等人,(1990)EMBOJ.[欧洲分子生物学杂志]9:1685-96),并且也可以使用美国专利号7,803,992的增强子。以上转录增强子的列表并不意指是限制性的。任何适当转录增强子都可用于实施例中。
终止区对于转录起始区可以是天然的,对于可操作地连接的目的DNA序列可以是天然的,对于植物宿主可以是天然的,或者可以源自另一种来源(即,对于启动子、目的序列、植物宿主、或其任何组合而言是外源的或异源的)。
方便的终止区可获自根癌农杆菌(A.tumefaciens)的Ti质粒,如章鱼碱合酶和胭脂碱合酶终止区。还参见Guerineau等人,(1991)Mol.Gen.Genet.[分子遗传学和普通遗传学]262:141-144;Proudfoot,(1991)Cell[细胞]64:671-674;Sanfacon等人,(1991)GenesDev.[基因与发育]5:141-149;Mogen等人,(1990)Plant Cell[植物细胞]2:1261-1272;Munroe等人,(1990)Gene[基因]91:151-158;Ballas等人,(1989)Nucleic Acids Res.[核酸研究]17:7891-7903以及Joshi等人,(1987)Nucleic Acid Res.[核酸研究]15:9627-9639。
适当时可以优化核酸以增加在宿主生物体中的表达。因此,在宿主生物体是植物的情况下,合成核酸可以使用植物偏好性密码子来合成以改善表达。有关宿主偏好性使用的讨论,参见,例如Campbell和Gowri,(1990)Plant Physiol.[植物生理学]92:1-11。例如,虽然实施例的核酸序列在单子叶和双子叶植物物种中均可以表达,但是可以修饰序列,以考虑单子叶或双子叶植物的特定偏好和GC含量偏好,因为这些偏好已经表现出了差异(Murray等人(1989)Nucleic Acids Res.[核酸研究]17:477-498)。因而,特定氨基酸的植物偏好性可以源自植物的已知基因序列。
已知有另外的序列修饰能增强细胞宿主中的基因表达。这些包括消除以下序列:编码假聚腺苷酸化信号的序列、编码外显子-内含子剪接位点信号的序列、编码转座子样重复序列的序列和得到充分表征的、可能不利于基因表达的其他序列。可以将序列的GC含量调整至给定细胞宿主的平均水平,如通过参考在所述宿主细胞中表达的已知基因而计算的。如本文使用的,术语“宿主细胞”是指包含载体并支持表达载体的复制和/或表达的细胞。宿主细胞可以是原核细胞如大肠杆菌,或真核细胞如酵母、昆虫、两栖类或哺乳动物细胞、或单子叶或双子叶植物细胞。单子叶宿主细胞的实例是玉蜀黍宿主细胞。当可能时,修饰序列以避免出现可预见的发夹二级mRNA结构。
在制备表达盒时,可以操作各种DNA片段,以提供处于适当方向以及合适时,处于适当阅读框中的DNA序列。为此,可采用衔接子(adapter)或接头以连接DNA片段,或可以涉及其他操作以提供方便的限制性位点、去除多余的DNA、去除限制性位点等。为此目的,可以涉及体外诱变、引物修复、限制性酶切(restriction)、退火、再取代(例如转换和颠换)。
许多启动子可用于实施所述实施例。可基于所需结果,选择启动子。核酸可与组成型、组织偏好性、诱导型或其他启动子组合用于在宿主生物体中的表达。
在一些方面,DNA构建体可编码靶向效应子蛋白质转录物的双链RNA,引起效应子蛋白质翻译的减少。在一些实施例中,效应子蛋白质的减少在植物或植物细胞中产生了疾病抗性表型。各种各样的真核生物(包括植物、动物和真菌)已经进化出若干种RNA沉默途径来保护它们的细胞和基因组对抗入侵性核酸,例如病毒或转座子,并且在发育期间或为相应外部刺激,来调节基因表达(综述参见Baulcombe(2005)Trends Biochem.Sci.[生物化学的发展趋势]30:290-93;Meins等人(2005)Annu.Rev.Cell Dev.Biol.[细胞和发育生物学年度综述]21:297-318)。在植物中,RNA沉默途径已示出可控制多种发育过程,包括开花时间、叶片形态、器官极性、花形态和根发育(Mallory和Vaucheret综述(2006)Nat.Genet.[自然-遗传学]38:S31-36)。所有RNA沉默系统都涉及通过植物中称为Dicer或Dicer样的RNA酶III样酶将双链RNA(dsRNA)加工成21至25个核苷酸(nt)的小RNA(Bernstein等人(2001)Nature[自然]409:363-66;Xie等人(2004)PLOS Biol.[PLOS生物学]2E104:0642-52;Xie等人(2005)Proc.Natl.Acad.Sci.USA[美国科学院院报]102:12984-89;Dunoyer等人(2005)Nat.Genet.[自然-遗传学]37:1356-60)。将这些小RNA并入含有Argonaute蛋白的沉默效应子复合物中(综述参见Meister和Tuschl(2004)Nature[自然]431:343-49)。
植物转化
所述实施例的方法涉及将多肽或多核苷酸引入植物。如本文所用的,“引入”意指将所述多核苷酸或多肽呈送给所述植物,以此类方式使得所述序列进入所述植物细胞的内部。所述实施例的方法不取决于用于将一个或多个多核苷酸或一个或多个多肽引入植物中的具体方法,只要所述多核苷酸或多肽进入所述植物的至少一个细胞的内部即可。将一个或多个多核苷酸或一个或多个多肽引入植物的方法是本领域已知的,所述方法包括但不限于稳定转化法、瞬时转化法和病毒介导法。
如本文所用的,“稳定转化”意指引入植物中的核苷酸构建体整合到所述植物的基因组中,并且能够被其子代遗传。如本文所用的,“瞬时转化”意指将多核苷酸引入所述植物中并且不整合到所述植物的基因组中,或者将多肽引入植物中。如本文所用的,“植物”是指整株植物、植物器官(例如叶、茎、根等)、种子、植物细胞、繁殖体、及其胚胎和子代。植物细胞可以是分化的或未分化的(例如愈伤组织、悬浮培养细胞、原生质体、叶子细胞、根细胞、韧皮部细胞和花粉)。
转化方案以及将核苷酸序列引入植物中的方案可以根据要靶向转化的植物或植物细胞的类型(即,单子叶植物或双子叶植物)而异。将核苷酸序列引入到植物细胞中并随后插入到植物基因组中的合适方法包括显微注射(Crossway等人,(1986)Biotechniques[生物技术]4:320-334)、电穿孔(Riggs等人,(1986)Proc.Natl.Acad.Sci.USA[美国科学院院报]83:5602-5606)、农杆菌介导的转化(美国专利号5,563,055和5,981,840)、直接基因转移(Paszkowski等人,(1984)EMBO J[欧洲分子生物学学会杂志]3:2717-2722)以及弹道粒子加速(参见,例如美国专利号4,945,050;5,879,918;5,886,244和5,932,782;Tomes等人,(1995),Plant Cell,Tissue,and Organ Culture:Fundamental Methods[植物细胞、组织和器官培养:基本方法],Gamborg和Phillips编辑(Springer-Verlag,Berlin[德国柏林施普林格出版公司]);和McCabe等人,(1988)Biotechnology[生物技术]6:923-926);以及Lecl转化法(WO 00/28058)。对于马铃薯转化法,参见Tu等人,(1998)Plant MolecularBiology[植物分子生物学]37:829-838和Chong等人,(2000)Transgenic Research[转基因研究]9:71-78。可以在以下文献中找到另外的转化方法:Weissinger等人,(1988)Ann.Rev.Genet.[遗传学年鉴]22:421-477;Sanford等人,(1987)Particulate Scienceand Technology[微粒科学与技术]5:27-37(洋葱);Christou等人,(1988)Plant Physiol.[植物生理学]87:671-674(大豆);McCabe等人,(1988)Bio/Technology[生物/技术]6:923-926(大豆);Finer和McMullen,(1991)In Vitro Cell Dev.Biol.[体外细胞生物学和发育生物学]27P:175-182(大豆);Singh等人,(1998)Theor.Appl.Genet.[理论与应用遗传学]96:319-324(大豆);Datta等人,(1990)Biotechnology[生物技术]8:736-740(水稻);Klein等人,(1988)Proc.Natl.Acad.Sci.USA[美国科学院院报]85:4305-4309(玉蜀黍);Klein等人,(1988)Biotechnology[生物技术]6:559-563(玉蜀黍);美国专利号5,240,855;5,322,783和5,324,646;Klein等人,(1988)Plant Physiol.[植物生理学]91:440-444(玉蜀黍);Fromm等人,(1990)Biotechnology[生物技术]8:833-839(玉蜀黍);Hooykaas-VanSlogteren等人,(1984)Nature[自然](伦敦)311:763-764;美国专利号5,736,369(谷类);Bytebier等人,(1987)Proc.Natl.Acad.Sci.USA[美国科学院院报]84:5345-5349(百合科(Liliaceae));De Wet等人,(1985)The Experimental Manipulatton of Ovule Tissues[胚珠组织的实验操作],Chapman等人编辑(Longman[朗文出版社],纽约),第197-209页(花粉);Kaeppler等人,(1990)Plant Cell Reports[植物细胞报告]9:415-418和Kaeppler等人,(1992)Theor.Appl.Genet.[理论与应用遗传学]84:560-566(晶须介导的转化);D′Halluin等人,(1992)Plant Cell[植物细胞]4:1495-1505(电穿孔);Li等人,(1993)PlantCell Reports[植物细胞报告],12:250-255以及Christou和Ford,(1995)Annals ofBotany[植物学年报]75:407-413(水稻);Osjoda等人,(1996)Nature Biotechnology[自然生物技术]14:745-750(经由根癌农杆菌的玉蜀黍)。
将基因组编辑技术引入植物的方法
在一些实施例中,可以使用基因组编辑技术将多核苷酸组合物引入植物的基因组中,或者可以使用基因组编辑技术编辑植物基因组中先前引入的多核苷酸。例如,可以通过使用双链断裂技术(如TALEN、大范围核酸酶、锌指核酸酶、CRISPR-Cas等)将所鉴定的多核苷酸引入植物基因组中需要的位置上。例如,为了位点特异性插入的目的,可以使用CRISPR-Cas系统将所鉴定的多核苷酸引入基因组中需要的位置上。植物基因组中需要的位置可以是任何对于插入来说需要的靶位点,如适于育种的基因组区域,或者可以是位于具有现有的目的性状的基因组窗口中的靶位点。现有的目的性状可能是内源性状或先前引入的性状。
在一些实施例中,在已在基因组中鉴定R等位基因的情况下,可以使用基因组编辑技术来改变或修饰的多核苷酸序列。可以引入所需的R基因等位基因多核苷酸中的位点特异性修饰包括使用用于引入位点特异性修饰的任何方法产生的修饰,所述方法包括但不限于通过使用基因修复寡核苷酸(例如美国公开2013/0019349),或通过使用双链断裂技术,如TALEN、大范围核酸酶、锌指核酸酶、CRISPR-Cas等。此类技术可用于通过在引入的多核苷酸内的核苷酸的插入、缺失或取代来修饰先前引入的多核苷酸。可替代地,可以使用双链断裂技术向引入的多核苷酸中添加另外的核苷酸序列。可以添加的另外的序列包括另外的表达元件(如增强子序列和启动子序列)。在另一个实施例中,基因组编辑技术可用于在植物的基因组内将另外的疾病抗性蛋白定位在R基因多核苷酸组合物附近,以产生疾病抗性蛋白的分子堆叠物。
“改变的靶位点”、“改变的靶序列”、“修饰的靶位点”和“修饰的靶序列”在本文中可互换地使用,并且意指如本文公开的靶序列,当与未改变的靶序列相比时,所述靶序列包含至少一个改变。此类“改变”包括,例如:(i)至少一个核苷酸的替代、(ii)至少一个核苷酸的缺失、(iii)至少一个核苷酸的插入、或(iv)(i)-(iii)的任何组合。
实例
提供下列实例以说明但不限制所要求保护的主题。应当理解,本文所述实例和实施例仅用于说明目的,并且本领域的技术人员将认识到在不脱离本公开精神或所附权利要求范围的情况下可改变多种试剂或参数。
实例1.鉴定推定的病原体效应子
多堆柄锈菌(Pucciniapolysora)是南方玉米锈病(SCR)的致病原,南方玉米锈病是许多玉蜀黍种植地区的主要病害。通过计算分析产生了一系列推定的多堆柄锈菌效应子。从发芽的urodiospores中分离RNA并且进行PacBio Iso-Seq。在获得的所有cDNA序列中,通过SignalP 4.0(Petersen等人,2011)预测,具有信号肽并编码分泌的蛋白质的多堆柄锈菌基因(PPG)总共有965个。选择具有超过1.8%半胱氨酸的分泌的蛋白质,并将其从来源于感染叶组织的cDNA中进行PCR扩增。总共338个PPG cDNA已成功克隆到表达载体中,其中效应子由强组成型35S启动子控制。
实例2.通过RppK识别的推定的效应子的鉴定
RppK,SCR抗性基因之前得到了鉴定和证实(参见PCT/CN 2018/090067)。使用基于原生质体的系统(Lu等人,2016;Yoshida等人,2009)来筛选在RppK的存在下能够导致原生质体死亡的效应子。将从转基因RppK或空植物分离的原生质体与效应子表达载体和萤光素酶表达载体的质粒DNA共转染(由35S启动子驱动)。萤光素酶活性的显著降低表明原生质体死亡,这可能是由HR导致的。使用Rp1-D21,玉蜀黍Rpl疾病抗性基因的自动性等位基因(Wang等人,2015)作为阳性对照。使用空载体作为阴性对照。已鉴定PPG1259(SEQ ID NO:4)在来自RppK转基因植物的原生质体中导致强烈的HR,但是在来自空植物的原生质体中则不会(参见图1和表1)。因此,结果显示PPG1259(SEQ ID NO:4)可作为RppK识别的推定的病原体效应子或无毒性(Avr)基因。它是一种分泌蛋白,没有任何已知的功能性结构域。
实例3.鉴定和证实效应子识别的疾病抗性基因
为证实PPG1259是RppK识别的同源效应子,通过农杆菌浸润,将玉蜀黍Rppk(基因组片段)和PPG1259基因在本氏烟草(Nicotiana benthamiana)中共表达。浸润五天后,观察到了明显的HR。RppK或PPG1259与空载体(EV)的瞬时表达没有引发HR(图2)。此外,GST标记的PPG1259在大肠杆菌中表达,而纯化的重组蛋白浸润到Rppk转基因植物和无效植物的叶子中。浸润一天后,在RppK转基因植物的GST-PPG1259浸润的叶子上观察到明显的细胞死亡,而在空植物的GST-PPG1259浸润的叶子上未观察到HR(图3)。使用GST蛋白质作为阴性对照(图3)。因此,可以得出结论:PPG1259是无毒性基因(AvrRppk),RppK识别出其可以介导效应子引发的免疫力(ETI)。
表1.相对萤光素酶活性
Figure BDA0003023972790000491
序列表
<110> 华中农业大学(HUAZHONG AGRICULTURAL UNIVERSITY)
Lai, Zhibing
<120> 植物病原体效应子和疾病抗性基因
鉴定、组合物和使用方法
<130> RTS22031
<160> 5
<170> PatentIn 3.5版本
<210> 1
<211> 8232
<212> DNA
<213> 多堆柄锈菌(Puccinia polysora)
<400> 1
gatgagatgt gtgtgatgtg atggagatgg gactggtatg gatttgctga tgtggatggg 60
tgttttagat gtgatggatg gtggatggat gatgatgaat aaatggctgg tttgatgttt 120
gaaatctgcc attttcatga aacccgctat tttgaaatac accagttagg gggtatgtgt 180
atttcagaaa tccgccatta aaaatggcag tttttgtcaa aaaaatgtca ggtttctaat 240
ggcgggtttg ctaactctga aacgccctaa tatagaaaaa ataattatta aaataatgct 300
ttttggtata cattcccact gcaggaaggt attcaaaatt tgaaaatcca tgccaataaa 360
aaaaggtatg aatgtagaac ttgaaggttt gaaaaaactt ttcaaggttt aaagaaatgc 420
ctggggtggg aaaacaagcc tcttgagggt gtttacaggc ctgtcaagtt taaaaggacc 480
tcctgggtta gggaaacaag tattttaaag ctctacagat cacttgggtt gtgaaaaaac 540
accttttgag aaggcattga gcctatgaat gcatttaaat atgaatgtgg gccttggggg 600
gctaaaataa gcccccaaat cccctgtggg gtcttcctgg ggaagggtct ttttgagaat 660
tcaattattg aaatcacttg agttaattca acatgtaaag ataagacaaa tttcaagttt 720
gaaagaaata acaacctgag ctcagatttg acaaatcaac accttgggtt gtgtgtttta 780
gttttttgtt gtaaaacaca tcaaaataca tgttattagt aattaacagg ggatgaattt 840
acccttttca agctttagtc ttttgatcaa atactaatcc tcatgtatct attccattta 900
gagcttgaga tttcatactg gaatcaaaaa gttggcaatt ttttaattaa ttcaaagttt 960
ctacttgaca atttctgaat atctattcca ctcaaagtta ccagttaccc aaatttgaat 1020
ttatttttaa taggccctca aaaattcaaa ttttcaacat ttatatttcc tgtttttcat 1080
ttgattcttg aattaaaggg gaataaattc atcatttttg aaaacatcaa tatttctgtg 1140
acctttttga aaattgaaaa attggtgaag attagggctc aggatcaagt attctatata 1200
tttcctagat taatgggcaa tttgcaattt gaattcagaa gaaatggttt caggtattat 1260
ttttgacttt gatatggcct aatccttggt ctaaactgaa aaaaattctt ttagatttcc 1320
aacataaata ttttttcttc tttgaatatt tactaggaaa tatgatgact acaatgagac 1380
ttgatcactt ttaatcaacc aattttcaca ttgaatttat acttctacta aagagtacct 1440
tctgttttta ataatataaa ttctttataa taattatccc ttcaaaaaaa aagaattttc 1500
atgcataatt caccatctaa atagttcatt tgaacaagct tggacacctt gtggcaaaga 1560
aatcaccaaa aaaacaggtg aaatgactga cctttgaaag gaaaacatga tgtattttta 1620
aattatatat aagtttggaa cttcaggtaa aatagggccc aagaatctat ttgaatttca 1680
taaggtaatt tttttttgaa ttttgatttg atttaaaact gacatatatg aataaattca 1740
agaagattga actgagtatg atcagaacca ttaatcaatt gtcaaaattt gctaaattgt 1800
gcaggggaac cagataataa aaaaaaataa ctgataaatt gtgctatctt tcatcaaatt 1860
aataatgttt ttgccttttg tgatacagat aaaaattata cagaaatttc atcacaaaca 1920
ttcaatgcag atgaaaacat gcaaagtttt tcttttggtt tcctcaataa atattacctg 1980
catttcactt tggaaaactc attggattaa atctccttag tgagttaaat ccatcatctg 2040
atcttccgat ttatctacta taaattgatt ttttttttca aatagaattg aattcatcag 2100
ttgatatcac cagaaggacc ccctctgaga cttgtaggca gctcatacct aaaaattgaa 2160
ccaatttgac aacccaggat ggaagaagtt gccaataatc agtccaaaaa tatcaagaat 2220
tcactcaaat attatcaatt aattccaata aagatacatc aatttttcat caattaccaa 2280
aaaattatat aaaaacttta tgatttggtc ccttgtctct attcttgaga aagatgagtg 2340
atctttagtc tgtctttgtt ccaggttatt tcactgtgga tattctgagg caggcactgt 2400
gctttactcc tacaacaatt cttacttaga ataaaaaaat taatgataaa aattgaaatt 2460
tccaactaaa aatttgattc accaatgatc ttgtctgatt attaaatatc tactcaactt 2520
cagagtagga aaatgattaa aacctttttt gtaatttttt catagaaaaa aaaggggtca 2580
tctaaatgac tttagacctc ataaaatcca agacagttca ataaattctg aaaaatgtcc 2640
aaaataactt aactttcctt tttttattaa cagcaaaata aattgagact gttttataga 2700
aaatatgtgg gataccagga aatgagattg tggattgaat aacaaaggaa gctataaaaa 2760
atgcatccaa accacctatt ccccaccaga gatgactagg aaaaaaagat gcaggattgg 2820
ctctaggcta acatgagcca aaaaagaata acccaaacct tgattagaat atggctatgt 2880
ggtctggttg attaaaactc tctcaaatga attctcaaga actgaatatt tgtttagaaa 2940
aaaaaataaa taaattcact aaccctctcc gccccctacc cccatttttt tggaagaaaa 3000
ttgaacagtt taaaaattta ctcgattgtt ttcctggccg aaggaaatta aagaagcact 3060
cggaggaacc atctaaggca caatcaaatc taatataatt ttaaacctct aaattttttt 3120
ttaaaaatca cttgaacaaa atttcaactc actaaaacaa gatcttaaac aatccaaagc 3180
caatccttcc cgggctgaaa caatcgaatc caatacaatt atcaagcctg gctgggtttg 3240
aattgcctag gatgatcaaa atctccctga tccagcgtcc aacgtacaat cctttgaacc 3300
catctgagac ccaattcctg tccacccact atttgatttt gctctttcta agtattgtgg 3360
tatctgtgtt gatgattatt atctttcctt tttttcgccc gcttactttc taattttcct 3420
tttgatcttt catcttttcg ctctttcctt tcggctttgg gtttttgatc tctgttattt 3480
tcctttcccc ccccccctct ttcgcctttc ttgcctccgc tcgatcctct ttctccacat 3540
atcatctcac tttcttgatt ccttccgatc ctccttaatc agaagcccta gaccccccgg 3600
tgtttagacc ctcgcactag cccggggtga agaaggtgac tcacgaaacc ccgactacgg 3660
ggtaaaccat gtttttacga gtttcatagc gtgcaatacc gtagccgaca tcatacctga 3720
aacgacaaaa aaggaaatgg atggagaggt cgagtttgaa gcaaagcatg atgagtggaa 3780
tcgggtcaac tgaaacctga tctcatgcta agattctcta gagttcggac gatatatcct 3840
catcattcgt tcggggttct tttatttttc attttaattt cttccgtctt gtggtgcagc 3900
tagtcatagc tagctaatga tgctactcga tcgatgattt tttctggttg ttgatggttg 3960
ttgagtagtt ttaccggact ggacccatca gcaggtttca tcgtctgttc cgtccatccc 4020
agatgtcgca ataagagtag tgatgatatt cctaaattaa atattcactc aatcgacctt 4080
attacatacc cccacccaaa accggcgatt gggatagtgg agcgactcga ccatctggcc 4140
ggctggctgt gatcctggtt ggttggtgcc gcacaaatat gtaaatcgta tgtaagtgca 4200
tacaatcccc attagcatgt ttgtttctca tggtggagtg tccgcaacgc cgtctgactc 4260
tgatgcccat tgccattcac tcctggatac caccttggca cctacccact tgagtacgta 4320
ttcaggtttg gacccaccca atcacttacc tggattatct cagtctccac tctgcagtat 4380
gaatgtcaat gggagccctg tagacattca aatgaaaaat gtgcattctg ttgaatccaa 4440
gcctgtagtt atgatctctt ctgcccgcag tgctctgtag tgtctcaata cacctgatcc 4500
gtttttggag ctgtacgcac acatctttgc ttacctatac gtatacacag gtatgaggtt 4560
atgtatttgt gtatgtatgt gcatacatgg tcagtgccta gtcctacggt atctatgtaa 4620
atatgcctgc acgcatgtgt tgacatcctc gtccactggg gtcgtaaagt atgtacatat 4680
ttatgcataa attctcgcag acggggagag agggactagt gagactaacg agggagaggg 4740
aaacccccta cccagagggc gagcgcgacc agccctgggg gggcccaatc ggaagctgaa 4800
agccaagttc ccattgcctc accattctag cccggctctt gaccccctga gtccctcttc 4860
agccgataag aaactgagaa agaaaaattg ataaaaagtc catcgaagga tcgattcatc 4920
cgtcgaattc aactcgagac caacctagaa acccgtcatc acccaccaag tcaaccgcaa 4980
gctccaagtc aggtaatctc ctcaagatga aggagagttc gagtaatacg gactttgatg 5040
atatttacgg tcccaacgac gatgccccag aagtacatcc gcattcctga ttctctatcg 5100
ttgtcttctc gcttctcttc tcttctctcg ctctgtctcg ctctttctct ctctctctct 5160
ctctctctct ctctctcgct ctctctctct ctctctggct ctctctccat ctttctctct 5220
ctcgcgtcga tggtcatcat cccccatcca tctggtcttg gttcttgtct tgctctcgtc 5280
ccgtcctctc catcgatgtc tccctcgccc tttgtctctc cgtcttctcc aaccatcgac 5340
gtataccacc cagtcgacgg tctatttcct cccagagatt accttccatc tcttgccttg 5400
ttctctccat cccaatccct ggtcatcgtc ttcgattgtc agacctccag ccgctgcttg 5460
tttccctctc tcccccggtt ttcgttttac tcgaccgatt tgtccatgtc ccatccgcct 5520
ccgtctccct ccaatctccc ccattcccct cctcccctct ccaccctcat cgcccctcct 5580
aagcttgatt catcggatgc ctcccctgtc gctcgctcga aatcgatcgt cattacgacc 5640
gagtctttct tcccatctca tggcccgatt taactcttgt cctccaaccg attgtgggcc 5700
caacacatgg cacgataacc acgaactggg actccctccc ctgtgatcct tcctcttact 5760
cattccacgt cacccattat atccccctca tccctccaca acgttgtaga tatacttgtg 5820
aaatacggtt gatgataccg actgattgtg gatcagtctc ggggcgttgt ctgtctcttc 5880
tcctgctacg cacttgtctg cgaccttgta tcatccgcct cgatccattc cctacccagc 5940
ttgttttgat cccgtctccc tcagcatctt cgaactcgtc ctctcctgta ataacctctt 6000
cacctccaac cttttcaccc tttgcatctc tccctctctc ttgcttctta ctcgacgtat 6060
ccgctgaccc aacgagtcaa gggcctgatg ggcaagaagt tattcatcct gcttcttcca 6120
ttctcacttg tatctgtttt cacgtctgac gcatccaccg ggcttgtttt ttactctctc 6180
gtctcgcttc tcccgaggcc gtatgtaaac ttgttggaaa accaccgaac cacatctgca 6240
ctgatcgttt ttttttgttg tcgatgtctc atccaaccct ctcactgcaa cctcaggagc 6300
gctcatgtgt atcatctccc ttcttaactt tgggttccaa tcactccgaa aactgccttg 6360
tgtttgaagt ccaactcaac tgtttgccat ctgaacctgt cattcatcaa ccgccaacct 6420
gagaaaacaa accgatcttg ttgtttccac ttgaaaacca tgtgttcttg aacctccact 6480
cggacttatt gatgtggtta atgactaaag aaccaatgtg atgggcatgc tgcgtttagg 6540
agagaaccaa taacaaagcc agttatccat tgatctattg atccgttgcc tcattgaaca 6600
cattgtgcga cgaacatcga tccatctgga aatgaaaccc gaacgaaata tcacattcgt 6660
tttgcagcgg aaacttttcc atcacctctc gtcctgattt cgctttgacg cctgtatgaa 6720
gttgtttctc tcgggactga tcttacgaga gtggggtttt tcctagagtg gagcagggcc 6780
tatcggcgcc tcgaattgat cccagtctat ccaagcgata ttcggttccc aaatcatgac 6840
gcgaaatgtt acgttgggtt gtgacgctat gagggggcag ggtgtcttac gattgttttg 6900
ttattccatc tcccatcgat acgttctcta ggataatttg tatgcagacc tgataccaga 6960
ggatggttcg actactgtca gcaaccgaga tcccaccagc ccgactcggt acgatgcggt 7020
tcttaggaaa tcgtcgacga accacgattc acccctcaaa ggtaatactg atgagaatcc 7080
tacctcgacc acgacgacga ccacacccac caccaagcct catcatactc atccaggtgg 7140
tgagtcgagc aacgcatcgg acatcaaacc ggatatcaaa cctggtggtc accatgaggt 7200
agagagagat ttcctgcttc atcttacctt tccaaagcga aaaaaaaaaa aatccatcaa 7260
caaaacttag ggcccagtcc agcccctatc atgacatact agtacatcaa tagatactct 7320
tatgataaaa tcaaagtgtt tgaacgacta gttgcgtagg gaacttgggt cacgttttaa 7380
ccatgacgac tttcccttcg tccgctcgat ataacttttg atgttgcctt cgttcaatca 7440
tcatcatcgc aatgagttag aactgactca acatcatcct atccaacgtc tgcctttatc 7500
atctgttctt ttactctatt tctcatcaat atccatccac ttcatcaccg cgttgcacaa 7560
ccctacgcgc gatgggccac aaatcaatcg atagcatggg ttaccgatcc cacccatgtc 7620
ggcctcatta ccagcaaacc cgatggcgac caattcaaag cagggtggga cgagtggacc 7680
tggaggctca ttagctacgt cgtcgatacc gacgagtagt accaataact ctggcttggg 7740
tggtgccagt agtagtgctc cttcccatca gcaacaccaa ccaatcggta ccctcacccc 7800
acccacgacc cacaaacaca accatcatca gcttcacaat aataatagca gcaacagtca 7860
ccactccaat catgatcaga tgatgaacaa tagtaccaac aatcctatca gctcccatca 7920
cccctctcat cataaccagt actccaatct ccacacgttc aactcaaccg gccctggggc 7980
cagaaaggat gagcgtggct tatgcggact ctatatcgct gatttacaat gggttagtag 8040
tgtataccga gctgctccta atccttcacg actgatccca tagaacctcc agggactgac 8100
ggcccttcat tttacgggtc tgcgcgggcg cgggtcttcc ttctttcccc ttcggtgggt 8160
tcccttctct tgacccgtgg gtgctttacg tagtacacga gtgatgaaga tctacgtaag 8220
gtcgccgaga ac 8232
<210> 2
<211> 733
<212> DNA
<213> 多堆柄锈菌(Puccinia polysora)
<400> 2
ccctctctcc cccggttttc gttttactcg accgatttgt ccatgtccca tccgcctccg 60
tctcccttcc aatctccccc attcccctcc tcccctctcc accctcatcg cccctcctaa 120
gcttgattca tcggatgcct cccctgtcgc tcgctcgaaa tcgatcgtca ttacgaccga 180
gtctttcttc ccatctcatg gcccgattta actcttgtcc tccaaccgat tgtgggccca 240
acacatggca cgataaccac gaactgggac tccctcccct gtgatccttc ctcttactca 300
ttccacgtca cccattatat ccccctcatc cctccacaac gttgtagata tacttgtgaa 360
atacggttga tgataccgac tgattgtgga tcagtctcgg ggcgttgtct gtctcttctc 420
ctgctacgca cttgtctgcg accttgtatc atccgcctcg atccattccc tacccagctt 480
gttttgatcc cgtctccctc agcatcttcg aactcgtcct ctcctgtaat aacctcttca 540
cctccaacct tttcaccctt tgcatctctc cctctctctt gcttcttact cgacgtatcc 600
gctgacccaa cgagtcaagg gcctgatggg caagaagtta ttcatcctgc ttcttccatt 660
ctcacttgta tctgttttca cgtctgacgc atccaccggg cttgtttttt actctctcgt 720
ctcgcttctc ccg 733
<210> 3
<211> 318
<212> DNA
<213> 多堆柄锈菌(Puccinia polysora)
<400> 3
atgataccga ctgattgtgg atcagtctcg gggcgttgtc tgtctcttct cctgctacgc 60
acttgtctgc gaccttgtat catccgcctc gatccattcc ctacccagct tgttttgatc 120
ccgtctccct cagcatcttc gaactcgtcc tctcctgtaa taacctcttc acctccaacc 180
ttttcaccct ttgcatctct ccctctctct tgcttcttac tcgacgtatc cgctgaccca 240
acgagtcaag ggcctgatgg gcaagaagtt attcatcctg cttcttccat tctcacttgt 300
atctgttttc acgtctga 318
<210> 4
<211> 105
<212> PRT
<213> 多堆柄锈菌(Puccinia polysora)
<400> 4
Met Ile Pro Thr Asp Cys Gly Ser Val Ser Gly Arg Cys Leu Ser Leu
1 5 10 15
Leu Leu Leu Arg Thr Cys Leu Arg Pro Cys Ile Ile Arg Leu Asp Pro
20 25 30
Phe Pro Thr Gln Leu Val Leu Ile Pro Ser Pro Ser Ala Ser Ser Asn
35 40 45
Ser Ser Ser Pro Val Ile Thr Ser Ser Pro Pro Thr Phe Ser Pro Phe
50 55 60
Ala Ser Leu Pro Leu Ser Cys Phe Leu Leu Asp Val Ser Ala Asp Pro
65 70 75 80
Thr Ser Gln Gly Pro Asp Gly Gln Glu Val Ile His Pro Ala Ser Ser
85 90 95
Ile Leu Thr Cys Ile Cys Phe His Val
100 105
<210> 5
<211> 10
<212> PRT
<213> 多堆柄锈菌(Puccinia polysora)
<400> 5
Met Ile Pro Thr Asp Cys Gly Ser Val Ser
1 5 10

Claims (20)

1.一种验证因果疾病抗性基因的方法,所述方法包括:
a.在疾病抗性植物中的疾病抗性基因座中鉴定至少一个潜在基因;
b.将植物病原体效应子基因的至少一个等位基因和萤光素酶基因转染至玉蜀黍原生质体中,其中所述玉蜀黍原生质体来源于所述疾病抗性植物,并且其中所述病原体效应子基因编码包含与SEQ ID NO:4具有至少95%序列同一性的序列的多肽;
c.测量萤光素酶活性;以及
d.选择在植物病原体效应子的存在下产生过敏反应的基因。
2.权利要求1的方法,其中所述疾病抗性供体植物是玉蜀黍植物。
3.权利要求1的方法,其中所述疾病抗性供体植物是大豆植物。
4.一种选择疾病抗性供体植物的方法,所述方法包括:
a.将植物病原体效应子基因的至少一个等位基因和萤光素酶基因转染至玉蜀黍原生质体中,其中所述玉蜀黍原生质体来源于对植物病原体具有抗性的植物,并且其中所述病原体效应子基因编码包含与SEQ ID NO:4具有至少95%序列同一性的序列的多肽;
b.测量萤光素酶活性;以及
c.选择在植物病原体效应子的存在下产生过敏反应的玉蜀黍植物。
5.权利要求4的方法,其中所述疾病抗性供体植物是玉蜀黍植物。
6.权利要求4的方法,其中所述疾病抗性供体植物是大豆植物。
7.一种针对疾病抗性育种植物的方法,所述方法包括:
a.将植物病原体效应子基因的至少一个等位基因和萤光素酶基因转染至玉蜀黍原生质体中,其中所述玉蜀黍原生质体来源于对植物病原体具有抗性的至少一个玉蜀黍植物,并且其中所述病原体效应子基因编码包含与SEQ ID NO:4具有至少95%序列同一性的序列的多肽;
b.测量萤光素酶活性;以及
c.选择在植物病原体效应子的存在下产生过敏反应的玉蜀黍植物。
8.权利要求7的方法,所述方法进一步包括使选择的玉蜀黍植物与第二玉蜀黍植物杂交。
9.一种玉蜀黍原生质体,所述玉蜀黍原生质体包含预期的病原体效应子基因、萤光素酶基因、和潜在的玉蜀黍疾病抗性基因,其中所述预期的病原体效应子基因是从计算分析预测的并且其中所述病原体效应子基因编码包含与SEQ ID NO:4具有至少95%序列同一性的序列的多肽。
10.权利要求9的玉蜀黍原生质体,其中所述预期的病原体效应子基因和萤光素酶报告基因均从单一的表达载体表达。
11.一种大豆原生质体,所述大豆原生质体包含预期的病原体效应子基因、萤光素酶基因、和潜在的大豆疾病抗性基因,其中所述预期的病原体效应子基因是从计算分析预测的并且其中所述病原体效应子基因编码包含与SEQ ID NO:4具有至少95%序列同一性的序列的多肽。
12.权利要求13的大豆原生质体,其中所述预期的病原体效应子基因和萤光素酶报告基因均从单一的表达载体表达。
13.一种植物,所述植物包含靶向病原体效应子蛋白的dsRNA,其中所述病原体效应子蛋白通过萤光素酶报告子原生质体测定来鉴定或验证,并且其中所述病原体效应子基因编码包含与SEQ ID NO:4具有至少95%序列同一性的序列的多肽。
14.一种重组DNA构建体,所述重组DNA构建体包含与至少一个调节序列可操作地连接的多核苷酸,其中所述多核苷酸包含核酸序列,所述核酸序列编码与SEQ ID NO:4具有至少95%序列同一性的氨基酸序列。
15.权利要求14的重组DNA构建体,其中所述至少一个调节序列是在植物细胞中有功能的启动子。
16.一种植物细胞,所述植物细胞包含权利要求14的重组DNA构建体。
17.权利要求14的植物细胞,其中所述植物细胞来源于疾病抗性植物。
18.权利要求16的植物细胞,其中所述植物细胞来源于疾病易感植物。
19.一种部署疾病抗性植物的方法,所述方法包括调查来自植物有害生物群体的效应子序列以鉴定田间有害生物群体中的效应子的等位基因多样性和等位基因频率,其中所述效应子序列与SEQ ID NO:4具有至少95%序列同一性。
20.权利要求19的方法,所述方法进一步包括基于等位基因特异性数据部署包含R基因的植物,所述R基因与所述效应子相互作用。
CN202110403600.2A 2021-04-16 2021-04-16 植物病原体效应子和疾病抗性基因鉴定、组合物和使用方法 Pending CN115216554A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202110403600.2A CN115216554A (zh) 2021-04-16 2021-04-16 植物病原体效应子和疾病抗性基因鉴定、组合物和使用方法
PCT/CN2022/084239 WO2022218158A1 (en) 2021-04-16 2022-03-31 Plant pathogen effector and disease resistance gene identification, compositions, and methods of use
BR112023020127A BR112023020127A2 (pt) 2021-04-16 2022-03-31 Identificação de gene efetor de patógeno vegetal e de resistência à doença, composições e métodos de uso

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110403600.2A CN115216554A (zh) 2021-04-16 2021-04-16 植物病原体效应子和疾病抗性基因鉴定、组合物和使用方法

Publications (1)

Publication Number Publication Date
CN115216554A true CN115216554A (zh) 2022-10-21

Family

ID=81387131

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110403600.2A Pending CN115216554A (zh) 2021-04-16 2021-04-16 植物病原体效应子和疾病抗性基因鉴定、组合物和使用方法

Country Status (3)

Country Link
CN (1) CN115216554A (zh)
BR (1) BR112023020127A2 (zh)
WO (1) WO2022218158A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116024234A (zh) * 2022-12-12 2023-04-28 南京林业大学 一种杨树壳针孢菌效应蛋白SmCSEP3及其应用

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4945050A (en) 1984-11-13 1990-07-31 Cornell Research Foundation, Inc. Method for transporting substances into living cells and tissues and apparatus therefor
US5990387A (en) 1988-06-10 1999-11-23 Pioneer Hi-Bred International, Inc. Stable transformation of plant cells
US5240855A (en) 1989-05-12 1993-08-31 Pioneer Hi-Bred International, Inc. Particle gun
US5879918A (en) 1989-05-12 1999-03-09 Pioneer Hi-Bred International, Inc. Pretreatment of microprojectiles prior to using in a particle gun
US5322783A (en) 1989-10-17 1994-06-21 Pioneer Hi-Bred International, Inc. Soybean transformation by microparticle bombardment
US5932782A (en) 1990-11-14 1999-08-03 Pioneer Hi-Bred International, Inc. Plant transformation method using agrobacterium species adhered to microprojectiles
US5324646A (en) 1992-01-06 1994-06-28 Pioneer Hi-Bred International, Inc. Methods of regeneration of Medicago sativa and expressing foreign DNA in same
WO1994002620A2 (en) 1992-07-27 1994-02-03 Pioneer Hi-Bred International, Inc. An improved method of agrobacterium-mediated transformation of cultured soybean cells
US5736369A (en) 1994-07-29 1998-04-07 Pioneer Hi-Bred International, Inc. Method for producing transgenic cereal plants
US5981840A (en) 1997-01-24 1999-11-09 Pioneer Hi-Bred International, Inc. Methods for agrobacterium-mediated transformation
AU768243B2 (en) 1998-11-09 2003-12-04 E.I. Du Pont De Nemours And Company Transcriptional activator LEC1 nucleic acids, polypeptides and their uses
FR2833615A1 (fr) 2001-12-14 2003-06-20 Genoplante Valor POLYMORPHISMES DU GENE CCoAOMT2 DE MAIS, ET LEURS UTILISATIONS POUR AMELIORER LA DIGESTIBILITE DES PLANTES
EP1859037A2 (en) 2005-03-08 2007-11-28 BASF Plant Science GmbH Expression enhancing intron sequences
BRPI0615088A2 (pt) 2005-08-24 2009-07-14 Pioneer Hi Bred Int composições que fornecem toleráncia a herbicidas múltiplos e métodos de uso das mesmas
PT2465340E (pt) 2006-01-12 2015-03-11 Cibus Europe Bv Mutantes de epsps
US11851668B2 (en) * 2018-06-06 2023-12-26 Huazhong Agricultural University Methods of identifying, selecting, and producing southern corn rust resistant crops

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116024234A (zh) * 2022-12-12 2023-04-28 南京林业大学 一种杨树壳针孢菌效应蛋白SmCSEP3及其应用
CN116024234B (zh) * 2022-12-12 2023-07-21 南京林业大学 一种杨树壳针孢菌效应蛋白SmCSEP3及其应用

Also Published As

Publication number Publication date
BR112023020127A2 (pt) 2023-11-14
WO2022218158A1 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
CN112351679B (zh) 鉴定、选择和产生南方玉米锈病抗性作物的方法
BR112020025031A2 (pt) molécula que tem utilidade pesticida, composições e processos relacionados à mesma
US20210040569A1 (en) Methods of identifying, selecting, and producing disease resistant crops
WO2021143587A1 (en) Methods of identifying, selecting, and producing disease resistant crops
MX2013015338A (es) Metodos y composiciones para la regulacion selectiva de la expresion de proteinas.
US10767190B2 (en) Brassicaceae plants resistant to Plasmodiophora brassicae (clubroot)
US11473101B2 (en) Methods of identifying, selecting, and producing southern corn rust resistant crops
CN111988988A (zh) 鉴定、选择和产生抗白叶枯病水稻的方法
WO2022218158A1 (en) Plant pathogen effector and disease resistance gene identification, compositions, and methods of use
US11661609B2 (en) Methods of identifying, selecting, and producing disease resistant crops
US20220282338A1 (en) Methods of identifying, selecting, and producing anthracnose stalk rot resistant crops
US20230151382A1 (en) Plant pathogen effector and disease resistance gene identification, compositions, and methods of use
CN117812999A (zh) 鉴定、选择和产生炭疽茎腐病抗性作物的方法
US20210222189A1 (en) Methods of identifying, selecting, and producing southern corn rust resistant crops
BR112021013923A2 (pt) Métodos de identificação, seleção e produção de colheita resistente à ferrugem de milho do sul
CA3132694A1 (en) Overcoming self-incompatibility in diploid plants for breeding and production of hybrids through modulation of ht

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication