CN115215328B - 一种竹林状石墨烯管阵列及其制备方法和应用 - Google Patents

一种竹林状石墨烯管阵列及其制备方法和应用 Download PDF

Info

Publication number
CN115215328B
CN115215328B CN202210882960.XA CN202210882960A CN115215328B CN 115215328 B CN115215328 B CN 115215328B CN 202210882960 A CN202210882960 A CN 202210882960A CN 115215328 B CN115215328 B CN 115215328B
Authority
CN
China
Prior art keywords
precursor
graphene
bamboo
gas
nanowire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210882960.XA
Other languages
English (en)
Other versions
CN115215328A (zh
Inventor
黄富强
任大勇
秦秋亮
赵晨东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN202210882960.XA priority Critical patent/CN115215328B/zh
Publication of CN115215328A publication Critical patent/CN115215328A/zh
Application granted granted Critical
Publication of CN115215328B publication Critical patent/CN115215328B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/32Size or surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供了一种竹林状石墨烯管阵列的制备方法,包括如下步骤:首先通过水热方法合成了第一前驱体A2Ti3O7(A=Li、Na、K,Rb);其次第一前驱体通过离子交换合成第二前驱体Ma+ xA1+ yTi3O7(M=Fe、Co、Ni,Cu);再通过化学气相层积的方法将具有催化活性的金属M原子被合成成纳米颗粒,进行下一步的石墨烯管生长。本发明还提供由如上所述的制备方法制备的竹林状石墨烯管阵列及其在柔性可穿戴电子装置中的应用。本发明通过简单的方法可以实现很好的具有催化活性的金属纳米颗粒的铆定,而且具有催化活性的金属纳米颗粒元素的选择具有多元性,具有很好的实用性,并且可以实现大批量的石墨烯生长,具备良好的潜力可以应用在大规模的商业生产中。

Description

一种竹林状石墨烯管阵列及其制备方法和应用
技术领域
本发明属于碳材料技术领域,尤其涉及一种竹林状石墨烯管阵列及其制备方法和在柔性可穿戴电子装置中的应用。
背景技术
柔性可穿戴电子设备在人们日常生活中越来越重要,特别是利用可穿戴设备对于人体生理信号、体征参数等采集以进一步提高人体健康水平与运动状态识别。其中,碳纳米管作为一种典型的碳基材料,具有良好的导电性和稳定性,因此在可穿戴电子中得到了广泛的应用。然而,碳纳米管与石墨烯材料类似,碳原子间为pi-pi共轭连接,因而使得碳纳米管具有一定的刚性,受压弯曲状态下结构易于破坏,难以表现足够的弹性特征与结构稳定性。而通常杂原子的掺入能够部分改善成键状态,从而在一定程度上提高碳基材料的弹性特征。如,在石墨烯中掺杂一定的的氮原子,可以使得石墨烯材料能够成承受更多的应力和弯曲。此外,通过碳基单元的二次结构组装亦能显著改善力学性能。如石墨烯组装形成的石墨烯气凝胶结构能够承受近乎180°的反转而保持回弹性能,可以很好的优化长久疲劳测试给整个结构带来不可逆破坏的问题。
包括石墨烯、碳纳米管等碳基材料最主要的制备方法是以气体碳源为前驱体,通过化学气相层积表面离子还原以及进行生长。其中,催化剂的结构与及载体分散形式对碳基材料的形貌和力学特性具有重要影响作用。通过离子交换进行分散催化剂是一种容易实现且能耗较低的方式,寻找到合适的交换基底是关键。众所周知,钛酸钠(Na2Ti3O7)作为一类典型类层状材料,层间钠离子易脱出交换成其它金属离子,包括具有催化活性的铁、铜、镍、钴等元素均可与其进行离子交换,因此作为一种载体广泛应用于电催化、储能等领域。然而,其作为催化剂载体用于碳基材料的研发还尚未得到应用。
发明内容
针对上述问题,本发明的目的在于提供一种具有超弹特性的竹林状石墨烯管阵列及其制备方法,采用钛酸钠纳米线作为前驱体进行离子交换,交换的离子在还原性气氛以及受热的情况下能够实现均匀的析出,获得具有原子级别分散的催化剂,在气体碳源的条件下能够很好的实现石墨烯管的生长。
为实现上述目的,本发明采用如下技术方案:
第一个方面,本发明提供了一种竹林状石墨烯管阵列的制备方法,包括如下步骤:
步骤(1),制备第一前驱体A2Ti3O7纳米线,其中A选自Li、Na、K和Rb中的至
少一种;
步骤(2),通过离子交换方法将步骤(1)得到的第一前驱体A2Ti3O7纳米线中部分的A交换成具有催化活性的金属离子M,获得第二前驱体Ma+ xA1+ yTi3O7纳米线,其中,M选自Fe、Co、Ni和Cu中的至少一种,A选自Li、Na、K和Rb中的至少一种,ax+y=2,a为2~4的整数;
步骤(3),通过化学气相沉积的方法,将步骤(2)得到的第二前驱体Ma+ xA1+ yTi3O7纳米线中的金属原子M析出,形成金属纳米颗粒,然后通入气体碳源和辅助气氛,在一定温度下,所述金属纳米颗粒作为催化剂在作为载体的所述第二前驱体纳米线的表面上生长成石墨烯,获得竹林状石墨烯管阵列。
较佳地,步骤(1)的制备步骤包括:将钛基前驱体氧化钛与结构导向剂分散于金属氢氧化物溶液中,置于在耐高温高压密闭容器中,在150~200℃下反应1d~7d,静置,水和乙醇分别洗涤3次,烘箱干燥,得到所述第一前驱体A2Ti3O7纳米线。
较佳地,所述钛基前驱体氧化钛选自P25、锐钛矿氧化钛、金红石氧化钛、S掺杂TiO2粉末、TiO颗粒和Ti3O5颗粒中的至少一种,所述钛基前驱体氧化钛的粒径优选为50nm-500μm;所述结构导向剂选自乙二胺四乙酸EDTA、聚乙烯吡咯烷酮PVP和聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物PEO-PPO-PEO中的至少一种;所述金属氢氧化物选自Li、Na、K、Rb的氢氧化物中的至少一种,优选为NaOH;得到的所述第一前驱体A2Ti3O7纳米线的直径为10-500nm。
较佳地,步骤(2)中的制备步骤包括:将步骤(1)得到的所述第一前驱体A2Ti3O7纳米线置于盐水溶液中,进行搅拌处理,通过离子交换得到所述的第二前驱体Ma+ xA1+ yTi3O7纳米线。
较佳地,所述盐水溶液包括Fe、Co、Ni、Cu的硝酸盐、氯化盐、硫酸盐、乙酸盐、乙酰丙酮盐中的至少一种,盐离子摩尔比为M:A=1:1~10:1。
较佳地,步骤(3)中的制备步骤包括:将步骤(2)得到的所述第二前驱体MxAyTi3O7纳米线置于坩埚内,放入气氛炉中升温,并通入气体碳源进行生长,得到长度为20-100μm的竹林状石墨烯管阵列。
较佳地,所述气体碳源选自甲烷、乙烯和乙炔中的至少一种,所述辅助气氛选自氨气、氢气、氩气和氮气中的至少一种;优选地,当所述气体碳源为乙烯气体时,气氛炉中升温后的的保温温度为800~850℃,升温速率为1-30℃,通入气流量比值为:乙烯:氢气:氨气:氩气/氮气=(20-30):15:10:200;当所述气体碳源为甲烷气体时,气氛炉中升温后的的保温温度为1000~1100℃,升温速率为1-10℃,通入气流量比值为:甲烷:氢气:氨气:氩气/氮气=(40-50):15:10:200。
第二个方面,本发明还提供一种由如上所述的制备方法制备的竹林状石墨烯管阵列。
第三个方面,本发明还提供一种如上所述的竹林状石墨烯管阵列在柔性可穿戴电子装置中的应用。
本发明提供的一种竹林状石墨烯管阵列的制备方法,以具有层状结构的钛酸盐A2Ti3O7(A=Li、Na、K,Rb)纳米线为载体,通过一步离子交换,获得具有催化活性的MxAyTi3O7(M=Fe、Co、Ni,Cu)纳米线。经由交换得到的MxAyTi3O7的晶体构型不变,形貌不变,具有催化活性的M呈现原子级分散。分散的具有催化活性的M离子在加热还原气氛的状态下能够析出均匀的金属纳米颗粒,碳源在具有催化活性的金属纳米颗粒的表面形成二维石墨烯纳米片,并进行管状组装,形成竹林状的一维管状石墨烯结构,且管壁由石墨烯纳米片紧密堆叠组装,保留有丰富的孔道结构。管状内部丰富的孔道结构在受压弯曲过程中能够有效释放应力,避免应力集中对于结构的破坏性,赋予管状石墨烯材料超弹特性和弯曲稳定性。
与现有技术相比,本发明具有如下有益效果:
本发明提供了一种竹林状石墨烯管阵列的制备方法。首先通过水热方法合成了第一前驱体A2Ti3O7(A=Li、Na、K,Rb),其中金属A所对应的价态为正一价。其次第一前驱体通过离子交换合成第二前驱体Ma+ xA1+ yTi3O7(M=Fe、Co、Ni,Cu),其中金属M所对应的价态为正二价、正三价或正四价。再通过化学气相层积的方法将具有催化活性的金属M原子被合成纳米颗粒,进行下一步的石墨烯管生长。其中制备的第一前驱体具备良好的纳米线状,第二前驱体在交换过程中完美的保留了第一前驱体的纳米线状结构,并且在水中交换部分A离子。分散的具有催化活性的M离子在加热还原气氛的状态下能够析出均匀的金属纳米颗粒,这个纳米颗粒可以作为催化剂在气体碳源中形成石墨烯,通过定向的一维组装成石墨烯管。本发明通过简单的方法可以实现很好的具有催化活性的金属纳米颗粒的铆定,而且具有催化活性的金属纳米颗粒元素的选择具有多元性,具有很好的实用性,并且可以实现大批量的石墨烯管生长,具备良好的潜力可以应用在大规模的商业生产中。
附图说明
图1为本发明实施例1中钛酸钠纳米线的SEM图和元素分布图,其中a)为钛酸钠纳米线的SEM图,b)为钛酸钠纳米线元素分布测试采样图,c)为Na元素分布图,d)为氧元素分布图,e)为Ti元素分布图;
图2为本发明实施例1中镍交换钛酸钠纳米线的SEM图和元素分布图,其中a)为镍交换钛酸钠纳米线的SEM图,b)为镍交换钛酸钠纳米线元素分布测试采样图,c)为Na元素分布图,d)为氧元素分布图,e)为Ti元素分布图,f)为镍元素图,g)为元素分布比例;
图3为本发明实施例1中钛酸钠纳米线和镍交换钛酸钠纳米线的XRD图;
图4为本发明实施例1中超弹性竹林状石墨烯管阵列的SEM图和TEM图,其中a)为竹林状石墨烯管阵列的SEM图,b)石墨烯管的TEM图,c)石墨烯管的高倍率TEM图;
图5为本发明实施例1中竹林状石墨烯管阵列的XRD(a)和Raman光谱图(b);
图6为本发明实施例1竹林状石墨烯管的原位压缩性能测试。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
Ni基催化石墨烯管的生长。(1)前体一钛酸钠纳米线的合成:称取1g P25,48g氢氧化钠,溶于120ml的去离子水溶液中,搅拌、超声分散后,在180℃下反应24h;抽滤,按照乙醇-水-水-乙醇的顺序洗涤,共计洗涤4次,烘箱干燥,得到钛酸钠纳米线。(2)前体二镍交换钛酸钠纳米线的合成:将上述得到的钛酸钠纳米线前驱体分散于50ml水溶液中,加入硝酸镍水溶液(摩尔比Na:Ni=1:10),反应12h;抽滤,按照乙醇-水-水-乙醇的顺序洗涤,共计洗涤4次,烘箱干燥,得到镍钛氧前体二。(3)石墨烯管制备:将上述得到的镍钛氧前驱体放置在坩埚上,放入管式炉中以5°/min的速度升温至850℃,通入乙烯:氢气:氨气:氩气/氮气=20-30:15:10:200(体积比),热处理2h得到石墨烯管。
通过对钛酸钠纳米线和镍交换钛酸钠纳米线的扫描电镜形貌观测可知,呈现出30-50nm的直径以及大约50μm长度的钛酸钠纳米线,并且经由交换得到的镍交换钛酸钠纳米线的形貌并未发生大的转变,如图1-2所示。对镍交换钛酸钠纳米线的元素分布图所示,镍元素遍布整个线上,具有良好的分散性。
粉末X射线衍射测试,证明镍钛酸钠纳米线结构具有类层状单斜结构P 21/m,离子交换完后的镍交换钛酸钠纳米线出现高角度偏移,证实了交换完后镍离子插入层间致使层间距减少,如图3所示。
通过对合成的石墨烯管进行扫描形貌以及透射电镜形貌的观测,得到的石墨烯管具有50-200nm的管径以及大约50μm的长度,如图4a-b所示。二维的石墨烯纳米片再进行二次3D管状组装,形成竹林状的一维管状石墨烯结构,如图4c所示(图4中,Outer Graphene为管外壁石墨烯层,Inner Graphene为管内壁石墨烯层,Bridging Graphene为连接内外壁的桥连石墨烯层)。
通过XRD和拉曼的峰,XRD出现大的碳峰,以及合成过程中得到的TiN的峰,可知得到了相应的石墨烯管结构,拉曼测试表明了很好的DG峰ID/IG=0.74,具有大的2D峰证实其石墨化程度高,如图5所示。
原位力学测试:石墨烯管由一端固定住材料,另一端经由探针对石墨烯管进行力学测试。从扫描图中可知,石墨烯管可由探针进行弹性压缩实验。最大弯曲可以达到180°,近乎一半的压缩占比16μm(32μm总长),如图6所示。说明本发明制备的竹林状石墨烯管阵列具有超弹特性。
实施例2
Fe基催化石墨烯管的生长。(1)前体一钠钛氧的合成:如上述例一所示。(2)前体二铁钛氧合成的合成:将上述得到的钠钛氧前驱体分散于50ml水溶液中,加入硝酸铁水溶液(摩尔比Na:Fe=1:10),反应12h;抽滤,按照乙醇-水-水-乙醇的顺序洗涤,共计洗涤4次,烘箱干燥,得到铁钛氧前体二。(3)石墨烯管制备:将上述得到的镍钛氧前驱体放置在坩埚上,放入管式炉中以5°/min的速度升温至850℃,通入乙烯:氢气:氨气:氩气/氮气=20-30:15:10:200(体积比),热处理2h得到石墨烯管。
实施例3
Co基催化石墨烯管的生长。((1)前体一钠钛氧的合成:如上述例一所示。(2)前体二钴钛氧合成的合成:将上述得到的钠钛氧前驱体分散于50ml水溶液中,加入硝酸钴水溶液(摩尔比Na:Co=1:10),反应12h;抽滤,按照乙醇-水-水-乙醇的顺序洗涤,共计洗涤4次,烘箱干燥,得到钴钛氧前体二。(3)石墨烯管制备:将上述得到的镍钛氧前驱体放置在坩埚上,放入管式炉中以5°/min的速度升温至850℃,通入乙烯:氢气:氨气:氩气/氮气=20-30:15:10:200(体积比),热处理2h得到石墨烯管。
实施例4
Cu基催化石墨烯管的生长。(1)前体一钠钛氧的合成:如上述例一所示。(2)前体二铜钛氧合成的合成:将上述得到的钠钛氧前驱体分散于50ml水溶液中,加入硝酸铜水溶液(摩尔比Na:Cu=1:10),反应12h;抽滤,按照乙醇-水-水-乙醇的顺序洗涤,共计洗涤4次,烘箱干燥,得到铜钛氧前体二。(3)石墨烯管制备:将上述得到的铜钛氧前驱体放置在坩埚上,放入管式炉中以5°/min的速度升温至850℃,通入乙烯:氢气:氨气:氩气/氮气=20-30:15:10:200(体积比),热处理2h得到石墨烯管。
本发明制备的竹林状石墨烯管阵列可应用在柔性可穿戴电子装置,如柔性电阻式力学传感器,可应用于皮肤表面的压力信号的检测,包括脉搏、呼吸、运动姿态等力学信息的精准测试。
最后有必要在此说明的是:以上实施例只用于对本发明的技术方案作进一步详细地说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容做出的一些非本质的改进和调整均属于本发明的保护范围。

Claims (5)

1.一种竹林状石墨烯管阵列的制备方法,其特征在于,包括如下步骤:
步骤(1),制备第一前驱体A2Ti3O7纳米线,其中A选自 Li、Na、K和Rb中的至少一种;
步骤(2),将步骤(1)得到的所述第一前驱体A2Ti3O7纳米线置于盐水溶液中,进行搅拌处理,通过离子交换方法将步骤(1)得到的第一前驱体A2Ti3O7纳米线中部分的A交换成具有催化活性的金属离子M,获得第二前驱体Ma+ xA1+ yTi3O7纳米线,其中,M选自Fe、Co、Ni和Cu中的至少一种,ax+y=2,a为2~4的整数;所述盐水溶液包括Fe、Co、Ni、Cu的硝酸盐、氯化盐、硫酸盐、乙酸盐、乙酰丙酮盐中的至少一种,盐离子摩尔比为M:A=1:1~10:1;
步骤(3),将步骤(2)得到的第二前驱体Ma+ xA1+ yTi3O7纳米线置于坩埚内,放入气氛炉中升温以将其中的金属原子M析出,形成金属纳米颗粒,然后通入气体碳源和辅助气氛,通过化学气相沉积的方法,在一定温度下,以所述金属纳米颗粒作为催化剂在作为载体的第二前驱体Ma+ xA1+ yTi3O7纳米线的表面上生长成石墨烯,获得竹林状石墨烯管阵列;所述气体碳源为乙烯或者甲烷,所述辅助气氛选自氨气、氢气、氩气和氮气中的至少一种;当所述气体碳源为乙烯气体时,气氛炉中升温后的保温温度为800~850℃,升温速率为1-30℃,通入气体的体积比为:乙烯:氢气:氨气:氩气/氮气=(20-30):15:10:200;当所述气体碳源为甲烷气体时,气氛炉中升温后的的保温温度为1000~1100℃,升温速率为1-10℃,通入气体的体积比为:甲烷:氢气:氨气:氩气/氮气=(40-50):15:10:200。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)的制备步骤包括:将钛基前驱体氧化钛与结构导向剂分散于金属氢氧化物溶液中,置于在耐高温高压密闭容器中,在150~200℃下反应1d~7d,静置,水和乙醇分别洗涤3次,烘箱干燥,得到所述第一前驱体A2Ti3O7纳米线。
3.根据权利要求2所述的制备方法,其特征在于,所述钛基前驱体氧化钛选自P25、锐钛矿氧化钛、金红石氧化钛、S掺杂TiO2粉末、TiO颗粒和Ti3O5颗粒中的至少一种,所述钛基前驱体氧化钛的粒径为50nm-500μm;所述结构导向剂选自乙二胺四乙酸EDTA、聚乙烯吡咯烷酮PVP和聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物PEO-PPO-PEO中的至少一种;所述金属氢氧化物选自Li、Na、K、Rb的氢氧化物中的至少一种;得到的所述第一前驱体A2Ti3O7纳米线的直径为10-500nm。
4.一种由权利要求1-3中任一项所述的制备方法制备的竹林状石墨烯管阵列。
5.一种如权利要求4所述的竹林状石墨烯管阵列在柔性可穿戴电子装置中的应用。
CN202210882960.XA 2022-07-26 2022-07-26 一种竹林状石墨烯管阵列及其制备方法和应用 Active CN115215328B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210882960.XA CN115215328B (zh) 2022-07-26 2022-07-26 一种竹林状石墨烯管阵列及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210882960.XA CN115215328B (zh) 2022-07-26 2022-07-26 一种竹林状石墨烯管阵列及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115215328A CN115215328A (zh) 2022-10-21
CN115215328B true CN115215328B (zh) 2023-09-08

Family

ID=83614246

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210882960.XA Active CN115215328B (zh) 2022-07-26 2022-07-26 一种竹林状石墨烯管阵列及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115215328B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101279729A (zh) * 2008-05-28 2008-10-08 天津大学 以镍/钛催化剂原位化学气相沉积法制备碳纳米管的方法
WO2010027336A1 (en) * 2008-09-08 2010-03-11 Nanyang Technological University Nanoparticle decorated nanostructured material as electrode material and method for obtaining the same
CN102530931A (zh) * 2011-12-14 2012-07-04 天津大学 基于石墨烯的纳米复合材料及其制备方法
CN102586869A (zh) * 2012-01-20 2012-07-18 中国科学院上海硅酸盐研究所 三维石墨烯管及其制备方法
CA2874888A1 (en) * 2012-07-06 2014-01-09 Teknologisk Institut Method of preparing a catalytic structure
CN104649253A (zh) * 2013-11-18 2015-05-27 国家纳米科学中心 一种多孔石墨烯及多孔石墨烯膜的制备方法
CN110148746A (zh) * 2018-02-12 2019-08-20 广州墨羲科技有限公司 石墨烯纳米片复合材料、其制造方法及应用
CN111268669A (zh) * 2020-01-20 2020-06-12 洛阳理工学院 一种石墨烯/银纳米线复合气凝胶的制备方法
CN113912043A (zh) * 2021-11-30 2022-01-11 南昌大学 一种石墨烯/碳纳米管复合阵列材料的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015112088A2 (en) * 2014-01-27 2015-07-30 Nanyang Technological University Graphene-metal chalcogenide porous material
JP2018535177A (ja) * 2015-10-08 2018-11-29 フォンダジオーネ イスティトゥート イタリアーノ ディ テクノロジア 高性能リチウム電池用アノード材料としての炭素ドープTiO2ブロンズナノ構造の直接合成
US11223035B2 (en) * 2017-11-27 2022-01-11 Global Graphene Group, Inc. Graphene-enabled niobium-based composite metal oxide as an anode active material for a lithium-ion battery
US11973211B2 (en) * 2019-01-28 2024-04-30 Honeycomb Battery Company Process for producing metal nanowires and nanowire-graphene hybrid particulates

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101279729A (zh) * 2008-05-28 2008-10-08 天津大学 以镍/钛催化剂原位化学气相沉积法制备碳纳米管的方法
WO2010027336A1 (en) * 2008-09-08 2010-03-11 Nanyang Technological University Nanoparticle decorated nanostructured material as electrode material and method for obtaining the same
CN102530931A (zh) * 2011-12-14 2012-07-04 天津大学 基于石墨烯的纳米复合材料及其制备方法
CN102586869A (zh) * 2012-01-20 2012-07-18 中国科学院上海硅酸盐研究所 三维石墨烯管及其制备方法
CA2874888A1 (en) * 2012-07-06 2014-01-09 Teknologisk Institut Method of preparing a catalytic structure
CN104649253A (zh) * 2013-11-18 2015-05-27 国家纳米科学中心 一种多孔石墨烯及多孔石墨烯膜的制备方法
CN110148746A (zh) * 2018-02-12 2019-08-20 广州墨羲科技有限公司 石墨烯纳米片复合材料、其制造方法及应用
CN111268669A (zh) * 2020-01-20 2020-06-12 洛阳理工学院 一种石墨烯/银纳米线复合气凝胶的制备方法
CN113912043A (zh) * 2021-11-30 2022-01-11 南昌大学 一种石墨烯/碳纳米管复合阵列材料的制备方法

Also Published As

Publication number Publication date
CN115215328A (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
Chen et al. Intermetallic borides: structures, synthesis and applications in electrocatalysis
Poudel et al. Confinement of Zn-Mg-Al-layered double hydroxide and α-Fe2O3 nanorods on hollow porous carbon nanofibers: A free-standing electrode for solid-state symmetric supercapacitors
Dai et al. MOF-derived Co3O4 nanosheets rich in oxygen vacancies for efficient all-solid-state symmetric supercapacitors
Zhou et al. Fe-leaching induced surface reconstruction of Ni-Fe alloy on N-doped carbon to boost oxygen evolution reaction
Shanmugam et al. Metal phosphide nanoparticles embedded in carbon as efficient electrocatalyst for oxygen evolution reaction
Atchudan et al. Direct growth of iron oxide nanoparticles filled multi-walled carbon nanotube via chemical vapour deposition method as high-performance supercapacitors
CN109585182B (zh) 硫钴镍包覆的镍钴合金纳米片阵列的制备方法
Yin et al. NiCo2O4 nanosheets sheathed SiC@ CNTs core-shell nanowires for high-performance flexible hybrid supercapacitors
Li et al. Sulfur and nitrogen Co-doped activated CoFe2O4@ C nanotubes as an efficient material for supercapacitor applications
Hao et al. Facile fabrication of core-shell structured Ni (OH) 2/Ni (PO3) 2 composite via one-step electrodeposition for high performance asymmetric supercapacitor
Lai et al. Multilayered nickel oxide/carbon nanotube composite paper electrodes for asymmetric supercapacitors
CN104773762B (zh) 一种生长在碳纤维布上的NiCo2O4介孔纳米管材料及其制备方法
Liu et al. Binder-free NiO@ MnO2 core-shell electrode: rod-like NiO core prepared through corrosion by oxalic acid and enhanced pseudocapacitance with sphere-like MnO2 shell
Lv et al. Interfacial electron transfer on heterostructured Ni3Se4/FeOOH endows highly efficient water oxidation in alkaline solutions
Sun et al. Microwave-assisted synthesis of graphene nanocomposites: recent developments on lithium-ion batteries
Yang et al. Synthesis, characterization, and electrochemical performances of core-shell Ni (SO 4) 0.3 (OH) 1.4/C and NiO/C nanobelts
Li et al. Synthesis of an ultrafine CoP nanocrystal/graphene sandwiched structure for efficient overall water splitting
Chatterjee et al. Enhanced electrochemical properties of Co3O4 with morphological hierarchy for energy storage application: a comparative study with different electrolytes
Priyadharshini et al. Hexamine role on pseudocapacitive behaviour of cobalt oxide (Co3O4) nanopowders
Chen et al. Nano-dendrite structured cobalt phosphide based hybrid supercapacitor with high energy storage and cycling stability
He et al. Laser in situ synthesis of NiFe2O4 nanoparticle-anchored NiFe (OH) x nanosheets as advanced electrocatalysts for the oxygen evolution and urea oxidation reactions
Wang et al. Alloying enhanced supercapacitor performance based on oxygen-deficient tin oxide nanorod array electrodes
Sehrawat et al. Nanostructured graphene oxide-based hybrids as anodes for lithium-ion batteries
KR101069480B1 (ko) 슈퍼 커패시터용 금속 옥살레이트 나노구조 제조방법
Isacfranklin et al. Role of Different Catalysts on a Direct Growth Carbon Nanotube for Supercapacitor Electrodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant